

Architecture as an Emergent Property of Requirements Integration

R.G. Dromey,
Software Quality Institute, Griffith University,
Nathan, Brisbane, Qld., 4111, AUSTRALIA

rgd@cit.gu.edu.au

Abstract
 Functional requirements contain, and systems exhibit,
the behavior summarized below.

 Despite the advances in software engineering since 1968,
how to go from a set of functional requirements to an
architecture that accommodates those requirements
remains a challenging problem. Progress with this
fundamental problem is possible once we recognize (1)
that individual functional requirements represent fragments
of behaviour, (2) a design that satisfies a set of functional
requirements represents integrated behaviour, and (3) an
architecture must accommodate the integrated behaviour
expressed in a set of functional requirements. This
perspective admits the prospect of constructing a design
out of its requirements. A formal representation for
individual functional requirements, called behavior trees
makes this possible. Behaviour trees of individual
functional requirements may be composed, one at a time,
to create an integrated design behaviour tree. From this
problem domain representation it is then possible to
transition directly and systematically to a solution domain
representation of the component architecture of the system
and the behaviour designs of the individual components
that make up the system – both are emergent properties.

• Components realise states
• Components change states
• Components have sets of attributes that are assigned values
• Components, by changing states, can cause other

components to change their states
• Supplementing these component-state primitives are

conditions/decisions, and events involving component-states.
• Interactions between components also play a key role in

describing behaviour. They involve control-flow and/or data-
flow between components.

 Notations like sequence diagrams, class and activity
diagrams from UML[1], data-flow diagrams, Petri
Nets[2], state-charts and Message Sequence Charts
(MSCs) [3,4], accommodate the behaviour we find
expressed in functional requirements and designs.
Individually however, none of these notations provide the
level of constructive support we need. This forces us to
contemplate another representation for functional
requirements and designs. Such ventures are generally not
enthusiastically received – a consensus is that new
notations just muddy the waters. Our justification for
ignoring this advice is that the Behavior Tree Notation
solves a fundamental problem – it provides a clear, simple,
constructive path for going first from a set of functional
requirements to an integrated behaviour representation
that will satisfy those requirements and then to an
architecture and the set of accompanying component
behaviour designs [5].

“Finding deep simplicities in a complex logical task
leads to work reduction”- Harlan Mills.

1. Introduction

 A great challenge that continues to confront software
engineering is how to go in a systematic way from a set of
functional requirements to a design that will satisfy those
requirements and an architecture that will support the
implied integrated behavior. In practice, these two tasks
are further complicated by defects in the original
requirements and, subsequent changes to the requirements.

2. Behavior Trees

 The Behavior Tree Notation captures in a simple tree-
like form of composed component-states what usually
needs to be expressed in a mix of other notations.
Behavior is expressed in terms of components realizing
states, augmented by the logic and graphic forms of
conventions found in programming languages to support
composition, events, control-flow data-flow, threads, and

 A first step towards taking up this challenge is to ask –
what are functional requirements? Study of diverse sets of
functional requirements suggests it is safe to conclude that
individual requirements express constrained behaviour.
By comparison, a system that satisfies a set of functional
requirements exhibits integrated constrained behaviour.
The latter behaviour of systems is not inherently different.

2

constraints. Behavior trees are equally suited to capture
behavior expressed in natural language functional
requirements as to provide an abstract graphical
representation of behavior expressed in a program. We
may therefore ask can the same formal representation of
behaviour be used for requirements and for a design? If it
could it may clarify the requirements-design-architecture
relationship.

Definition: A Behavior Tree is a formal, composable,
tree-like graphical form that represents behaviour of
individual or networks of entities which realize or change
states, make decisions, respond-to/cause events, and
interact by exchanging information and/or passing
control.

Behavior trees provide a direct and clearly traceable
relationship between what is expressed in the natural
language representation and its formal specification.
Translation is carried out on a sentence-by-sentence basis,
e.g., the sentence “when the door is opened the light
should go on” is translated to the behaviour tree below:

DOOR
?? Open ??

LIGHT
[On]

 The principal conventions of the notation for
component-states are the graphical forms for associating

with a component a [State], ??Event??, ?Decision?, [Sub-
cpt[State] or relation, or [Attribute := expression | State].
Exactly what can be an event, a decision, a state, etc are
built on the formal foundations of expressions, Boolean
expressions and quantifier-free formulae (qff). To assist
with traceability to original requirements a simple
convention is followed. Tags (e.g. R1 and R2, etc, see
below) are used to refer to the original requirement in the
document that is being translated. System states, are used
to model high-level (abstract) behaviour and some
preconditions/postconditions. Key elements of the
notation are given in Figure 1, above (see EBNF,
semantics, web-site http://www.sqi.gu.edu.au/gse/papers).

 In practice, when translating functional requirements
into behavior trees we often find that there is a lot of
behavior that is either missing or is only implied by a
requirement. We mark implied behavior with a “+” in the
tag (and/or the colour yellow if colour can be shown).
Behavior that is missing is marked with a “-“ in the tag
(and/or the colour red). Explicit behavior in the original
requirement that is translated and captured in the behavior
tree has no “+/-“ marking, and the colour green is used -
see Fig. 4 below. These conventions maximize traceability
to original requirements.

3. Genetic Software Engineering Method

 Conventional software engineering applies the
underlying design strategy of constructing a design that
will satisfy its set of functional requirements. In contrast to
this, a clear advantage of the behavior tree notation is that
it allows us to construct a design out of its set of functional
requirements, by integrating the behavior trees for
individual functional requirements (RBTs), one-at-a-time,
into an evolving design behavior tree (DBT). This very
significantly reduces the complexity of the design process
and any subsequent change process [5].

Component-State Label Semantics

tag COMPONENT
[State]

Internal State
Indicates that the component
has realized the particular
internal state. Passes control
w hen state is realized

tag COMPONENT
[Sub-cpt [State]]

Container - State
Indicates that a container
component w ill have a sub-
component realize a state

tag COMPONENT
[Attribute := Value]

Attribute - State
Indicates that the component
w ill assign a value to one of
its attributes.

tag COMPONENT
?? WHEN-State ??

WHEN - State
Indicates that the component
will only pass control when and
if the event WHEN-state happens

tag COMPONENT
< Dataflow-State >

Data-out State Indicates that when the
component has realized the
state it wi l l pass the data to
the component that receives
the flow

tag COMPONENT
? IF-State ?

IF - State
Indicates that the component
will only pass control i f If-state
is TRUE

System - State The system component,
System-Name realizes the
state "State" and then passes
control to i ts output

tag System-Name
[State]

Figure 1. Behavior Tree Notation, key elements

 What we are suggesting is that a set of functional
requirements, represented as behavior trees, in principal at
least (when they form a complete and consistent set),
contains enough information to allow their composition.
This property is the exact same property that a set of
pieces for a jigsaw puzzle possess. And, interestingly, it is
the same property which a set of genes that create a living
entity possess. Witness the remark by geneticist Adrian
Woolfson: in his recent book ([6], p.12), Living Without
Genes, “we may thus imagine a gene kit as a cardboard
box filled with genes. On the front and sides of the box is a
brightly coloured picture of the creature that might in
principle be constructed if the information in the kit is
used to instruct a biological manufacturing process”

3

 The obvious question that follows is: “what information is
possessed by a set of functional requirements that might
allow their composition or integration?” The answer
follows from the observation that the behaviour expressed
in functional requirements does not “just happen”. There
is always a precondition that must be satisfied in order for
the behaviour encapsulated in a functional requirement to
be accessible or applicable or executable. In practice, this
precondition may be embodied in the behaviour tree
representation of a functional requirement (as a
component-state or as a composed set of component
states) or it may be missing - the latter situation represents
a defect that needs rectification. The point to be made here
is that this precondition is needed, in each case, in order to
integrate the requirement with at least one other member
of the set of functional requirements for a system. (In
practice, the root node of a behaviour tree often embodies
the precondition we are seeking). We call this
foundational requirement of the genetic software
engineering method, the precondition axiom.

BT-y

BT-x

Py

Px

Px

Matching
Precondition

Interaction Axiom

Figure 2. Interaction Axiom - graphic form

 Integrating the root of BT-x
 with a matching node in BT-y

Integration

 The precondition axiom and the interaction axiom play a
central role in defining the relationship between a set of
functional requirements for a system and the
corresponding design. What they tell us is that the first
stage of the design process, in the problem domain, can
proceed by first translating each individual natural
language representation of a functional requirement into
one or more behavior trees. We may then proceed to
integrate those behavior trees just as we would with a set
of jigsaw puzzle pieces. What we find when we pursue
this whole approach to software design is that the process
can reduced to the following four overarching steps:

Precondition Axiom
Every constructive, implementable individual functional
requirement of a system, expressed as a behavior tree, has
associated with it a precondition that needs to be satisfied
in order for the behavior encapsulated in the functional
requirement to be applicable.

 A second building block is needed to facilitate the
composition of functional requirements expressed as
behavior trees. Jigsaw puzzles, together with the
precondition axiom, give us the clues as to what additional
information is needed to achieve integration. With a
jigsaw puzzle, what is key, is not the order in which we
put the pieces together, but rather the position where we
put each piece. If we are to integrate behavior trees in any
order, one at a time, an analogous requirement is needed.
We have already said that a functional requirement’s
precondition needs to be satisfied in order for its
behaviour to be applicable. It follows that some other
requirement, as part of its behavior tree, must establish the
precondition. This requirement for composing/integrating
functional requirements expressed as behaviour trees is
more formally expressed by the following axiom.

• Requirements translation – (problem domain)
• Requirements integration – (problem domain)
• Component architecture transformation
• Component behaviour projection

 Each overarching step, needs to be augmented with a
validation and refinement step designed specifically to
isolate and correct the class of defects that show up in the
different work products generated by the process.
.
 Comprehensive description, formalization, and
justification of a software development method and
notation, like the one here, requires significantly more
than a conference paper length treatment To maximize
communication we will only introduce the main ideas of
the method informally and show how the architecture and
component designs are obtained. The process is best
understood in the first instance by observing its
application to a simple example. For our purposes, and for
the purposes of comparison, we will use a design example
for a Microwave Oven that has already been published in
the literature [7]. The seven stated functional requirements
for the Microwave Oven problem [7, p.36] are given in
Table I below. Shlaer, and Mellor have applied their
state-based Object-Oriented Analysis method to this set of
functional requirements.

Interaction Axiom
For each individual functional requirement of a system,
expressed as a behavior tree, the precondition it needs to
have satisfied in order to exhibit its encapsulated
behavior, must be established by the behavior tree of at
least one other functional requirement that belongs to the
set of functional requirements of the system. (The
functional requirement that forms the root of the design
behavior tree, is excluded from this requirement. The
external environment makes its precondition applicable).

4

Table 1. Functional Requirements for Microwave Oven

3.1 Requirements Translation
 After preliminary glossary/vocabulary processing and
removal of aliases, etc, requirements translation is the first
major step in the Genetic Software Engineering (GSE)
design process. Its purpose is to translate each natural
language functional requirement, one at a time, into one or
more behavior trees. Translation identifies the
components (including actors and users), the states they
realise (including attribute assignments), the events and
decisions/constraints that they are associated with, the
data components exchange, and the causal, logical and
temporal dependencies associated with component
interactions.

Example Translation
The translations for the first six functional requirements
for the Microwave Oven given in Table 1 are shown in
figure 4. Translation of R7 from Table 1 will now be
considered in slightly more detail. For this requirement we
have underlined the states/actions and made the
components bold, i.e., “If the oven times out the light and
the power-tube are turned off and a beeper emits a sound
to indicate that cooking has finished”. Figure 3. (see
below) gives a translation of this requirement R7, to a
corresponding requirements behavior tree (RBT). In this
translation we have followed the convention of trying
wherever possible to associate higher level system states
(here OVEN states) with each functional requirement, to
act as preconditions/postconditions.

What we see from this translation process is that even for
a very simple example, it can identify problems that, on
the surface, may not otherwise be apparent (e.g. the
original requirement, as stated, leaves out the precondition
that the oven needs to be cooking in order to subsequently
time-out). In addition, the behavior tree representation
tags (here R7) are able to provide very direct traceability
back to the original statement of requirements. Our claim
is that the translation process has good repeatability if

translators forego the temptation to interpret, design, and
introduce new things as they do an initial translation.
 R1. There is a single control button available for the user of the oven.

If the oven is idle with the door is closed and you push the button, the
oven will start cooking (that is, energize the power-tube for one
minute).
R2. If the button is pushed while the oven is cooking it will cause the
oven to cook for an extra minute.
R3. Pushing the button when the door is open has no effect (because it
is disabled).
R4. Whenever the oven is cooking or the door is open the light in the
oven will be on.
R5. Opening the door stops the cooking.
R6. Closing the door turns off the light. This is the normal idle state,
prior to cooking when the user has placed food in the oven.
R7. If the oven times-out the light and the power-tube are turned off
and then a beeper emits a sound to indicate that the cooking is finished.

R7 LIGHT
[Off] R7 POWER-TUBE

[Off]

R7 BEEPER
[Sounded]

R7
+

OVEN
[Cooking]

R7 OVEN
?? Timed-Out ??

Requirement-7
If the oven times-out the light and the
pow er-tube are turned off and a beeper
emits a sound to indicate that cooking has
finished.

R7 OVEN
[Cooking-Finished

Figure 3. Behavior Tree for Requirement R7

3.2 Requirements Integration
 When requirements translation is completed each
individual functional requirement has been translated to
one or more corresponding requirements behavior tree(s)
(RBT). We can then systematically and incrementally
construct a design behavior tree (DBT) that will satisfy all
its requirements by integrating the requirements’
behavior trees (RBT). Integrating two behavior trees
turns out to be a relatively simple process that is guided by
the precondition and interaction axioms referred to above.
In practice, it most often involves locating where, (if at all)
the component/state root node of one behavior tree occurs
in the other tree and grafting the two trees together at that
point. This process generalises when we need to integrate
N behavior trees. We only ever attempt to integrate two
behavior trees at a time – either two RBTs, an RBT with a
DBT or two partial DBTs. In some cases, because the
precondition for executing the behavior in an RBT has not
been included, or important behaviour has been left out of
a requirement, it is not clear where a requirement
integrates into the design. This immediately points to a
problem with the requirements. In other cases, there may
be requirements/behavior missing from the set which
prevents integration of a requirement. Attempts at
integration uncover such problems with requirements at
the earliest possible time.

5

Requirement-2
If the button is pushed w hile the oven is
cooking it w ill cause the oven to cook for an
extra-minute.

R2 BUTTON
[Pushed]

R2
+

USER
??Button-Push??

R2 OVEN
[Cooking]

R2
+

OVEN ^
[Cooking]

R2 OVEN
[Extra-Minute]

Requirement-3
Pushing the button w hen the door is open has
no effect (because the button is disabled)

R3
C+

DOOR
[Closed]

R3
C+

BUTTON
[Enabled]

R3
C

DOOR
[Open]

R3
C+

BUTTON
[Disabled]

Requirement-4
Whenever the oven is cooking or the door is
open the light in the oven w ill be on.

R4
C

DOOR
[Open]

R4
C

LIGHT
[On]

R4
C

OVEN
[Cooking]

R4
C

LIGHT
[On]

Requirement-5
Opening the door stops the cooking

R5
+

USER
??Door-Opened??

R5
+

OVEN
[Cooking]

R5 DOOR
[Open]

R5 OVEN
[Cooking-Stopped]

R5
+

POWER-TUBE
[Off]

R1 BUTTON
[Pushed]

R1 POWER-TUBE
[Energized]

R1 USER
??Button-Push??

R1 OVEN
[Cooking]

R1 OVEN
[Idle]

Requirement-1
If the oven idle w ith the door closed and you
push the button the oven w ill start cooking
(that is, energize the pow er-tube for one
 minute)

Requirement-6
Closing the door turns off the light. This is the
normal idle state prior to cooking w hen the
user has placed the food in the oven.

R6
+

USER
??Door-Closed??

R6 DOOR
[Closed]

R6 LIGHT
[Off]

R6
+

OVEN
[Idle]

R6
+

OVEN
[Open]

NOTE: I t is actually pressing the button
that causes the light to go on.

Figure 4. Behavior trees for Microwave Oven

6

Example Integration

R1
@

BUTTON
[Pushed]

R1 POWER-TUBE
[Energized]

R1 USER
??Button-Push??

1 OVEN
[Cooking]

1 OVEN
[Idle]

R2 BUTTON
[Pushed]

R2
+

USER
??Button-Push??

R1
@

OVEN
[Cooking]

R2
+

OVEN ^
[Cooking]

R2 OVEN
[Extra-Minute]

R5
+

USER
??Door-Opened??

R5
@

DOOR
[Open]

R5 OVEN
[Cooking-Stopped]

R5
+

POWER-TUBE
[Off]

R6
+

USER
??Door-Closed??

R6
@

DOOR
[Closed]

R6 LIGHT
[Off]

R6
@+

OVEN
[Idle]

R6
+

OVEN
[Open]

R7 LIGHT
[Off] R7 POWER-TUBE

[Off]

R7 BEEPER
[Sounded]

R7 OVEN
?? Timed-Out ??

R7 OVEN
[Cooking-Finished

R8
-

USER
??Door-Opened??

R8
-

DOOR
[Open]

R8
-

BUTTON
[Disabled]

R8
-

OVEN ^
[Open]

R3
C+

BUTTON
[Enabled]

R3
C

BUTTON
[Disabled]

Figure 6. Integration of all functional requirements

R4
C

LIGHT
[On]

R8
-

LIGHT
[On]

 To illustrate the process of requirements integration we
will integrate requirement R6, with part of the constraint
Requirement R3C to form a partial design behaviour tree
(DBT). This is straightforward because the root node (and
precondition) of R3C, DOOR[Closed] occurs in R6. We
integrate R3C into R6 at this node. Because R3C is a
constraint it should be integrated into every requirement
that has a door closed state (in this case there is only one
such node). The result of the integration is shown below.

R6
+

USER
??Door-Closed??

R6
@

DOOR
[Closed]

R6 LIGHT
[Off]

R6
+

OVEN
[Idle]

R6
+

OVEN
[Open]

R3
C+

BUTTON
[Enabled]

Point of
Integration (@)

 Figure 5. Result of Integrating R6 and R3C

When R6 and R3C have been integrated we have a
“partial design” (the evolving design behavior tree) whose
behavior will satisfy R6, and the R3C constraint. In this
DBT it is clear and traceable where and how each of the
original functional requirements contribute to the design.
 Once the design behavior tree (DBT) has been

constructed the next jobs are to transform it into its
corresponding software or component architecture (or
component interaction network - CIN) and then project
from the design behavior tree the component behavior
trees (CBTs) for each of the components mentioned in the
original functional requirements.

 Using this same behavior-tree grafting process, a
complete design is constructed (it evolves) incrementally
by integrating RBTs and/or DBTs pairwise until we are
left with a single final DBT (see Figure 6 below). This is
the ideal for design construction that is realizable when all
requirements are consistent, complete, composable and do
not contain redundancies. When it is not possible to
integrate an RBT or DBT with any other it points to an
integration problem with the specified requirements that
needs to be resolved. Being able to construct a design
incrementally, significantly reduces the complexity of this
critical phase of the design process. And importantly, it
provides direct traceability to the original natural language
statement of the functional requirements. From a careful
inspection of the integrated DBT (Fig. 6) we see that there
is a missing requirement associated with opening the oven
when it is idle. This has been added as requirement R8.
Note with constraint R4 we have used the causal
relationship for the light turning on rather than the literal
translation of the requirement.

3. 4 Architecture Transformation
 A design behavior-tree is the problem domain view of
the “shell of a design” that shows all the states and all the
flows of control (and data), modelled as component-state
interactions without any of the functionality needed to
realize the various states that individual components may
assume. It has the genetic property of embodying within
its form two key emergent properties of a design: (1) the
component-architecture of a system and, (2) the behaviors
of each of the components in the system. In the DBT
representation, a given component may appear in different

7

R4
C

LIGHT
[On]

R1 BUTTON
[Pushed]

R1 POWER-TUBE
[Energized]

R1 USER
??Button-Push??

R6
+

USER
??Door-Closed??

R6
@

DOOR
[Closed]

R6 LIGHT
[Off]

R6
@

OVEN
[Idle]

R8
-

USER
??Door-Opened??

R8 DOOR
[Open]

R4
C

LIGHT
[On]

R3
C

BUTTON
[Disabled]

R3
C+

BUTTON
[Enabled]

Traversed Design Behavior Tree Evolving Component
Interaction Network

1 DOOR
[Closed]

3C BUTTON
[Enabled]

USER

DOOR

LIGHT

BUTTON

OVEN

POWER-TUBE

R6
+

OVEN
[Open]

Figure 7. A step in the Tree-to-Network Transformation

 Level 8 of Design Behavior Tree

STEP 8

parts of the tree in different states (e.g., the OVEN
component may appear in the Open-state in one part of the

tree and in the Cooking-state in another part of the tree).
Interpreting what we said earlier in a different way, we
need to convert a design behavior-tree to a component-
based design in which each distinct component is
represented only once. This amounts to shifting from a
representation where functional requirements are
integrated to a representation, which is part of the solution
domain, where the components mentioned in the
functional requirements are themselves integrated. A
simple algorithmic process may be employed to
accomplish this transformation from a tree into a network.
Informally, the process starts at the root of the design
behavior tree and moves systematically down the tree
towards the leaf nodes including each component and
each component interaction (e.g. arrow) that is not
already present. When this is done systematically the tree
is transformed into a component-based design in which
each distinct component is represented only once. We call
this a Component Interaction Network (CIN)
representation. Above, we show the eighth step of this
transformation, involving the components on the eighth
level of the DBT. Here the POWER-TUBE gets included
into the CIN network and the link between the BUTTON
and the LIGHT is added to the network.

 The complete Component Interaction Network derived
from the Microwave Oven design behavior tree is shown
below in Figure 8. It defines the component-component

interactions and therefore the interfaces for each
component. It also captures the “business model” or
“conceptual design” for the system and represents the first
cut at the software architecture for a system. The next
important task is to isolate the behaviors of the individual
components present in the architecture from the DBT
using projection.

1 DOOR
[Closed]

3C BUTTON
[Enabled]

USER

DOOR

LIGHT

BUTTON

OVEN

POWER-TUBE

BEEPER

Figure 8. Component Interaction Network - (CIN)

8

3.4 Component Behavior Projection
 In the design behavior tree, the behavior of individual
components tends to be dispersed throughout the tree (for
example, see the OVEN component-states in the
Microwave Oven System DBT). To implement
components that can be embedded in, and operate within,
the derived component interaction network, it is necessary
to “concentrate” each component’s behavior. We can
achieve this by systematically projecting each
component’s behavior tree (CBT) from the design
behavior tree. We do this by essentially ignoring the
component-states of all components other than the one we
are currently projecting. The resulting connected
“skeleton” behavior tree for a particular component
defines the behavior of the component that we will need to
implement and encapsulate in the final component-based
implementation.

 Example – Component Behavior Projection
To illustrate the effect and significance of component
behavior projection we show the projection of the OVEN
SYSTEM component from the DBT for the Microwave
Oven.

OVEN COMPONENT - Projected Behav ior

1 OVEN
[Idle]

1 OVEN
{ Cooking} 6 OVEN ^

{ Open }

7 OVEN
{ Timed-Out }

1 OVEN
[Cooking-Finished2 OVEN ^

[Cooking]

2 OVEN
{ Extra-Minute} 5 OVEN

{Cooking-Stopped}

5 OVEN ^
[Open]

5 OVEN ^
[Idle]

6 OVEN
[Open]

Missing

Missing
Component behavior projection is a key design step in the
solution domain that needs to be done for each component
in the design behavior tree. When this process has been
carried out for ALL the components in the DBT, that is,
USER, BUTTON, etc, all the behavior in the DBT has
been projected into the components that are intended to
implement the system. That is, the complete set of
component behavior projections conserve the behavior
that was originally present in the DBT. What this set of
component projections allows us to achieve is a
metamorphosis from an integrated set of functional
requirements to an integrated component based design. To
complete the component-based design, we embed the
behaviors of each component into the architectural design
provided by the component interaction network (CIN) –

see, for example figure 8 above. The tasks that then
remain are to rationalize the component interfaces and to
implement the component interaction network which
supports the component interactions that, in turn,
implement the system behaviors. And finally, we must
provide implementations to support the behaviors
exhibited by each of the components. Component
integration can be done using either the facilities of a
component framework [1] or by using a standard code
implementation that maps the graphic network into code.

In a number of reports and presentations at
http://www.sqi.gu.edu.au/gse/papers we provide a more
detailed account of the GSE method, the notation and its
application to a diverse set of problems including contract
automation and much larger applications. We also provide
examples that show how to translate the designs that the
method produces into object-oriented and component-
based implementations in Java.

Conclusion
What we have presented is an intuitive, stepwise process
for going from a set of functional requirements to a design
and a supporting architecture. The method is attractive for
its simplicity, its traceability, its ability to detect defects,
its control of complexity, and its accommodation of
change. Derivation of the software component architecture
from the design behavior tree and projection of the set of
component behavior trees from a design behavior tree are
both repeatable, algorithmic processes, that can be
automated if we choose to do so. The greatest chance for
variation with work products comes in the translation of
natural language descriptions of functional requirements
to requirements behavior trees (RBTs)

References
[1] G.Booch, J. Rumbaugh, I Jacobson, The Unified Modelling
Language User Guide, Addison-Wesley, Reading, Mass. (1999).

[2] A.M.Davis, A Comparison of Techniques for the
Specification of External System Behavior, Comm. ACM, vol.
31 (9), 1098-1115, (1988).

[3] D. Harel., W. Damm, LSCs: Breathing Life into Message
Sequence Charts, 3rs IFIP Conf. On Formal Methods for Open
Objected-based Distributed Systems, New York, 1999, Kluwer

[4] S.Uchitel, J.Kramer, A Workbench for Synthesizing
Behavior Models from Scenarios, 23rd International Conference
on Software Engineering (ICSE’01), Toronto, Canada, 2001.

[5] R.G.Dromey, Genetic Software Engineering - Simplifying
Design Using Requirements Integration, IEEE Working
Conference on Complex and Dynamic Systems Architecture,
S4, pp. 1-16, Brisbane, Dec 2001.

[6] A. Woolfson, Living Without Genes, Flamingo, (2000).

[7] S. Shlaer, S.J. Mellor, Object Lifecycles, Yourdon Press,
New Jersey, 1992.

http://www.sqi.gu.edu.au/gse/papers

	Abstract
	“Finding deep simplicities in a complex logical t
	1. Introduction

	Precondition Axiom
	Interaction Axiom
	
	
	
	
	Table 1. Functional Requirements for Microwave Oven

	Example Translation
	The translations for the first six functional requirements for the Microwave Oven given in Table 1 are shown in figure 4. Translation of R7 from Table 1 will now be considered in slightly more detail. For this requirement we have underlined the states/ac
	Figure 5. Result of Integrating R6 and R3C

