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Abstract  
   Functional requirements contain, and systems exhibit, 
the behavior  summarized below. 

 
   Despite the advances in software engineering since 1968, 
how to go from a set of functional requirements to an 
architecture that accommodates those requirements 
remains a challenging problem. Progress with this 
fundamental problem is possible once we recognize (1) 
that individual functional requirements represent fragments 
of behaviour, (2) a design that satisfies a set of functional 
requirements represents integrated behaviour, and (3) an 
architecture must accommodate the integrated behaviour 
expressed in a set of functional requirements.  This 
perspective admits the prospect of constructing a design 
out of its requirements. A formal representation for 
individual functional requirements, called behavior trees 
makes this possible.  Behaviour trees of individual 
functional requirements may be composed, one at a time, 
to create an integrated design behaviour tree. From this 
problem domain representation it is then possible to 
transition directly and systematically to a solution domain 
representation of the component architecture of the system 
and the behaviour designs of the individual components 
that make up the system – both are emergent properties.  

 
• Components realise states 
• Components change states 
• Components have sets of attributes that are assigned values 
• Components, by changing states, can cause other 

components to change their states 
• Supplementing these component-state primitives are 

conditions/decisions, and events involving component-states.  
• Interactions between components also play a key role in 

describing behaviour. They involve control-flow and/or data-
flow between components. 
 

   Notations like sequence diagrams, class and activity 
diagrams from UML[1], data-flow diagrams, Petri 
Nets[2], state-charts and Message Sequence Charts 
(MSCs) [3,4], accommodate the behaviour we find 
expressed in functional requirements and designs.  
Individually however, none of these notations provide the 
level of constructive support we need. This forces us to 
contemplate another representation for functional 
requirements and designs. Such ventures are generally not 
enthusiastically received – a consensus is that new 
notations just muddy the waters. Our justification for 
ignoring this advice is that the Behavior Tree Notation 
solves a fundamental problem – it provides a clear, simple, 
constructive path for going first from a set of functional 
requirements to an  integrated behaviour representation 
that will satisfy those requirements and then to an 
architecture and the set of accompanying component 
behaviour designs [5].  

 
“Finding deep simplicities in a complex logical task 
leads to work reduction”- Harlan Mills. 

 
1. Introduction 
    
   A great challenge that continues to confront software 
engineering is how to go in a systematic way from a set of 
functional requirements to a design that will satisfy those 
requirements and an architecture that will support the 
implied integrated behavior. In practice, these two tasks 
are further complicated by defects in the original 
requirements and, subsequent changes to the requirements. 

 
2. Behavior Trees 
 
   The Behavior Tree Notation captures in a simple tree-
like form of composed component-states what usually 
needs to be expressed in a mix of other notations. 
Behavior is expressed in terms of components realizing 
states, augmented by the logic and graphic forms of 
conventions found in programming languages to support 
composition, events, control-flow data-flow, threads, and

 
   A first step towards taking up this challenge is to ask – 
what are functional requirements? Study of diverse sets of 
functional requirements suggests it is safe to conclude that 
individual requirements express constrained behaviour.  
By comparison, a system that satisfies a set of functional 
requirements exhibits integrated constrained behaviour. 
The latter  behaviour of systems is not inherently different.   
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constraints. Behavior trees are equally suited to capture 
behavior expressed in natural language functional 
requirements as to provide an abstract graphical 
representation of  behavior expressed in a  program. We 
may therefore ask can the same formal representation of 
behaviour be used for requirements and for a design? If it 
could it may clarify the requirements-design-architecture 
relationship. 
 
Definition: A Behavior Tree is a formal, composable,  
tree-like graphical form that  represents  behaviour of  
individual or networks of entities which realize or change 
states, make decisions, respond-to/cause events, and 
interact by exchanging information and/or passing 
control.  
 
Behavior trees provide a direct and clearly traceable 
relationship between what is expressed in the natural 
language representation and its formal specification. 
Translation is carried out on a sentence-by-sentence basis,  
e.g., the sentence “when the door is opened the light 
should go on” is translated to the behaviour tree below: 

DOOR
?? Open  ??

LIGHT
[ On ]

 

   The principal conventions of the notation for 
component-states are the graphical forms for associating 

with a component a [State], ??Event??, ?Decision?, [Sub-
cpt[State] or relation, or [Attribute := expression | State ]. 
Exactly what can be an event, a decision, a state, etc are 
built on the formal foundations of expressions, Boolean 
expressions and quantifier-free formulae (qff). To assist 
with traceability to original requirements a simple 
convention is followed. Tags (e.g. R1 and R2, etc, see 
below) are used to refer to the original requirement in the 
document that is being translated. System states, are used 
to model high-level (abstract) behaviour and some 
preconditions/postconditions. Key elements of the 
notation are given in Figure 1, above (see EBNF,  
semantics, web-site http://www.sqi.gu.edu.au/gse/papers). 
 
   In practice, when translating functional requirements 
into behavior trees we often find that there is a lot of 
behavior that is either missing or is only implied by a 
requirement. We mark implied behavior with a “+” in the 
tag (and/or the colour yellow if colour can be shown). 
Behavior that is missing is marked with a “-“ in the tag 
(and/or the colour red). Explicit behavior in the original 
requirement that is translated and captured in the behavior 
tree has no “+/-“ marking, and the colour green is used - 
see Fig. 4 below. These conventions maximize traceability 
to original requirements.  
 
3. Genetic Software Engineering Method 
 
   Conventional software engineering applies the 
underlying design strategy of constructing a design that 
will satisfy its set of functional requirements. In contrast to 
this, a clear advantage of the behavior tree notation is that 
it allows us to construct a design out of its set of functional 
requirements, by integrating the behavior trees for 
individual functional requirements (RBTs), one-at-a-time, 
into an evolving design behavior tree (DBT). This very 
significantly reduces the complexity of the design process 
and any subsequent change process [5].  

Component-State  Label          Semantics

tag COMPONENT
[ State ]

Internal State
Indicates that the component
has realized the particular
internal state. Passes control
w hen state is realized

tag COMPONENT
[ Sub-cpt [ State ] ]

Container - State
Indicates that a container
component w ill have a sub-
component realize a state

tag COMPONENT
[Attribute := Value]

Attribute - State
Indicates that the component
w ill assign a value to one of
its attributes.

tag COMPONENT
?? WHEN-State ??

WHEN  - State
Indicates that the component
will  only pass control when and
if the event WHEN-state happens

tag COMPONENT
< Dataflow-State >

Data-out State Indicates that when the
component has realized the
state it wi l l  pass the data to
the component that receives
the flow

tag COMPONENT
? IF-State ?

IF - State
Indicates that the component
will  only pass control i f If-state
is TRUE

System - State The system component,
System-Name realizes the
state "State" and then passes
control to i ts output

tag System-Name
[ State ]

Figure 1. Behavior Tree Notation, key elements

 
   What we are suggesting is that a set of functional 
requirements, represented as behavior trees, in principal at 
least (when they form a complete and consistent set), 
contains enough information to allow their composition.    
This property is the exact same property that a set of 
pieces for a jigsaw puzzle possess. And,  interestingly, it is 
the same property which a set of genes that create a living 
entity possess. Witness the remark by geneticist Adrian 
Woolfson: in his recent book ([6], p.12), Living Without 
Genes, “we may thus imagine a gene kit as a cardboard 
box filled with genes. On the front and sides of the box is a 
brightly coloured picture of the creature that might in 
principle be constructed if the information in the kit is 
used to instruct a biological manufacturing process” 
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 The obvious question that follows is: “what information is 
possessed by a set of functional requirements that might 
allow their composition or integration?” The answer 
follows from the observation that the behaviour expressed 
in functional requirements does not “just happen”. There 
is always a precondition that must be satisfied in order for 
the behaviour encapsulated in a functional requirement to 
be accessible or applicable or executable.  In practice, this 
precondition may be embodied in the behaviour tree 
representation of a functional requirement (as a 
component-state or as a composed set of component 
states) or it may be missing - the latter situation represents 
a defect that needs rectification. The point to be made here 
is that this precondition is needed, in each case, in order to 
integrate the requirement with at least one other member 
of the set of functional requirements for a system. (In 
practice, the root node of a behaviour tree often embodies 
the precondition we are seeking). We call this 
foundational requirement of the genetic software 
engineering method, the precondition axiom. 

BT-y

BT-x

Py

Px

Px

Matching
Precondition

Interaction Axiom

Figure 2. Interaction Axiom - graphic form

 Integrating the root of BT-x
 with a matching node in BT-y

Integration

   The precondition axiom and the interaction axiom play a 
central role in defining the relationship between a set of 
functional requirements for a system and the 
corresponding design.  What they tell us is that the first 
stage of the design process, in the problem domain, can 
proceed by first translating each individual natural 
language representation of a functional requirement into 
one or more behavior trees. We may then proceed to 
integrate those behavior trees just as we would with a set 
of jigsaw puzzle pieces. What we find when we pursue 
this whole approach to software design is that the process 
can reduced to the following four overarching steps: 

 
Precondition Axiom 
Every constructive, implementable individual functional 
requirement of a system, expressed as a behavior tree, has 
associated with it a precondition that needs to be satisfied 
in order for the behavior encapsulated in the functional 
requirement to be applicable. 
 
   A second building block is needed to facilitate the 
composition of functional requirements expressed as 
behavior trees. Jigsaw puzzles, together with the 
precondition axiom, give us the clues as to what additional 
information is needed to achieve integration. With a 
jigsaw puzzle, what is key, is not the order in which we 
put the pieces together, but rather the position where we 
put each piece. If we are to integrate behavior trees in any 
order, one at a time, an analogous requirement is needed.  
We have already said that a functional requirement’s 
precondition needs to be satisfied in order for its 
behaviour to be applicable. It follows that some other 
requirement, as part of its behavior tree, must establish the 
precondition. This requirement for composing/integrating 
functional requirements expressed as behaviour trees is 
more formally expressed by the following axiom. 

• Requirements translation – (problem domain) 
• Requirements integration – (problem domain) 
• Component architecture transformation 
• Component behaviour projection 

 
   Each overarching step, needs to be augmented with a 
validation and refinement step designed specifically to 
isolate and correct the class of defects that show up in the 
different work products generated by the process.  
. 
   Comprehensive description, formalization, and 
justification of a software development method and 
notation, like the one here, requires significantly more 
than a conference paper length treatment To maximize 
communication we will only introduce the main ideas of 
the method informally and show how the architecture and 
component designs are obtained. The process is best 
understood in the first instance by observing its 
application to a simple example. For our purposes, and for 
the purposes of comparison, we will use a design example 
for a Microwave Oven that has already been published in 
the literature [7]. The seven stated functional requirements 
for the Microwave Oven problem [7, p.36] are given in 
Table I below.  Shlaer, and Mellor have applied their 
state-based Object-Oriented Analysis method to this set of 
functional requirements.  

 
Interaction Axiom 
For each individual functional requirement of a system, 
expressed as a behavior tree, the precondition it needs to 
have satisfied in order to exhibit its encapsulated 
behavior, must be established by the behavior tree of at 
least one other functional requirement that belongs to the 
set of functional requirements of the system. (The 
functional requirement that forms the root of the design 
behavior tree, is excluded from this requirement. The 
external environment makes its precondition applicable ).  
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Table 1. Functional Requirements for Microwave Oven  

 
3.1 Requirements Translation 
   After preliminary glossary/vocabulary processing and 
removal of aliases, etc, requirements translation is the first 
major step in the Genetic Software Engineering (GSE) 
design process. Its purpose is to translate each natural 
language functional requirement, one at a time, into one or 
more behavior trees.  Translation identifies the 
components (including actors and users), the states they 
realise (including attribute assignments), the events and 
decisions/constraints that they are associated with, the 
data components exchange, and the causal, logical and 
temporal dependencies associated with component 
interactions.   
 
Example Translation 
The translations for the first six functional requirements 
for the Microwave Oven given in Table 1 are shown in 
figure 4. Translation of R7 from Table 1 will now be 
considered in slightly more detail. For this requirement we 
have underlined the states/actions and made the 
components bold, i.e., “If the oven times out the light and 
the power-tube are turned off and a beeper emits a sound 
to indicate that cooking has finished”. Figure 3. (see 
below) gives a translation of this requirement R7, to a 
corresponding requirements behavior tree (RBT). In this 
translation we have followed the convention of trying 
wherever possible to associate higher level system states 
(here OVEN states) with each functional requirement, to 
act as preconditions/postconditions.  

What we see from this translation process is that even for 
a very simple example, it can identify problems that, on 
the surface, may not otherwise be apparent (e.g. the 
original requirement, as stated, leaves out the precondition 
that the oven needs to be cooking in order to subsequently 
time-out). In addition, the behavior tree representation 
tags (here R7) are able to provide very direct traceability 
back to the original statement of requirements. Our claim 
is that the translation process has good repeatability if 

translators forego the temptation to interpret, design, and 
introduce new things as they do an initial translation. 
 R1.  There is a single control button available for the user of the oven. 

If the oven is idle with the door is closed and you push the button, the 
oven will start cooking (that is, energize the power-tube for one 
minute).  
R2.  If the button is pushed while the oven is cooking it will cause the 
oven to cook for an extra minute. 
R3.  Pushing the button when the door is open has no effect (because it 
is disabled). 
R4.  Whenever the oven is cooking or the door is open the light in the 
oven will be on. 
R5.  Opening the door stops the cooking. 
R6. Closing the door turns off the light. This is the normal idle state, 
prior to cooking when the user has placed food in the oven. 
R7.  If the oven times-out the light and the power-tube are turned off 
and then a beeper emits a sound to indicate that the cooking is finished.
 

R7 LIGHT
[Off] R7 POWER-TUBE

[Off]

R7 BEEPER
[Sounded]

R7
+

OVEN
[Cooking ]

R7 OVEN
?? Timed-Out ??

Requirement-7
If  the oven times-out the light and the
pow er-tube are turned off and a beeper
emits a sound to indicate that cooking has
finished.

R7 OVEN
[Cooking-Finished

Figure 3. Behavior Tree for Requirement R7   

  
3.2 Requirements Integration 
   When requirements translation is completed each 
individual functional requirement has been translated to 
one or more corresponding requirements behavior tree(s) 
(RBT). We can then systematically and incrementally 
construct a design behavior tree (DBT) that will satisfy all 
its requirements  by integrating the requirements’ 
behavior trees (RBT).  Integrating two behavior trees 
turns out to be a relatively simple process that is guided by 
the precondition and interaction axioms referred to above. 
In practice, it most often involves locating where, (if at all) 
the component/state root node of one behavior tree occurs 
in the other tree and grafting the two trees together at that 
point.  This process generalises when we need to integrate 
N behavior trees. We only ever attempt to integrate two 
behavior trees at a time – either two RBTs, an RBT with a 
DBT  or two partial DBTs. In some cases, because the 
precondition for executing the behavior in an RBT has not 
been included, or important behaviour has been left out of 
a requirement, it is not clear where a requirement 
integrates into the design. This immediately points to a 
problem with the requirements. In other cases, there may 
be requirements/behavior missing from the set which 
prevents integration of a requirement. Attempts at 
integration uncover such problems with requirements at 
the earliest possible time. 
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Requirement-2
If  the button is pushed w hile the oven is
cooking it w ill cause the oven to cook for an
extra-minute.

R2 BUTTON
[Pushed]

R2
+

USER
??Button-Push??

R2 OVEN
[Cooking]

R2
+

OVEN ^
[Cooking]

R2 OVEN
[Extra-Minute]

Requirement-3
Pushing the button w hen the door is open has
no effect  (because the button is disabled)

R3
C+

DOOR
[Closed]

R3
C+

BUTTON
[Enabled]

R3
C

DOOR
[ Open ]

R3
C+

BUTTON
[ Disabled ]

Requirement-4
Whenever the oven is cooking or the door is
open the light in the oven w ill be on.

R4
C

DOOR
[Open ]

R4
C

LIGHT
[On  ]

R4
C

OVEN
[Cooking ]

R4
C

LIGHT
[On  ]

Requirement-5
Opening the door stops the cooking

R5
+

USER
??Door-Opened??

R5
+

OVEN
[Cooking]

R5 DOOR
[Open]

R5 OVEN
[Cooking-Stopped]

R5
+

POWER-TUBE
[Off]

R1 BUTTON
[Pushed]

R1 POWER-TUBE
[Energized]

R1 USER
??Button-Push??

R1 OVEN
[Cooking]

R1 OVEN
[Idle]

Requirement-1
If  the oven idle w ith the door closed  and you
push the button the oven w ill start  cooking
(that is, energize the pow er-tube for one
 minute)

Requirement-6
Closing the door turns off the light. This is the
normal idle state prior to cooking w hen the
user has placed the food in the oven.

R6
+

USER
??Door-Closed??

R6 DOOR
[Closed]

R6 LIGHT
[Off]

R6
+

OVEN
[Idle]

R6
+

OVEN
[ Open ]

NOTE: I t is actually pressing the button
that causes the light to go on.

Figure 4. Behavior trees for Microwave Oven
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Example Integration 

R1
@

BUTTON
[Pushed]

R1 POWER-TUBE
[Energized]

R1 USER
??Button-Push??

1 OVEN
[Cooking]

1 OVEN
[Idle]

R2 BUTTON
[Pushed]

R2
+

USER
??Button-Push??

R1
@

OVEN
[Cooking]

R2
+

OVEN ^
[Cooking]

R2 OVEN
[Extra-Minute]

R5
+

USER
??Door-Opened??

R5
@

DOOR
[Open]

R5 OVEN
[Cooking-Stopped]

R5
+

POWER-TUBE
[Off]

R6
+

USER
??Door-Closed??

R6
@

DOOR
[Closed]

R6 LIGHT
[Off]

R6
@+

OVEN
[Idle]

R6
+

OVEN
[ Open ]

R7 LIGHT
[Off] R7 POWER-TUBE

[Off]

R7 BEEPER
[Sounded]

R7 OVEN
?? Timed-Out ??

R7 OVEN
[Cooking-Finished

R8
-

USER
??Door-Opened??

R8
-

DOOR
[Open]

R8
-

BUTTON
[Disabled]

R8
-

OVEN ^
[Open]

R3
C+

BUTTON
[Enabled ]

R3
C

BUTTON
[Disabled ]

Figure 6. Integration of all functional  requirements

R4
C

LIGHT
[ On ]

R8
-

LIGHT
[ On ]

   To illustrate the process of requirements integration we 
will integrate requirement R6, with part of the constraint 
Requirement R3C to form a partial design behaviour tree 
(DBT). This is straightforward because the root node (and 
precondition) of R3C, DOOR[Closed] occurs in R6. We 
integrate R3C into R6 at this node. Because R3C is a 
constraint it should be integrated into  every requirement 
that has a door closed state (in this case there is only one 
such node). The result of the integration is shown below. 

R6
+

USER
??Door-Closed??

R6
@

DOOR
[Closed]

R6 LIGHT
[Off]

R6
+

OVEN
[Idle]

R6
+

OVEN
[ Open ]

R3
C+

BUTTON
[Enabled]

Point of
Integration (@)

      Figure 5. Result of Integrating R6 and R3C 
 
When R6 and R3C have been integrated we have a 
“partial design” (the evolving design behavior tree) whose 
behavior will satisfy R6, and the R3C constraint. In this 
DBT it is clear and traceable where and how each of the 
original functional requirements contribute to the design.  
    Once the design behavior tree (DBT) has been 

constructed the next jobs are to transform it into its 
corresponding software or component architecture (or 
component interaction network - CIN) and then project 
from the design behavior tree the component behavior 
trees (CBTs) for each of the components mentioned in the 
original functional requirements.  

   Using this same behavior-tree grafting process, a 
complete design is constructed (it evolves) incrementally 
by integrating RBTs and/or DBTs  pairwise until we are 
left with a single final DBT (see Figure 6 below). This is 
the ideal for design construction that is realizable when all 
requirements are consistent, complete, composable and do 
not contain redundancies.  When it is not possible to 
integrate an RBT or DBT with any other it points to an 
integration problem with the specified requirements that 
needs to be resolved. Being able to construct a design 
incrementally, significantly reduces the complexity of this 
critical phase of the design process. And importantly, it 
provides direct traceability to the original natural language 
statement of the functional requirements. From a careful 
inspection of the integrated DBT (Fig. 6) we see that there 
is a missing requirement associated with opening the oven 
when it is idle. This has been added as requirement R8. 
Note with constraint R4 we have used the causal 
relationship for the light turning on rather than the literal 
translation of the requirement. 

 
3. 4 Architecture Transformation  
   A design behavior-tree is the problem domain view of 
the “shell of a design” that shows all the states and all the 
flows of control (and data), modelled as component-state 
interactions without any of the functionality needed to 
realize the various states that individual components may 
assume.  It has the genetic property of embodying within 
its form two key emergent properties of a design: (1) the 
component-architecture of a system and, (2) the behaviors 
of each of the components in the system. In the DBT 
representation, a given component may appear in different 
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R4
C

LIGHT
[On]

R1 BUTTON
[Pushed]

R1 POWER-TUBE
[Energized]

R1 USER
??Button-Push??

R6
+

USER
??Door-Closed??

R6
@

DOOR
[Closed]

R6 LIGHT
[Off]

R6
@

OVEN
[Idle]

R8
-

USER
??Door-Opened??

R8 DOOR
[Open]

R4
C

LIGHT
[On]

R3
C

BUTTON
[Disabled]

R3
C+

BUTTON
[Enabled]

Traversed Design Behavior Tree Evolving Component
Interaction Network

1 DOOR
[Closed]

3C BUTTON
[Enabled]

USER

DOOR

LIGHT

BUTTON

OVEN

POWER-TUBE

R6
+

OVEN
[Open ]

Figure 7. A step in the Tree-to-Network Transformation

 Level 8 of Design Behavior Tree

STEP 8

 
parts of the tree in different states (e.g., the OVEN 
component may appear in the Open-state in one part of the 

 

tree and in the Cooking-state in another part of the tree). 
Interpreting what we said earlier in a different way, we 
need to convert a design behavior-tree to a component-
based design in which each distinct component is 
represented only once.  This amounts to shifting from a 
representation where functional requirements are 
integrated to a representation, which is part of the solution 
domain, where the components mentioned in the 
functional requirements are themselves integrated. A 
simple algorithmic process may be employed to 
accomplish this transformation from a tree into a network. 
Informally, the process starts at the root of the design 
behavior tree and moves systematically down the tree 
towards the leaf nodes including each component and 
each component interaction (e.g. arrow) that is not 
already present.  When this is done systematically the tree 
is transformed into a component-based design in which 
each distinct component is represented only once. We call 
this a Component Interaction Network (CIN) 
representation.  Above, we show the eighth step of this 
transformation, involving the components on the eighth 
level of the DBT. Here the POWER-TUBE gets included 
into the CIN network and the link between the BUTTON 
and the LIGHT is added to the network. 
 
   The complete Component  Interaction Network derived 
from the Microwave Oven design behavior tree is shown 
below in Figure 8.  It defines the component-component 

interactions and therefore the interfaces for each 
component. It also captures the “business model” or 
“conceptual design” for the system and represents the first 
cut at the software architecture for a system. The next 
important task is to isolate the behaviors of the individual 
components present in the architecture from the DBT 
using projection. 

1 DOOR
[Closed]

3C BUTTON
[Enabled]

USER

DOOR

LIGHT

BUTTON

OVEN

POWER-TUBE

BEEPER

Figure 8. Component Interaction Network - ( CIN ) 
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3.4 Component Behavior Projection 
   In the design behavior tree, the behavior of individual 
components tends to be dispersed throughout the tree (for 
example, see the OVEN component-states in the 
Microwave Oven System DBT). To implement 
components that can be embedded in, and operate within, 
the derived component interaction network, it is necessary 
to “concentrate” each component’s behavior. We can 
achieve this by systematically projecting each 
component’s behavior tree (CBT) from the design 
behavior tree. We do this by essentially ignoring the 
component-states of all components other than the one we 
are currently projecting. The resulting connected 
“skeleton” behavior tree for a particular component 
defines the behavior of the component that we will need to 
implement and encapsulate in the final component-based 
implementation. 
 
 Example – Component Behavior Projection 
To illustrate the effect and significance of component 
behavior projection we show the projection of the OVEN 
SYSTEM component from the DBT for the Microwave 
Oven.  

OVEN COMPONENT - Projected Behav ior

1 OVEN
[Idle]

1 OVEN
{ Cooking} 6 OVEN ^

{ Open }

7 OVEN
{ Timed-Out }

1 OVEN
[Cooking-Finished2 OVEN ^

[Cooking]

2 OVEN
{ Extra-Minute} 5 OVEN

{Cooking-Stopped}

5 OVEN ^
[ Open ]

5 OVEN ^
[ Idle ]

6 OVEN
[Open]

Missing

Missing  
Component behavior projection is a key design step in the 
solution domain that needs to be done for each component 
in the design behavior tree.  When this process has been 
carried out for ALL the components in the DBT, that is, 
USER, BUTTON, etc, all the behavior in the DBT has 
been projected into the components that are intended to 
implement the system. That is, the complete set of 
component behavior projections conserve the behavior 
that was originally present in the DBT.  What this set of 
component projections allows us to achieve is a 
metamorphosis from an integrated set of functional 
requirements to an integrated component based design. To 
complete the component-based design, we embed the 
behaviors of each component into the architectural design 
provided by the component interaction network (CIN) – 

see, for example figure 8 above. The tasks that then 
remain are to rationalize the component interfaces and to 
implement the component interaction network which 
supports the component interactions that, in turn, 
implement the system behaviors.  And finally, we must 
provide implementations to support the behaviors 
exhibited by each of the components. Component 
integration can be done using either the facilities of a 
component framework [1] or by using a standard code 
implementation that maps the graphic network into code.  
 
In a number of reports and presentations at  
http://www.sqi.gu.edu.au/gse/papers we provide a more 
detailed account of the GSE method, the notation and its 
application to a diverse set of problems including contract 
automation and much larger applications. We also provide 
examples that show how to translate the designs that the 
method produces into object-oriented and component-
based implementations in Java.  
 
Conclusion 
What we have presented is an intuitive, stepwise process 
for going from a set of functional requirements to a design 
and a supporting architecture. The method is attractive for 
its simplicity, its traceability, its ability to detect defects, 
its control of complexity, and its accommodation of 
change. Derivation of the software component architecture 
from the design behavior tree and projection of the set of 
component behavior trees from a design behavior tree are 
both repeatable, algorithmic processes, that can be 
automated if we choose to do so.  The greatest chance for 
variation with work products comes in the translation of 
natural language descriptions of functional requirements 
to requirements behavior trees (RBTs) 
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