
Experiences from the Architectural Change Process

Josef Nedstam
Department of Communication Systems

Box 118, SE-221 00 Lund, Sweden
josef.nedstam@telecom.lth.se

Even-André Karlsson
Q-Labs

Ideon, SE-223 70 Lund, Sweden
even-andre.karlsson@q-labs.se

Martin Höst
Department of Communication Systems

Box 118, SE-221 00 Lund, Sweden
martin.host@telecom.lth.se

Abstract
A good software architecture is becoming recognized as a
major factor for successful products. There has been
much research on the technical aspects of software archi-
tecture and it is recognized that the driving requirements
for architectures are "non-functional", but few have stud-
ied how organizations decide on architectural changes. In
this paper we study the topic through several case studies.
The changes to the architecture are in all cases changes
to the "non-functional" requirements on the system. Issues
that we want to evaluate are: when and how is the need
for an architectural change discovered; what is the under-
lying non-functional requirement; who drives the change;
how is it prepared and evaluated; and finally, who makes
the decision and how is it implemented.

Through interviews with people that have experience
from architectural changes we compare the decision
process for architectural changes to the ordinary func-
tional requirement change process and the organizational
change process. We find that architectural changes have
aspects of both functional and organizational changes. An
architectural change does not only need to be technically
sound, it also needs to be anchored firmly in the organiza-
tion. This report gives both architects and managers
guidelines to balance short-term project goals and long-
term organizational goals with respect to architecture.

1. Introduction
Software architecture is becoming a well-established field
in technical terms, i.e. the different types of architectures
have been characterized [1]; different useful views of the
architecture have been described [2, 3]; as well as books
covering the whole area, e.g. [4, 5, 6]. However, little
research has been done on how decisions on architectural
changes are made in organizations.

Architectural changes are often different in nature
from other functional changes. They can impact larger
parts of the product, they can imply new ways of working,
they are often not clearly connected to one customer re-
quirement, and they are often expensive to implement.
Functional changes often originate from a customer de-
mand and are the responsibility of a defined role in a
company, i.e. product management. Architectural
changes, on the other hand, often emerge from various
sources, and roles are seldom defined to drive such

changes. All these factors imply that they differ from pure
functional changes.

The process for taking decisions regarding functional
changes and features has received attention in recent years
[7, 8]. Software development processes generally support
this rather well. When it comes to decisions regarding the
software architecture, the architect is often not so well
supported, neither for the analysis of the technical impacts
nor the organizational aspects of the change.

Since architectural changes have impact on organiza-
tions they might be best compared to the organizational
change process, as defined by Kotter [9]. Kotter’s eight-
stage process describes how to prepare an organization for
major change, and how to anchor the change in the or-
ganization:

1. Establishing a sense of urgency
2. Creating the guiding coalition
3. Developing a vision and strategy
4. Communicating the change vision
5. Empowering employees for broad-based action
6. Generating short-term wins
7. Consolidating gains and producing more change
8. Anchoring new approaches in the culture
These steps will be referred to in the overview of the

suggested process for architectural change in Section 3.
This paper examines how several changes to the

software architecture have been handled at three software
development organizations, and what internal or external
forces that drive the need for changes and control which
solutions are decided upon. Concretely we have looked at
the following questions for each architectural change:

1. What is the architectural change?
2. Why was the architectural change needed?
3. Who initiated it?
4. How was the associated decision made?
Based on the analysis of these questions, the ordinary

process for deciding on functional changes, and theories
for organizational change, we propose a process for han-
dling architectural changes, which provides guidelines to
consider in each step.

The three companies involved in this study are indus-
trial partners of the Center for Applied Software Engi-
neering at Lund University (LUCAS). Part of LUCAS is
the LUCAS Architecture Academy that is a one-year part
time software architecture education program for the
LUCAS partners. This research is done based on issues
that came up in the context of the architecture academy.



2. Method
In this study we have studied seven architectural changes
initiated at three Swedish software-developing companies.
The project has included a number of sessions where the
companies present their architectural work for each other,
and issues in the area have been raised and elaborated.

The approach taken in this research can be described
as flexible [7]. This type of research is characterized by
less pre-specification than in, for example, controlled ex-
periments. In a flexible design the major research ques-
tions can be specified in advance, although they must be
allowed to evolve during the course of the research.

Qualitative data has been collected in two sets of in-
terviews. The first set was held with architects and system
designers at the three companies to collect information
about the companies, their products, and their architec-
ture. Recent architectural changes were identified. Key
persons in those changes were interviewed in a second set
of interviews. These interviews were guided by the four
questions mentioned in the introduction. The data was
then analyzed according to the following factors:
�� Architectural change
�� Phase of change process
�� Topics that were considered important in changes

The collected data was categorized and tabulated ac-
cording to these factors, and analysis was carried out
through discussion and pattern searching.

3. Process Overview
This section describes our suggested process for making
technical decisions. The process is illustrated in Figure 1
and has been derived from the case studies, Section 4. The
relation between the process and the case studies is shown
in Section 5. The purpose of this process is to enable or-
ganizations to make the right decisions by the right people
at the right time. From an employee viewpoint the process
shall give guidance in the decision process, both for
change initiators and decision-makers. Note that one as-
pect that differentiates the architectural change from the
functional change is that the functional change usually is
initiated by a customer request, and there is usually some-
one in the organization dedicated to handling these, e.g.
product management. Architectural changes can be initi-
ated by many roles in the organization.

The general process for functional changes involves
requirements elicitation, pre-studies, implementation, and
related decision-points. It focuses on how an organization

shall make decisions. Kotter’s [9] process for large-scale
organizational change instead focuses on how to make
changes happen. In the following process the two features
are combined. This has basically been done by mapping
Kotter’s change process onto the functional change
framework, which is considered to be fairly established in
software industry. In practice the process therefore has to
be adapted to the present functional change framework.

1. A need emerges: The process is superceded by a
chain of events where need for change emerges or is
created, and someone, the change initiator, sees this
need and considers it his or her responsibility. This
can to some extent be compared to Kotter’s Estab-
lishing a sense of urgency, and to requirements elici-
tation in a functional change process.

2. Initial decision preparation: In this phase the
change initiator does preparations with the goal of
getting resources to analyze and implement the
change.

��Document background: To increase the chance of
having an impact on the resolution of the need, the
change initiator should document the background
of the need, i.e. what products, components or or-
ganizational entities are involved, the history be-
hind the need, how it manifests itself, what effects
it might have not to satisfy the need etc.

��Identify stakeholders/decision makers: While
documenting the background, stakeholders are sure
to emerge. In order to have optimal impact, the
change initiator should pay special attention to
these and especially to the decision makers that
will be involved in the following process. This is
related to Kotter’s Creating the guiding coalition.

3. Decision: Go/no-go: An initial decision must be
made whether the issue at hand is adequate and feasi-
ble to treat. Probably, there has not been spent very
much effort before this decision point, e.g. one per-
son’s work for hours or days. Work done in the rest
of this process, but before a decision on any particu-
lar solution or implementation of change, probably
requires resources that must be budgeted, e.g. a hand-
ful of persons or more, which work for days or
weeks. Therefore a person responsible for resources
must make a decision whether to go on with this
process or not. The formality of this decision-point is
controlled by the organization at hand. If the change

Figure 1. The process of architectural change

1. Initiation:
A need emerges

2. Initial decision preparation:

Analyze organizational impact
Identify stakeholders
Document background

3. Decision:
Go/no-go

4. Decision preparation:
Analyze technical alternatives

Return on investment

5. Decision:
Rollout 6. Rollout

1. Initiation:
A need emerges

2. Initial decision preparation:

Analyze organizational impact
Identify stakeholders
Document background

3. Decision:
Go/no-go

4. Decision preparation:
Analyze technical alternatives

Return on investment

5. Decision:
Rollout 6. Rollout



can be viewed as a normal product requirement or
change proposal, it can be treated as such through the
ordinary channels: implementation proposal and re-
lated decision points. If the change however is more
of a change in the way people work, or a change in an
internal quality attribute not leading up to completion
of a specific project, the process steps that follow are
of a different complexity. The risks of facing opposi-
tion are higher and the decision process and prepara-
tions must be more thorough.

4. Decision preparation: This phase is akin to perform-
ing a pre-study or developing an implementation pro-
posal in technical change management. In terms of
Kotter’s process, it resembles Developing a vision
and strategy.

��Analyze technical alternatives: When technical al-
ternatives have been proposed, these can be ana-
lyzed from an architectural viewpoint in a number
of ways [11], i.e. ATAM [12].

��Analyze process and organization impact: When
making a technical analysis, the organizational im-
plications are often forgotten. This might lead to
unexpected resistance to a change. An organiza-
tional analysis is therefore made, based on the ini-
tial analysis of stakeholders, in order to assess the
impact of the change and prepare the organization
for the change. The activity therefore contains parts
of Kotter’s Communicating the change vision.

��Return on investment: The need that the change
satisfies has to have a financial side. A return on
investment analysis will simplify getting support
for the change from top management and manage-
ment of any project that might implement the
change. This activity will support Kotter’s Gener-
ating short-term wins.

5. Decision: Rollout: Software projects generally have
a tollgate or decision point where it is decided which
implementation proposals will be include in the re-
sulting product. The same decision is made in this
phase, regarding technical aspects of the architectural
change. Organizational changes are however not suit-
able to implement in a product oriented project, and
will therefore need another form of implementation
and associated decision.

6. Rollout: This activity involves the implementation of
the change. The objective of this process is that the
rollout of the technical part of the change shall be
carried out within an ordinary project, i.e. where gen-
erally most organizational resources are allocated.
This has to be synchronized with the rollout of the
organizational change, which must be managed by,
and given resources from, the line organization. This
activity is related to the late phases of Kotter’s proc-
ess: Consolidating gains and producing more
changes, and Anchoring new approaches in the cul-
ture.

When comparing to Kotter’s process it is important to
keep the proper context in mind. Kotter presents a process
for long-term organizational changes, which means some
phases are of a different scale. Kotter’s process also fo-
cuses on engaging employees and preparing an organiza-
tion for a change, and not so much on how to perform the
actual change. Since this paper focuses on changes to
software architectures, we can use the decision framework
common in software projects as a basis for a change proc-
ess with features of both perspectives.

4. Case Descriptions
This section describes architectural changes at three com-
panies, located in southern Sweden. All companies de-
velop products to a mass-market, and their products have
long lifetimes. This implies that their architectures need to
support several simultaneous versions of their products,
with several releases over an extended period of time.

4.1 Company A
Company A develops control system environments for
industrial automation, e.g. chemical plants, dairies, oil
platforms, etc. The control system environment consists
of both a development view, called control builder, and a
deployment view, i.e. the controller itself. Within the con-
trol builder, controllers can be designed by specifying
hardware sensors and actuators, constructing control
loops, and connecting variables in those control loops to
the hardware devices. A fully specified system can then
be compiled and deployed onto a controller in a control
system.

Company A typically carries out one large project at
a time, involving the entire organization. Each project
evolves the same product further by adding features to the
control builder, e.g. new editor facilities, and the control-
ler, e.g. new hardware interfaces. Implementation propos-
als are developed during a feasibility study. Accepted
implementation proposals pass a tollgate, where after im-
plementation begins. Development is organized in teams,
each working on a number of implementation proposals.
Work is feature-focused and the organization has no mod-
ule-responsible and no architects, but instead relies on
senior developers to take responsibility for long-term ar-
chitectural goals. Two changes were studied at the com-
pany:

Protocol Framework: Company A recently acquired
companies within their domain in order to increase their
market share. The controller developed by Company A
was intended to replace those companies’ products. To
support the same customers, the controller therefore had
to support a number of legacy protocols from those prod-
ucts. This was realized as a problem using the present
architecture, as the protocols were intertwined with the
rest of the code, and could only be developed at one site,
the one studied here. This site only had capacity to de-
velop 1-2 new protocols per project. To be able to develop



several protocols a year, Company A decided to develop a
generic IO and communication protocol framework. The
solution was developed through a pre-study and an im-
plementation proposal, which resulted in a solution that
enabled frequent releases of the product with many new
or legacy protocols in each release. This would be accom-
plished by letting other departments of the company de-
velop the protocols they were responsible for, using the
protocol framework.

Real-Time Operating System: Company A had for a
number of years had discussions about cutting licensing
costs on Real-Time Operating Systems (RTOS). A sug-
gestion from local product management at the studied site
to develop their own RTOS was rejected by local devel-
opment management. In parallel, high-level management
decided to reduce the number of RTOSs to only one. This
would not only lower licensing costs but also provide fo-
cus on a common competency regarding RTOSs and tool
support, which would standardize and simplify distributed
development. Top-level development management initi-
ated a pre-study across all departments of the company.
Participants were interviewed regarding their use of, and
competencies in RTOSs. The site studied here used one
RTOS, but the pre-study led to a recommendation for all
departments to switch to another. Eventually the recom-
mendation became a requirement for a project at the stud-
ied site. This requirement was postponed by the local or-
ganization, while an OS expert prepared a solution with a
Virtual Operating System (VOS) layer, which was intro-
duced in a later project.

4.2 Company B
Company B develops platforms for consumer electronic
devices. These platforms are sold to external customers
who configure the services within the platform to create
complete products. The software platform consists of a
number of modules, and a middleware layer hides the
internal architecture from the customers.

Projects are organized in: a project management
group, with product management responsibility; a system-
engineering group, with expert groups and function
groups responsible for major features within market re-
quirements; and a system realization group, which re-
ceives specifications from the system engineering group
and develops the platform. The system realization group
is divided into a hardware- and a software branch, which
are subdivided into development teams responsible for a
set of modules. The organization has module responsible
that work with function groups during specification and
development teams during implementation. The company
also has a dedicated architecture group that performs most
of its work within projects, especially supporting and in-
fluencing the system-engineering group. Three changes
were studied at the company:

Data Router: During routine reviews the system-
engineering group discovered several modules handling
data streams in similar ways. These modules could instead

use a common data router and thereby save memory. The
architecture group developed a design proposal that was
approved, but no resources were provided from the pro-
ject. Project management did not consider the memory
savings to be large enough. Therefore the solution was
implemented by the software architecture group, and inte-
grated with a small-scale system on an isolated branch of
the code. After inspection this branch was merged with
the main track, and the software architecture group initi-
ated documentation and education on the new architec-
tural mechanism. The solution was still not widely ac-
cepted, as most modules already had their own implemen-
tations of the same functionality.

Hardware Abstraction Layer (HAL) Split: The bottom
layer of the architecture had existed in previous versions
of the product, but had not been formally defined, and
therefore there had been no clear rules as to how to access
the hardware. The hardware was also not encapsulated
well enough from the majority of the software, leading to
unnecessary impacts in the software when the hardware
changed. The developers working in the lower layers of
the product realized the need for a clearer definition of
these layers. They proposed a solution that meant clearing
the HAL interface from hardware dependencies, i.e. creat-
ing a logical layer on top of the previous HAL. One driv-
ing force for introducing this logical layer is that the cost
for a product developed from the platform is very depend-
ent on the hardware components used, and therefore these
are often changed to provide cheaper solutions. The pur-
pose of the logical layer is to allow such changes without
expending effort in the higher layers of the software.

The solution was presented for the system-
engineering group and brought to the software architec-
ture group. When the proposed solution was established
within the system-engineering group and the software
architecture group, project management decided to assign
resources to the change. The software architecture group
introduced new coding rules according to the suggestion
and made changes to the architecture descriptions. At the
same time, the developers in the HAL prepared by plan-
ning the change, before doing the actual implementation
when resources were assigned and the architecture was
updated.

Include-file Reorganization: The software architecture
group had created a flexible structure for the source- and
include-files. The design rules that enforced this structure
required several files for each component, and when the
number of modules grew to around 100, unexpected ef-
fects on the development tools emerged. Compilation
times increased, the configuration management system
behaved sluggishly and the globally distributed CM serv-
ers started to crash more frequently. The persons respon-
sible for tool support within Company B were in contact
with support personnel from the tool supplier, who identi-
fied the problem as having too many files in the system.
The software architecture group was assigned to create a
new structure.



The flexibility provided by the original structure was
only needed by a few of the about 100 modules, and these
could continue to use the previous structure. The rest of
the modules were given a new structure, which basically
involved merging three or four source files into one file.
This resulted in a three-to-one reduction of source files.

4.3 Company C
Company C develops software engineering tools. One of
their main products is a design tool that consists of a
front-end with editors for various types of diagrams and
source code, and a back-end for compiling the diagrams
into code. Other utilities such as a simulation tool are also
part of the design tool.

Company C releases a new version of their product
every six months, and successive release cycles overlap.
Features are implemented by development teams in an
assembly-line fashion, described in [13, 14]. The organi-
zation has architects per project but no establisehd line
organization for architecture, and module responsibility is
assigned to senior experts. Two changes were studied at
the company

Communication Mechanism: New requirements, espe-
cially related to new language standards, have meant that
the old architecture could not support further develop-
ment. Therefore top-level management decided to create a
new product generation. Company C had recently ac-
quired other companies, which developed software engi-
neering tools that were to be integrated into the new prod-
uct. One of the problems with the new requirements was
an increase in the number of diagram editors. The old
communication mechanism did not support this increase,
but one of the acquired companies had recently solved
that problem, using a common object model. A technical
discussion led to a consensus of using the new solution,
although it meant major architectural changes.

Editor Framework: The editor framework used to de-
velop graphical editors was also changed using a more
generic solution, a decision also taken by consensus in the
development project. The drivers for this change were
increased reuse of common editor elements, and outsourc-
ing of development throughout the organization. Several
other decisions in this change process had to be enforced
by the responsible architect, as consensus could not be
reached. Both these changes were introduced in the same
project.

5. Analysis of Process versus Cases
This section compares the process suggested in Section 3
to the architectural changes described in Section 4.

5.1 A Need Emerges
Before the suggested process is initiated a need for a
change somehow appears. The reasons for changes in this
report has included business decisions to increase market
share, lower costs and lead time, but also more technical

reasons where the architecture has not been able to sup-
port increased complexity and new features.

In Company A the need for the protocol framework
was initiated when top management decided to increase
the market-share by acquiring other actors in the same
domain. Mid-level managers and experts then saw the
need for support of legacy protocols found in the newly
acquired companies’ products. The need for a change of
RTOS on local level came from a higher-level need to
save licensing costs and focus competencies by reducing
the number of RTOSs. The process was initiated by
higher-level management and supported by developers at
other sites of the organization.

In Company B the introduction of a data router was
driven by memory size being an important quality attrib-
ute. The opportunity to save memory was discovered by
system engineers during routine code-reviews. The need
for a HAL split emerged as the company wanted to be
able to change hardware components frequently in order
to save costs. The hardware-related developers themselves
initiated the change in order to simplify the frequent
changes. The need for an include-file restructuring be-
came apparent, as the configuration management tool did
not support the existing structure. The architecture group
initiated this change since they were responsible for the
include-file structure.

The product generation shift performed in Company
C contained two major changes. A new mechanism,
which allowed different editors to work against the same
system representation, was introduced in order to increase
the number of possible editors. A framework for editor
development was introduced in order to increase reuse of
common editor components and enable outsourcing of
editor development. Local experts initiated these changes
and the technology came from the newly acquired compa-
nies.

Change initiators have been identified from all levels
of the companies, i.e. managers, experts appointed when
the issue came up or as part of their ordinary role, where a
special case is the architects themselves, and down to the
developers. This can be compared to functional changes
where needs often emerge from customers and are taken
care of by marketing or product management.

5.2 Initial Decision Preparation
A decision process that can be initiated by non-decision
makers will eventually have to be brought before a deci-
sion maker. In this phase the change initiator documents
the background of the issue, and identifies stakeholders
and decision makers.

When the need for legacy protocol support had
emerged in Company A, local experts and managers ana-
lyzed the protocol framework solution in a pre-study.
Limited attention was however paid to other departments
that were supposed to implement protocols on this frame-
work. Regarding the change of RTOS, the pre-study had
been carried out by higher-level management. This re-



sulted in recommendations to change to a single and
specified RTOS. The pre-study involved interviews on all
company sites.

The introduction of a data router in Company B was
initially prepared by the system-engineering group by
marking the places were similar functionality had been
found. Stakeholders such as current users of such func-
tionality and future clients to the data router were loosely
identified but not further analyzed. The only stakeholder
that was approached was the architecture group, who
would be responsible for developing an implementation
proposal. Regarding the HAL split, the developers in that
layer prepared a solution themselves, and set up a meeting
with the appropriate decision-makers, in this case the sys-
tem-engineering group. In the case of the include-file re-
structuring, the initial preparation was made by the tool-
vendor’s support organization. They concluded that the
projects contained too many files. The architecture group
was identified as a stakeholder, since they had developed
the previous structure. Apart from that, stakeholder identi-
fication was not done actively, since the frequent tool
failures meant that stakeholders presented themselves.

In Company C the first steps of the product genera-
tion shift were taken on many levels, both within the
original organization and by developers and managers in
newly acquired organizations. Technical discussions were
held which lead to the realization that the whole architec-
ture had to be changed. Solutions were gathered from all
parts of the organization, and the new architecture was
adapted to enable distributed development. Stakeholders
and decision-makers were therefore covered.

In the case studies we have seen examples of less
successful changes, where too little has been known about
the impact of the change. Effects of functional changes
are often more limited and customer-oriented. As opposed
to architectural changes, functional changes often have
resources allocated to this phase, such as product man-
agement performing requirements elicitation.

5.3 Decision Point: Go/No-Go
In this activity the first decision to commit resources is
made. The right decision maker shall have been defined
previously, and process and organizational issues must not
be forgotten in this decision.

In Company A, local level management decided that
an implementation proposal of the protocol framework
should be developed, since the solution would allow for
more protocols and more frequent releases of the product.
The organizational impact was not given much focus in
this decision. Regarding the RTOS switch, top manage-
ment decided to turn the recommendation into a require-
ment for the following projects. This requirement was
later postponed by the local organization.

In Company B, the system-engineering group decided
that the architecture group should develop an implementa-
tion proposal of a data router. Regarding the HAL split,
the solution was so well prepared by developers that nei-

ther the system-engineering group, nor the architecture
group had to invest large resources in preparation, and
therefore the related decision was of little significance.
Regarding the include-file structure the architecture group
themselves decided that they should develop a solution.
Resources spent by the architecture group were consid-
ered insignificant in comparison to the resources wasted
during tool problems. Organizational impact related to
difficulties in rolling out the new structure was considered
at this stage.

In Company C, the decision to apply resources to the
change process was at a higher level, since it involved
starting a whole new line of product-oriented projects. A
decision was therefore made by top management to pre-
pare and plan for a first project, which should result in a
prototype for the product.

A forum for architecture issues could be helpful when
making this decision. Considering functional changes,
organizations sometimes have product management fora,
making similar decisions. The problem for the architect is
that the decision is one of resources, for which the archi-
tect seldom has responsibility. Getting project resources
has a benefit since the change can be more easily em-
braced by that project. It is however not trivial to receive
resources from a project manager.

5.4 Decision Preparation
In the decision preparation phase a small group of people
will analyze technical alternatives, process and organiza-
tional impact, and return on investment. From a company
viewpoint this is done to make the right decision, and
from an architect or change initiator viewpoint this will
help convincing people of the need for change. This phase
is similar to developing an implementation proposal when
making a functional change, and should therefore be
adapted to how implementation proposals are handled
within the organization. The analysis of technical alterna-
tives can be done in parallel with the analysis of process
and organizational impact.

At Company A, the protocol framework was prepared
by developing an implementation proposal, in the same
way as a normal requirement. The technical solution was
based on expert opinions. The process and organizational
impact was considered, and a pilot study was made which
involved developing a protocol at another site in the same
company. However, there are many developers in the ac-
quired companies that are impacted by this change but
have not been involved in the first phase. The change of
RTOS was postponed to a later project, and in the mean-
time an OS expert prepared a solution involving a VOS
layer to allow for several operating systems. One organ-
izational impact was overlooked, as the change meant that
new RTOS support contacts had to be established. Re-
garding return on investment, the change of RTOS lead to
no short-term wins for the local organization.

In Company B, the architecture group developed the
data router solution in a pre-study. It was based on already



implemented solutions, but the group failed to realize op-
position from project management and developers. A re-
turn on investment was calculated late in the process. The
developers had already prepared the HAL split so the ar-
chitecture group only had to prepare changes to architec-
ture documentation and design rules. No quantitative re-
turn on investment was made but the ability to change
components was considered an obvious benefit. Regard-
ing the include-file restructuring, the architecture group
found that the flexibility provided by the original structure
was only needed in a few modules, and a simpler structure
was created for other modules. Return on investment
calculations were made regarding the rollout, since rollout
was expensive and did not contribute directly to any
product.

In Company C the first project of the new product
generation was planned. When making technical decisions
many parts of the organization were involved, and con-
sensus in joint forums was the goal. When this could not
be reached, the architect responsible for that type of func-
tionality had to make the decision. Organizational impact
was not only considered when selecting solutions, but also
when distributing development of various modules. This
distribution could at least in one case have been better
planned, as they ended up with developing a module at
one site, which was highly dependent on two other mod-
ules at another site, leading to unnecessary problems.

5.5 Decision Point: Rollout
When a feature-oriented implementation proposal is com-
pleted, it is generally passed through a tollgate in the pro-
ject. In this tollgate the project decides which features or
implementation proposals shall be included in the upcom-
ing release. The activity described here is similar, but the
changes we have studied have had organizational impact.
Such changes, and their related decisions, are hard to
make in a product-oriented project, i.e. a project that will
result in a product aimed at the market.

In Company A, the implementation proposal for the
protocol framework involved two different types of proto-
cols, and a set of services for these protocols. The deci-
sion to implement was made according to the standard
project model. Both protocol types were to be imple-
mented in the upcoming project, but a part of the services
were postponed to later projects. Regarding the change of
RTOS, the expert’s VOS solution was chosen, and local
development management decided to roll it out onto a
current project. This project had to start implementation
before the VOS was ready, and therefore local develop-
ment management decided that the VOS team would
make relevant modifications of the project’s code when
the VOS was ready.

In Company B the system-engineering group ap-
proved the implementation proposal for the data router,
but the architecture group did not receive project re-
sources to implement the proposal. They then decided to
implement the data router with their own resources. The

HAL split was however granted resources by project
management, because it had backing from developers,
system engineering, and the architecture group. The in-
clude-file restructuring was urgent, but difficult to roll
out. First a script was developed that would automate
rollout. This script depended on that the design rules had
been followed, which was not the case. A second strategy
was to halt development over a number of days, and per-
form the changes manually. This solution was too costly
and eventually appropriate line management decided to
roll the new structure out onto newly started projects, let-
ting old projects use the old structure.

Company C decided to launch the series of projects
for the new generation of products. Top management took
this decision, and the content of each project has slowly
been decided throughout the first projects by top man-
agement, product management and project management.

One conclusion from this activity is that it might be
beneficial to restrict functional content of a new product
when introducing major architectural changes. This was
adequately done when introducing the IO and communi-
cation framework in Company A, as the number of ser-
vices available to the protocols was restricted in the first
release. Company C has however had problems deciding
on the final content of the first product to be released on
the market. Restriction of functional content is a tradeoff
since customers will not accept lower functional content,
and the new architecture must be able to support future
functional content. Another tradeoff regarding how many
future features an architecture should enable concerns the
debate of programming for the future or, as XP [15] advo-
cates, programming only for the present.

5.6 Rollout
Implementation of technical aspects of changes is made
successfully within product-oriented projects. Implement-
ing technical aspects elsewhere is more problematic, since
such implementations are not so easily embraced by de-
velopers in projects. The problem is that the process and
organizational aspects are often forgotten in product-
oriented projects, and there seldom exists a standard rou-
tine for carrying out such changes, as opposed to carrying
out a product-oriented project.

In Company A the protocol framework was imple-
mented as part of a product-oriented project, but many
departments that were intended to develop protocols have
not yet had opportunity to give feedback on the frame-
work. There is therefore still a risk that some departments
will object to the framework. The VOS was developed in
parallel with a product-oriented project. When the VOS
was ready the two projects were merged, and the VOS
team had to make remaining modifications.

In Company B the architecture group developed the
data router on an isolated branch, which was later merged
with the main branch. The problem was that most of the
clients to the new data router already had implemented
their own solutions, and usage of the router was only rec-



ommended, not required. It has therefore not provided the
anticipated memory savings. The HAL split had been well
prepared by both developers and architects before deci-
sions were made, and it was rolled out as part of a project.
The new include-file structure was rolled out onto one
project at a time across the whole organization. The roll-
out coincided with an architectural change, which lead to
little overhead when the key module responsible checked
in the new file structure into the tool at project startup.

Company C has implemented their architectural
changes in a prototype project, and a product for the mar-
ket is under development. The main problems have been
to settle on feature content, and as previously mentioned,
the distribution of work.

In the case studies we have seen several examples of
changes where the technical part has been assigned to a
certain project as a requirement, but postponed to later
projects. We have also seen examples where the changes
have been performed outside of product-oriented projects,
further decreasing the chance of embracing the change.
One of the cases made a satisfactory tradeoff, where the
change of operating system was postponed to a later pro-
ject, but prepared by an expert ahead of the project start.

6. Conclusions
In the case studies we have seen that need for architectural
changes can emerge from various sources, and that vari-
ous roles, such as managers, architects and developers,
may take responsibility for initiating the change. The de-
cisions regarding architectural changes are often carried
out in the same way as companies make decisions regard-
ing functional changes, while the implementation of archi-
tectural changes may take many forms, such as part of
ordinary projects, parallel but separate projects, independ-
ent smaller projects or as new full-scale projects.

We have discovered three major differences between
functional changes and architectural changes. First of all,
architectural changes are often more complex than func-
tional changes and affect large parts of the product with-
out showing a clear connection to a customer need. Sec-
ondly, architectural changes do not only have impact
across large parts of the product, but often across the
whole organization, and changes of processes and organi-
zation are often overlooked and hard to implement in
product-oriented projects. Finally, while companies often
have mechanisms and resources in place to treat func-
tional changes, such mechanisms are seldom established
for architectural changes, and it is also hard to commit
resources to activities without clear customer value.

We believe the process presented here helps putting
focus on organizational issues in an architectural change,
while taking advantage of the decision support found in
the ordinary functional change process. This will lead to
that the technical part of the architectural change is im-
plemented according to company standard, hopefully
within a product-oriented project.

In further studies, the process presented here could be
optimized by running it in pilot studies. A goal of such
studies could be to find a framework for implementing the
organizational part of the change.

Acknowledgement
We would like to express our gratitude to the companies
and individuals participating in the LUCAS architecture
academy. Without their help this work could not have
been completed.

This work was partly funded by The Swedish Agency
for Innovation Systems (VINNOVA), under a grant for
the Center for Applied Software Research at Lund Uni-
versity (LUCAS).

References
[1] Garlan, D. and Shaw, M., Software Architecture: Perspec-

tives on an Emerging Discipline, Prentice Hall, 1996
[2] Soni, D., Nord, R., and Hofmeister, C., “Software Archi-

tecture in Industrial Applications”, Proc ICSE, pp. 196-
210, Seattle, 1995

[3] Kruchten, P., “The 4+1 View of Architecture”, IEEE
Software 12 (6), pp 42-50, IEEE, 1995

[4] Bass, L., Clements, P. and Kazman, R., Software Archi-
tecture in Practice, Addison-Wesley, 1998

[5] Hofmeister, C., Nord, R. and Soni, D., Applied Software
Architecture, Addison-Wesley, 1999

[6] Bosch, J., Design and Use of Software Architectures, Ad-
dison Wesley, 2000

[7] Evans, R., Park, S. and Alberts, H., “Decisions not Re-
quirements: Decision-Centered Engineering of Computer-
Based Systems”, Proc IEEE Int. Conference and Work-
shop on Engineering of Computer-Based Systems, pp.
435-442, 1997

[8] Regnell, B., Paech, B., Aurum, A., Wohlin, C., Dutoit, A.
and Natt och Dag, J., “Requirements Mean Decisions! -
Research issues for understanding and supporting deci-
sion-making in Requirements Engineering“, Proc 1:st
Swedish Conference on Software Engineering Research
and Practice, pp 49-52, Blekinge Institute of Technology,
2001

[9] Kotter, J. P., Leading Change, Harvard Business School
Press, 1996

[10] Robson, C., Real World Research, 2nd Ed., Blackwell
Publishers Inc., 2002

[11] Dobrica, L. and Niemelä, E., “A Survey on Software Ar-
chitecture Analysis Methods”, IEEE Transactions on
Software Engineering 28, pp 638-653, IEEE, 2002

[12] Clements, P., Kazman, R. and Klein, M., Evaluating Soft-
ware Architectures, Addison-Wesley, 2002

[13] Regnell, B., Berenmark, P. and Eklund, O., “A Market-
Driven Requirements Enigneering Process”, Journal of
Requirements Engineering 3, pp 121-129, Springer-
Verlag, 1998

[14] Höst, M., Regnell, B., Natt och Dag, J., Nedstam, J., and
Nyberg, C., “Exploring bottlenecks in market-driven re-
quirements management processes with discrete event
simulation”, Journal of Systems and Software 59, pp 323-
332, Elsevier Science Inc., 2001

[15] Beck, K., “Embracing Change with Extreme Program-
ming”, IEEE Computer, October 1999, pp 70-77


