Parnas Tables: A Practical Formalism

Joanne M. Atlee Department of Computer Science University of Waterloo

Critical Software

Software is increasingly used to control or manage **critical systems safety-critical systems** in which a failure can lead to loss of life (e.g., medical devices, nuclear power plants, airplanes, cars, trains)

mission-critical systems in which a failure can cause significant loss of property (e.g., spacecraft, satellites, manufacturing, security systems, financial systems)

How to Achieve Confidence in Critical Software?

There are several **complementary** verification activities.

- 1. Review software documents (requirements, design, code)
 - to **reveal errors early** in the development process, when they are easier to correct (cf. testing, code reviews)
 - to **exhaustively examine** an artifact (cf. testing)
 - to locate defects (cf. testing)
- 2. **Test code systematically** to confirm expected behaviour to **evaluate the final product** in its operational environment (cf. reviews)
- 3. **Test code randomly** to reveal unexpected behaviour to help assess the **software's reliability** (cf. reviews)
- 4. Perform hazard analysis to detect and avoid causes of failures

This talk focuses on writing and reviewing software documentation

Software Documentation

Software Documentation - technical documents that explain a software system's

- requirements required goals of system
- **specification** specified functionality of system
- design decomposition of system into modules, and
 specified functionality of each module
- **descriptions** actual functionality of program fragments

(Im)Precise Documentation

If one does not have a **precise** definition of a system's desired behaviour, how can one possibly expect to **evaluate** that the implemented system meets its requirements?

Mathematical Documentation

In other engineering disciplines, "precise documentation" means **mathematical definitions**

- unambiguous
- **consistency, completeness**, and other desired properties are well-defined and can be checked
- **composition** of components is well-defined

Mathematical Documentation

In contrast, mathematical methods are not widely used to document software because software can implement a function

- that has **many discontinuities**
- whose domain and range are tuples of distinct types

making it difficult to express behaviour in a **compact** mathematical definition.

Example: Elevator Direction

Elevator Example

An elevator's direction depends on its **current direction (dir)**, the **floor** that it is on **(loc)**, and what **requests** are pending **(Req[])**.

It travels in a given direction until

- there are **no** more pending **requests** in the **current direction**
- and there are pending requests in the opposite direction.

```
dir : {Up, Down}
loc: {1..n}
Req[1..n]: boolean
Up \quad (dir = Up \land \exists f.(f \ge loc \land Req[f])) \lor (dir = Down \land \neg \exists f.(\le loc \land Req[f]) \land \exists f.(f > loc \land Req[f]))\exists f.(f > loc \land Req[f]))Down (dir = Down \land \exists f.(f \le loc \land Req[f])) \lor (dir = Up \land \neg \exists f.(f \ge loc \land Req[f])) \lor (dir = Up \land \neg \exists f.(f \ge loc \land Req[f]))dir otherwise
```

Practical Formalisms

Practical Formalisms are notations with **precise semantics** that can be **read and reviewed** by domain experts and software professionals.

- They have a **formal, mathematical model**
- They encourage the use of **separation of concerns** and **abstraction** to decompose and simplify a problem
- They have **diagrammatic constructs** for expressing functions and relations
- ...that encourage the writer to **consider completeness**

Examples: Statecharts, SDL, Petri-Nets, Parnas Tables, SCR, CoRE, RSML, Tablewise

Parnas Tables

Parnas Tables use **tabular** constructs to organize mathematical expressions, where

- rows and columns separate an expression into **cases**
- each table entry specifies either the **result value for some case** or a **condition that partially identifies some case**

Example: Inverted Table

 $F_{2,A} \equiv if \operatorname{Pred}_A \wedge \operatorname{Pred}_{2,A}$ then Result = Value₂ $F \equiv \bigcup_{j=A,.B} F_{j,i}$

Inverted Table

ElevDir(dir,loc,Req[]) =

	Up	Down		
dir=Up	\$ f.(f ³ loc Ù Req[f])	Ø \$ f.(f³loc Ù Req[f]) ∧ \$ f.(f <loc req[f])<="" th="" ù=""></loc>		
dir=Down	<pre>Ø \$ f.(f£loc Ù Req[f]) Ù \$ f.(f>loc Ù Req[f])</pre>	\$ f.(f £ loc Ù Req[f])		

	Up	(dir = Up Ù \$ f.(f³loc Ù Req[f])) Ú (dir = Down Ù Ø \$ f.(f£loc Ù Req[f]) Ù \$ f.(f>loc Ù Req[f]))
\prec	Down	<pre>(dir = Down Ù \$ f.(f£loc Ù Req[f])) Ú (dir = Up Ù Ø \$ f.(f³loc Ù Req[f] Ù \$ f.(f<loc pre="" req[f]))<="" ù=""></loc></pre>
	dir	otherwise

Multiple Table Types

The term **Parnas Tables** actually refers to a collection of **table types** and **abbreviation strategies** for organizing and simplifying functional and relational expressions.

An expression can usually be represented in several table types. The documenter's goal is to choose (or create) a table format that produces a **simple, compact representation** for that expression.

Example: Normal Table

 $F_{2,A} \equiv if \operatorname{Pred}_A \wedge \operatorname{Pred}_2$ then Result = Value_{2,A} $F \equiv \bigcup_{j=A..B}^{j=1..3} F_{i,j}$

Normal Table

Up	(dir = Up Ů \$ f.(f³loc Ù Req[f])) Ú (dir = Down ÙØ\$ f.(f£loc Ù Req[f]) Ù \$ f.(f>loc Ù Req[f]))
Down	(dir = Down Ù \$ f.(f£loc Ù Req[f])) Ú (dir = Up Ù Ø \$ f.(f³loc Ù Req[f] Ù \$ f.(f <loc req[f]))<="" td="" ù=""></loc>
dir	otherwise

Decision Table

A **Decision Table** is useful for representing a function or relation whose **domain is a tuple** (possibly of distinct types). One dimension of the table itemizes the elements of the domain tuple.

ElevDir(dir,loc,Req[]) =		Up	Down	Down	Up
	dir	Up	Up	Down	Down
	<pre>\$ f.(f³loc Ù Req[f])</pre>	true	false		true
	\$ f.(f £ loc Ù Req[f])		true	true	false

Vector Tables

A Vector Table is useful for representing a function or relation whose range is a tuple (possibly of distinct types). One dimension of the table itemizes the elements of the range tuple.

Req[loc]							
	–∃f.Req[f]	$\exists f.(f > loc \land Req[f]) \land \\ \neg \exists f.(f < loc \land Req[f])$	$\exists f.(f < bc \land Req[f]) \land \\ \neg \exists f.(f > bc \land Req[f])$	$\exists f.(f < bc \land Req[f]) \land \\ \exists f.(f > bc \land Req[f]) \end{cases}$			

dir'	dir	dir	Lþ	Down	dir
speed	idle	idle	moving	moving	moving

Properties of Parnas Tables

For each table type, there are rules for identifying

- distinct cases (subfunctions, subrelations)
- mission cases (incompleteness)
- conflicting cases (inconsistency)

	Up	Down	??	Down	Up	Down
dir	Up	Up	Up	Down	Down	Down
∃ f.(f≥loc ∧ Req[f])	true	false	false		true	true
∃ f.(f≤loc ∧ Req[f])		true	false	true	false	false

A-7E Experience

A-7E U.S. Naval Aircraft:

Onboard flight software for an operational naval aircraft (navigation, navigational update, weapons delivery)

Project:

An experiment, funded by the Naval Research Laboratory (NRL), to evaluate state-of-the-art software engineering methods

Experience:

- Introduced the **first Parnas Tables** (without formal definition) in the Software Requirements Specification (SRS)
- SRS was **reviewed by domain experts, pilots**, who found hundreds detail errors

A-7E Experience

Since Then:

• The software manager for the **A-7D Air Force aircraft** had his team modify the A-7E document to reflect the A-7D requirements.

This became the **living document** of A-7D software behaviour.

• NRL continues to study the use of Tables in documenting software requirements and specifications (**SCR method**), including methodology and tool support.

Darlington Experience

Darlington nuclear shutdown system:

Two independent systems, each of which is responsible for shutting down the nuclear reaction in the event of an accident.

Project:

To determine whether the already-developed software and documentation met standards and could be certified.

Experience:

- Introduced **program-function tables** for documenting code
- Defined and executed a systematic inspection process
- 35-person-years task; relatively few important discrepancies found; but **gained confidence in the code**

Program Function Tables

A **Program Function Table** is an annotated Mixed Vector Table that describes the behaviour of a **procedure** or a **sub-procedure**.

Inspection Method

NewDirection (dir, loc, Req, Light)							
$R_1 = (bottom \le loc \le top) \Rightarrow$							
		!ReqAbove(loc)! = !ReqBelow(loc)!	⊣ !ReqAbove(loc)! ∧ !ReqBelow(loc)!	!ReqAbove(loc)! ∧ ¬ !ReqBelow(loc)!			
C	dir′=	'dir	d o w n	uр			
I	Light'[]	∀f.bottom≤f≤top Light′[f]=`dir	∀f.bottom≤f≤top Light′[f]=down	∀f.bottom≤f≤top Light′[f]=down			
				∧ NC(Req,loc)			

Procedure NewDirection (var direction:enum; var Light:Vector; floor:integer);

var I : integer;

begin

```
if PendingAbove(floor) <> PendingBelow(floor) then begin
```

```
if direction = up
    then direction := down
    else direction := up;
    for i := bottom to top do
        Light[i] := direction
end
```

end;

PendingAbove(floor) External variables: Req						
	$\exists f$. [floor < f \leq	top ∧ Req[f]] =				
	true	false				
result' =	true	talse				
∧ NC(Req)						

Systematic Inspections

Reviews and Inspections

(1) Well-formedness of tabular expressions

Reviews and Inspections

Requirements Validation

Check that each case (subfunction, subrelation) produces the **correct output**.

	Up	Down	Down	Up
dir	Up	Up	Down	Down
\$ f.(f ³ loc Ù Req[f])	true	false		true
\$ f.(f≤loc Ù Req[f])		true	true	false

Reviews and Inspections

Reviews and Inspections

 $\underbrace{0}_{0}$ Well-formedness of tabular expressions

1) Requirements Validation

2) Software Design Inspection

3 Code Inspection

Darlington Experience

Since then:

Ontario Hydro and the Atomic Energy Canada Limited (AECL) have developed a family of standards, procedures, and guidelines for developing safety critical software for use in nuclear power plants, incorporating

- tabular, mathematical representations of requirements, design, and code
- systematic inspections of requirements
- mathematical verification or rigorous argument that
 - the design meets the requirements
 - the code meets the design

Other Experiences

Experiences in which practitioners adopted the technology

- A-7E, A-7D aircraft (SCR)
- Ontario Hydro nuclear plant applications (Parnas Tables)
- Lockheed C130-J transport aircraft (CoRE)
- Medtronic medical applications (SCR)

Experiences that involved practitioners

- Trident (submarine) Emergency Preset System (SCR)
- AT&T Service Evaluation System (Parnas Tables)
- Traffic and Collision Avoidance System (RSML)
- Aircraft Separation Minima (HOL Parnas Tables)
- International Space Station (SCR)

Formal Semantics of Tables

Several Table types look alike, and readers may **misinterpret** a Table's meaning when they are given only the Table's informal, **ad hoc semantics**.

Decision Table OR

Inverted Table

Formal Semantics of Tables

To address this problem, there has been work on how to formulate the formal semantics of a tabular expression:

- **predicate rule** $\mathbf{p}_{\mathbf{T}}$ to define the expression's **domain**
- relation rule r_T to defines the expression's range
- **composition rule** C_T to define how to combine subexpressions

Decision Table $p_{T}: H_2 = G$ $r_{T}: H_3$ $C_{T}: \bigcup_{j=1}^{3} (\mathbf{\ddot{A}}_{i=1}^4 F_{i,j})$ $\begin{array}{c} \underline{\text{Inverted Table}} \\ p_{T:} H_2 \tilde{\boldsymbol{U}} G \\ r_{T}: H_3 \\ C_{T}: \cup_{i=1}^{4} (\bigcup_{j=1}^{3} F_{i,j}) \end{array}$

Table Transformations

One may want to **transform** one table to another representation, to formulate a more **compact expression** or **determine the equivalence** of two table expressions.

Table Transformations

But even a simple transformations, like one that **exchanges grid elements with header elements**, can require reorganization and simplification to produce a concise table.

Automated Checking

Significant human effort may be needed to check that a table is **consistent** and that it **covers** the expression's domain. Since these checks are application-independent and can be expressed as **constraints on predicates**, many can be automated.

Req[loc]		- Req[lcc]						
	–∃f.Req[f]	$ \exists f.(f > loc \land Req[f]) \land \\ \neg \exists f.(f < loc \land Req[f]) $	$ \exists f.(f < loc \land Req[f]) \land \\ \neg \exists f.(f > loc \land Req[f]) $	$\exists f.(f < loc \land Req[f]) \land \\ \exists f.(f > loc \land Req[f]) \end{cases}$				

dir'	dir	dir	Up	Down	dir
speed	idle	idle	moving	moving	moving

Reasoning about Table Composition

Each Table documents a separate concern. If the concerns are **not completely separate** (e.g., if they react to changes in the same variables) then, we need to **review their composition**.

Application-Independent

- reachability
- deadlock
- cycle detection

Application-Dependent

- abstractions
- coordination
- safety properties
- liveness properties
- invariant generation

Summary

Parnas Tables are **practical formalisms** that

- emphasize **abstraction** and **separation of concerns**
- are amenable to **readable**, **write-able**, and **review-able** yet precise software documents
- are useful at different degrees of formalism

Tabular expressions

Tabular expressions of mathematical relations

Systematic inspections

Inspections of table compositions

Mathematical verification