
Jo Atlee • RE’11 • Trento, September 2011

David R. Cheriton School of Computer Science
University of Waterloo

Feature	
 Interactions:	
 	

the	
 Good,	
 the	
 Bad,	
 and	
 the	
 Ugly	

feature	
 orientation	

decomposes behaviour into feature modules

›  reduces complexity
›  eases evolution
›  parallel feature development
›  multi-vendor development

shared vocabulary

Feature A

Feature B

Feature C

features	

comparison	
 shopping	

features	

configuration	

features	

third-­‐party	
 functionality	

a	
 classic	
 software	
 problem	

integrate modules into a product

›  such that the modules work as intended
›  feature interaction: behaviour of one feature affected

by the presence of another feature

Feature A

Feature B

Feature C

B

A
C

A

interaction	
 in	
 automotive	
 software	

anti-theft system

›  locks doors and windows
›  sounds alarm if vehicle is touched

accident response system
›  deploys airbags
›  deactivates fuel pump
›  disconnects battery from high-current devices
›  unlocks door
›  places call to emergency personnel

what if a thief kicks a parked car?
›  in practice, nothing happens
›  the interaction (like most) is resolved during development

a	
 research	
 community	

detection, analysis, and resolution of interactions
dominates the feature-development process

U.S. telecom companies galvanized researchers to
work on the Feature Interaction Problem

›  1992: first workshop on feature interactions
›  1993: special issues in IEEE Computer, IEEE Communications
›  1994: benchmark of feature interactions
›  1997, 1998: feature interaction contests

what	
 this	
 talk	
 is	
 about	

overview of the feature interaction problem

›  characteristics of the problem

›  manifestations of feature interactions in real-world software

›  some approaches that mitigate the problem

›  outstanding open problems

›  especially those related to requirements engineering

some	
 interactions	
 in	
 automotive	

software	

Source of material for this section of the talk:
National Highway Traffic Safety Administration (US NHTSA)
http://www.safercar.gov

vehicle	
 stability	
 control	

skid control features

›  determine current and intended heading
›  steering angle (i.e., driver’s intended vehicle direction)
›  vehicle’s actual direction, lateral acceleration

traction control features
›  regulate engine output and brake pressure fluid
›  avoid wheel slippage
-  during starting and acceleration of vehicle
-  slippery road conditions

vehicle stability control features
›  regulate engine output and brake pressure fluid
›  avoid rollovers, loss-of-control situations
-  due to sudden change in road conditions
-  emergency avoidance maneuver

vehicle	
 stability	
 control	

understeer:
front wheels lose grip in
relation to rear wheels

dampen understeer:
› decrease engine output
› apply brakes to inside right rear wheel

vehicle	
 stability	
 control	

oversteer:
rear wheels lose grip in
relation to front wheels

dampen oversteer:
› decrease engine output
› apply brakes to outside left front wheel

steering	
 ⨁	
 stability	
 control	

2003 Toyota Sequoia

skid control
›  steering angle was miscalculated at low speeds
›  incorrect (larger) variance between
-  driver’s intended direction
-  vehicle’s actual direction

inappropriate activation of traction or stability control
›  driver loses throttle control
›  one or more brakes may apply, slowing the vehicle
›  brake lights are not illuminated
›  no reported crashes, but several near misses
- almost struck by following traffic
- almost struck when crossing oncoming traffic

cruise	
 control	
 ⨁	
 traction	
 control	

cruise control

›  vehicle set to maintain driver-specified speed

traction control
›  wheels slip in rough or slippery road conditions
›  engine power is increased (to maintain speed)
›  driver senses “sudden acceleration”
-  vehicle becomes difficult to control

resolution:
›  advise drivers not to use cruise control on slippery roads

hybrid	
 brakes	
 ⨁	
 anti-­‐lock	
 breaking	

2010 Toyota Prius

hybrid brake system
›  (normal) hydraulic brake system
›  regenerative braking system
-  converts loss of vehicle momentum into electrical energy
-  stored in on-board batteries

anti-lock brake system (ABS)
›  maintains stability, steerability during panic braking

interaction
›  braking force after ABS actuation reduced
›  on rough or slick road surfaces
›  vehicle stopping distance is increased
›  62 reported crashes, 12 injuries

good	
 interactions	

not	
 all	
 interactions	
 are	
 bad!	

unplanned but harmless interactions
›  telephony: caller ID ⨁ call screening

(planned) resolutions to conflicts
›  anti-theft system ⨁ accident response system
›  (acceleration ⨁ braking) ⨁ brake override

planned interactions
›  power windows ⨁ child lock
›  prohibit navigation ⨁ prohibit-navigation override

problem:	
 	
 how	
 to	
 model	
 planned	
 FIs?	

planned interactions are tightly coupled to their
features
›  feature overrides: call ID blocking, call waiting override
›  conditional behaviour: active cruise control variants react to

speed limit, curves, traffic, obstacles
›  feature variants: 35 types of call forward in DMS 100

modelled as
›  distinct features?
›  fragments?
›  exceptions to “normal” behaviour?
›  degree of encapsulation?

good	
 interactions	
 gone	
 bad	

complex controllers are error-prone

›  hybrid brakes ⨁ anti-lock braking

errors propagate to interacting features
›  steering ⨁ stability control
›  cruise control ⨁ traction control

bad	
 interactions	

there exists an interaction if

 F1 ⨁ F2 ⊭ Φ1 ∧ Φ2

violation	
 of	
 feature	
 specifications	

F1 ⊨ Φ1
F2 ⊨ Φ2

there exists an interaction if

 ⨁ Fi,

violation	
 of	
 feature	
 specifications	

(Classen,	
 Heymans,	
 Schobblens,	
 “What’s	
 in	
 a	
 Feature:	
 A	
 RE	
 Perspective”,	
 FASE’08)	

F1 ⊭ false, W1 ⊭ false, Φ1 ⊭ false

i=1

n

i=1

n

i=1

n

F1,W1 ⊭ false, Φ1,W1 ⊭ false, F1,W1 ⊨Φ1

F2 ⊭ false, W2 ⊭ false, Φ2 ⊭ false
F2,W2 ⊭ false, Φ2,W2 ⊭ false, F2,W2 ⊨Φ2

there exists an interaction if

 F1 ⨁ F2 ⊭ Φ1 ∧ Φ2

violation	
 of	
 feature	
 specifications	

F1 ⊨ Φ1
F2 ⊨ Φ2

a job for formal methods!
›  then what?
› what is an appropriate resolution?
› where should the fix be applied?

resolution	
 of	
 interactions	

› fixed set of features

› pre-determined
selection of features

› static integration

› optimal resolutions

› fixed set of features

› semi-configurable
selection of features

› set of static integrations

› optimal resolutions still
possible

› unlimited features

› user-defined
selection of features

› dynamic integration

› optimal resolutions
are not possible

best	
 resolution	
 not	
 always	
 obvious	

X calls Y, which forwards the call to Z, and the
call attempt fails.

whose voice mail feature should react?

VM CF VM

Y’s features Z’s features X

›  what if Y is a sales group and Z is a sales representative?

›  what if Y is on a long leave of absence?

 Voice Mail

Z

interaction	
 is	
 not	
 always	
 obvious	

VM CF

Y’s features X

 CF ⊨ call is forwarded to new address

 VM ⊨ message is from the caller is recorded

?
 CF ⨁ VM ⊨ forward call ∧ record message

nonmonotonicity	

Veldhuijsen,	
 “Issues	
 of	
 non-­‐monotonicity	
 in	
 feature	
 interactin	
 detection”,	
 FI’95	

adding a new feature often requires changes to
the existing system:

›  nonmonotic extensions
–  e.g., freephone changes billed party
–  e.g., call screening disallows some call attempts

›  violation of invariants / assumptions
–  “I have not been able to think of a single interesting assertion

that would be true of a system incorporating all [features of the
public switched telephone network].” [Zave’01]

›  changes to definitions of terms
–  e.g., refinement of the notion of being busy
–  e.g., evolution of a call
–  e.g., evolution of directory numbers; of private numbers

correctness	
 criteria	
 ≠	
 feature	
 req	

(Zave,	
 “Requirements	
 for	
 Evolving	
 Systems:	
 A	
 Telecommunications	
 Perspective”,	
 RE’01)	

“therefore, functional verification needs as input a
requirements description that states formally and
explicitly exactly how all features interact.

this is exactly the chore that feature-orientation was
meant to avoid!”

the	
 ugly:	
 	
 scalability	

lots	
 of	
 features	

e.g., telephony has 1000+ features per system

a system of feature-rich systems
›  features from multiple providers
› multiple active versions of the same feature
›  networked features (e.g., call waiting originating)

provider’s
features

device’s
features device’s

features

PBX
features

provider’s
features

lots	
 of	
 interactions	

results of the second feature interaction contest

Call Forward
on Busy Call Number

Delivery

Terminal Call
Screening

Freephone
Billing

Freephone
Routing

Teen
Line

Three-Way
Calling

Call Forward
Universal

Call
Waiting

Charge
Call

Return
Call

Cellar
Phone
Billing

1
2
3
4
5
7

interations

one feature affects the flow of control in another feature

one feature affects (deletes, alters) a message destined for another feature

shared data read by one feature is modified by another feature

two features modify the same data

two features issue conflicting actions

one feature violates another feature's assertions or invariants

the supply of resources is inadequate, given the set of competing features

control-flow

data-flow

data modification

data conflict

control conflicts

assertion violation

resource contention

lots	
 of	
 types	
 of	
 interactions	

lots	
 of	
 resolutions	

death by a thousand exceptions

 F1 = f1 + ef2 + ef3 + … + efn

temporal	
 interactions	

conflicting actions needn’t be simultaneous

›  cruise control ⨁ collision avoidance
›  cruise control feature accelerates vehicle at time t
›  collision avoidance feature brakes at time t+ε
›  within what interval [0..ε] are these actions considered in

conflict?

introduced	
 in	
 several	
 phases	

(Bowen,	
 “The	
 Feature	
 Interaction	
 Problem	
 in	
 Telecommunication	
 Systems”,	
 1989)	

[req] understanding / specifying how features ought to interact

[req] the number of interactions (and resolutions) to consider
grows exponentially with the number of features

[design] more interactions introduced during design due to
sharing of resources, I/O devices, protocol signals, etc.

[imp] near-commonalities among features leads to questions
about how to effectively reuse software components

[test] the sheer number of interactions and resolutions to be
tested lengthens the testing phase

no	
 silver	
 bullet	

lots of features

lots of interactions
multiple types of interaction
interactions over time

introduced in several phases
lots of resolutions
not all interactions are bad

›  want to confirm desired interactions and detect
undesired/unexpected interactions

in	
 search	
 of	
 general	
 strategies	

interaction	
 analysis	

formal methods to detect errors

›  deadlock
›  nondeterminism
›  conflicting actions
›  violations of inviolable assertions

detect interactions (potential errors)
›  violations of feature assumptions
›  feature properties are not preserved

helpful, but not scalable

feature	
 architectures	

‘safe’ composition by design

›  constrain and coordinate feature executions
›  prevent entire classes of interactions

›  e.g., Distributed Feature Composition [Zave, Jackson]
-  serializes features’ actions
-  feature ordering realizes a priority scheme
-  additional conventions, protocols resolve other interactions

›  e.g., conflict-free composition [Hay, Atlee]

Service Feature Feature Feature Service

configuration	
 analysis	

reasoning about feature combinations

›  explore product space

product-line model checking
›  Classen et. al
›  for a given property
›  identifies all valid configurations of a feature set

open problem: classes of correctness criteria
›  aim for safety, not absolute correctness
›  aim for predictability

runtime	
 resolution	

remaining interactions must be detected and
resolved at runtime

›  prioritizing features
›  negotiating compromises
›  rollback conflicting actions
›  disable feature activation
›  restrict subscription to conflicting features
›  terminate features; reboot

RE	
 problems	
 at	
 heart	

elicitation

›  features, variations
›  interaction resolutions
›  priority schemes

analyses to
›  distinguish good from bad interactions
›  explore, optimize feature combinations

languages, methods to
›  express partial behaviours
›  feature extensions, evolutions
›  support modularity
›  impose resolutions

thank	
 you	

conferences

›  International Conference on Feature Interactions (ICFC)
›  Software Product Line Conference (SPLC)
- http://www.splc2011.net/

›  Variability Modeling of Software Intensive Systems (VaMoS)
- http://www.vamos-workshop.net

›  Feature-Oriented Software Development (FOSD)

