Parnas Tables; A Practical Formalism

Joanne M. Atlee
Department of Computer Science
University of Waterloo

Critical Software

Transportation. Telecommunications 3 LAl

. e Yeruackrig

- L
JEEE oy ")
Rio 3

1 '_ :rl‘III' ;;- | ‘l

Ay -

Software isincreasingly used to control or manage critical systems

safety-critical systems in which afailure can lead to loss of life
(e.g., medical devices, nuclear power plants, airplanes, cars, trains)

mission-critical systems in which afailure can cause significant loss of property
(e.g., Spacecraft, satellites, manufacturing, security systems, financial systems)

How to Achieve Confidencein Critical Softwar e?

There are several complementary verification activities.

1. Review softwar e documents (requirements, design, code)

» toreveal errorsearly in the development process, when they are easier
to correct (cf. testing, code reviews)

* to exhaustively examine an artifact (cf. testing)
» to locate defects (cf. testing)

2. Test code systematically to confirm expected behaviour
to evaluate the final product in its operational environment (cf. reviews)

3. Test code randomly to reveal unexpected behaviour
to help assess the softwar € sreliability (cf. reviews)

4. Perform hazard analysisto detect and avoid causes of failures

This talk focuses on writing and reviewing software documentation

Softwar e Documentation

Softwar e Documentation - technical documents that explain a
software system'’s

 requirements- required goals of system
o specification - specified functionality of system

 design - decomposition of system into modules, and
- specified functionality of each module

o descriptions - actual functionality of program fragments

(Im)Precise Documentation

If one does not have a precise definition of a system'’s desired
behaviour, how can one possibly expect to evaluate that the
Implemented system meets its requirements?

M athematical Documentation

In other engineering disciplines, “precise documentation” means
mathematical definitions

e Unambiguous

e consistency, completeness, and other desired properties are
well-defined and can be checked

e composition of components is well-defined

Mathematical Documentation
In contrast, mathematical methods are not widely used to document
software because software can implement a function
e that hasmany discontinuities
« whose domain and range ar e tuples of distinct types

making it difficult to express behaviour in acompact mathematical
definition.

Example: Elevator Direction

A
up —_—

Direction

Time

Elevator Example

An elevator’ s direction depends on its current direction (dir), the
floor that it ison (loc), and what requests are pending (Req[]).

It travels in a given direction until

o there are no more pending reguestsin the current direction
 and there are pending requestsin the opposite dir ection.

dir : {Up, Down}
loc: {1..n}
Req[1l..n]: boolean

" Up (dir = Up U$ f.(loc U Req[f])) U
(dir = Down U @ $ f.(£loc UReq[f]) U
$ f.(f>loc U Req[f]))

ElevDir (dir,loc, Req[]) = < Down (dir = Down U $ f.(fEloc U Req[f])) U
(dir =Up U@ $ f.(floc UReq[f] U
$ f.(f<loc U Req[f]))

\dir otherwise

Practical Formalisms

Practical For malisms are notations with pr ecise semantics that can
beread and reviewed by domain experts and software professionals.

e They have aformal, mathematical model

» They encourage the use of separation of concerns and
abstraction to decompose and smplify a problem

* They have diagrammaitic constructsfor expressing functions
and relations

o ...that encourage the writer to consider completeness

Examples. Statecharts SDL, Petri-Nets,
Parnas Tables, SCR, CoRE, RSML, Tablewise

Parnas Tables

Parnas Tables usetabular constructs to organize mathematical
expressions, where

 rows and columns separate an expression into cases

« each table entry specifies elither the result value for some case
or acondition that partially identifies some case

Example: Inverted Table

Valueq Values Values

K
Predy [Predq A Preds A Preds a
Predp Pred; g Preds g Preds g

F, A © if Pred, UPred, A
then Result = Value,

N

F © EJ'EA_\....B Fi,j

|nverted Table

ElevDir(dir,loc,Req[]) =

Up Down

. . @ $ f.(Bloc UReq[f]) U
dir=Up $ f.(Bloc U Req[f]) $ £.(f<loc U Req[f])

@ $ f.(fEloc U Req[f]) U

dir=Down $ f.(f>loc U Req[f]) $ f.(fEloc U Req[f])

" Up (dir = Up U $ f.(# loc U Req[f])) U

(dir = Down U@ $ f.(fEloc U Req[f]) U
$ f.(f>loc U Req[f]))

< Down (dir = Down U $ f.(fEloc U Req[f])) U
(dir=Up U@ $ f.(Bloc U Req[f] U
$ f.(f<loc U Req[f]))

. dir otherwise

Multiple Table Types

The term Parnas Tables actually refersto a collection of table types

and abbreviation strategies for organizing and simplifying functional
and relational expressions.

An expression can usually be represented in several table types.
The documenter’ s goal 1sto choose (or create) atable format that
produces a simple, compact representation for that expression.

Example: Normal Table

Predq Pred» Preds
2
PredA Valuel_A V&|U€2_A V&|U€3_A
Predg Valueq g Values g Valuesz g

F, A ° if Pred, UPred,
then Result = Value, 5
—i=1..3
F ° Ej=A..B Fi,j

Normal Table

ElevDir(dir,loc,Req[]) =

$ f.(fEloc U Req[f])

true false
. true dir U
$ f.(Floc UReqlf]) false Down diri

/Up

< Down

. dir

(dir = Up U $ f.(loc U Req[f])) U

(dir = Down U@ $ f.(fEloc U Req[f]) U

$ f.(f>loc U Req[f]))

(dir = Down U $ f.(fEloc U Req[f])) U

(dir=Up U@ $ f.(Bloc UReq[f] U
$ f.(f<loc U Req[f]))

otherwise

Decision Table

A Decision Tableisuseful for representing afunction or relation
whose domain isa tuple (possibly of distinct types). One dimension
of the table itemizes the elements of the domain tuple.

Valueq Values Values

A
Expra [EXpria EXpro A EXprz a
Exprg B Exprl,B Expro B Exprg,B
Fo O if ExprAzExprz,A F O Eizl__3 F.

and Exprg=EXpr, g
then Result = Value,

ElevDir(dir,loc,Req[]) = Up Down Down Up
dir Up Up Down Down

$ f.(f8 loc U Req[f]) true false true
$ f.(fEloc U Req[f]) true true false

Vector Tables

A Vector Tableisuseful for representing afunction or relation
whose rangeisatuple (possibly of distinct types). One dimension
of the table itemizes the elements of the range tuple.

Pred; Pred, Preds
2
vary’ [€7 Valueq a Value, a Valuez o
varg’ |<]| Value;p Value, g Values g
Fo o ° if Pred, FoA2, Ej?»:1 F |
then Var,’ = Value, A
Redfioc] ‘ __ OReqoc] ‘ ‘ \
zstReqp | SHECURedD U) $T.¢<locUReqii U 1 $i. (o URedfi U
' @$f.(<doc URe]) | @$f(F-toc URe]) | $.(F>loc UReqff]
dr ||| dir dir W o -
Soed idle idle oy mowo Ot

Properties of Parnas Tables

For each table type, there are rules for identifying
e distinct cases (subfunctions, subrelations)
e mission cases (Incompleteness)
e conflicting cases (inconsistency)

Up | Down| 7?7 |Down| Up |Down
dir Up Up Up |[Down|Down | Down

$ f.(floc UReq[f]) true | false | false true | true
$ f.(fEloc U Req[f]) true |false| true | false | false

A-7E Experience

A-7E U.S. Naval Aircraft:
Onboard flight software for an operational naval aircraft
(navigation, navigational update, weapons delivery)

Proj ect:
An experiment, funded by the Naval Research Laboratory (NRL),
to evaluate state-of-the-art software engineering methods

EXxperience:
e Introduced the fir st Parnas Tables (without formal definition)
In the Software Requirements Specification (SRS)

« SRSwasreviewed by domain experts, pilots, who found
hundreds detail errors

A-7E Experience

Since Then:

 The software manager for the A-7D Air Force aircr aft

had his team modify the A-7E document to reflect the
A-7D reguirements.

This became the living document of A-7D software behaviour.

 NRL continues to study the use of Tablesin documenting
software requirements and specifications (SCR method),
Including methodology and tool support.

Darlington Experience

Darlington nuclear shutdown system:
Two independent systems, each of which is responsible for
shutting down the nuclear reaction in the event of an accident.

Proj ect:
To determine whether the already-devel oped software and
documentation met standards and could be certified.

EXxperience:
e Introduced program-function tables for documenting code
» Defined and executed a systematic inspection process

» 35-person-years task; relatively few important discrepancies
found; but gained confidence in the code

vaue before\L

IRegAbove(loc)! =
value after< WIOWUO !
dir’ = ‘dir f

Program Function Tables

A Program Function Tableis an annotated Mixed Vector Table that
describes the behaviour of a procedure or asub-procedure.

Procedure signature

R, = (bottom £ loc £ top) b

Precondition

Vectqgr Table

@ 'RegAbove(loc)! U | 'RegAbove(loc)! U

IReqBelow(loc)!

@ 'ReqBelow(loc)!

down

up

Liaht " f.bottom£Ef £top | " f. bottom£Ef £top " f. bottom£f £top
| -9 | Light[f]# " dir Light[f]l=down Light[f]l=down
I
value meets/ U NC(Req,loc)
CONSLraiNt im-m-m-mrmmmemrm oo oo o -

macros: 'RegAbove! = $f . loc <f£ top U Req[f]
IReqBelow! = $f . Bottom £ f <loc U Req[f]

macro NoChange:
(Reg’=Req) U (loc’=loc)

i 'NewDirection (dir, loc, Req, Light) 1 i
R; = (bottom £ loc £ top) b
IReqAbove(loc)! = |@ 'ReqAbove(loc)! U |[!ReqAbove(loc)! U

| nspection Method

IRegBelow(loc)!

IRegqBelow(loc)!

@ 'ReqBelow(loc)!

|

|

|

|

|

I -y
i dir’ =
|

|

|

|

‘dir down up
Light'[] | "f.bottom£f £top "f.bottom£f £top “"f.bottom£f £top
g Light'[f]="dir Light'[f]=down Light'[f]=down
U NC(Req,loc)

Procedure NewDirection (var direction:enum; var Light:Vector; floor:integer) ;
var | : integer;
begin
if PendingAbove(floor) <> PendingBelow(floor) then begin
if direction = up
then direction := down
else direction := up;
for i := bottom to top do
Light[i] := direction
end
end;

i PendingAbove(fioor) |External variables: Req External variables: Req

R i b L i it S A i
3

!
! !
! ! !
: $f . [floor < f £top UReq[f]] = : : $f . [bottom £ f < floor U Req[f]] =
i true felse i i true false
: result’ = true false : I Tresult’ = true false
' |
I) I i .
! U NC(Re) : . U NC(Req)

Systematic | nspections

Requirements Design
AN N
4 N N
requirement
re requirement program program program
re requirement function function function
relation
.. | requirement
relation Code
AN
- N
Program Program Program

Fragment Fragment Fragment

Reviews and I nspections

requirement
relation

(0) Well-formedness of tabular expressions

program
function

program
function

Program
Fragment

program
function

Program
Fragment

Program
Fragment

Reviews and I nspections

(0) Well-formedness of tabular expressions
(D Requirements Validation

Domain Experts

Do

reguirement
rq reauirement program program program
rq requirement function function function
rd requirement
relation
Program Program Program
Fragment Fragment Fragment

Requirements Validation

Check that each case (subfunction, subrelation) produces the

correct output.

Up Down Down Up
dir Up Up Down Down

$ f.(fe loc U Req[f]) true false true
$ f.(fEloc U Req[f]) true true false

Domain Experts

r

(Do
?%ﬁ%t

r

t

Reviews and I nspections

(0) Well-formedness of tabular expressions

(1) Requirements Validation

(2) Software Design I nspection

%0

relation

rgréquiramnt

program
function

program
function

Program
Fragment

program
function

Program
Fragment

Program
Fragment

Reviews and I nspections

(0) Well-formedness of tabular expressions
(1) Requirements Validation

(2) Software Design Inspection
Domain Experts (3 Code Inspection

Do

rglauirement ; @
rel requiremen . program program program
rel requirement U A A...A

o [: function function function

rel requiremen

relation @D @D @:)
Program Program Program

Fragment Fragment Fragment

Darlington Experience

Since then:

Ontario Hydro and the Atomic Energy Canada Limited (AECL)
have developed afamily of standards, procedures, and
guidelines for developing safety critical software for use in
nuclear power plants, incorporating

e tabular, mathematical representations of requirements,
design, and code

e systematic inspections of requirements

e mathematical verification or rigorous argument that
- the design meets the requirements
- the code meets the design

Other Experiences

Experiencesin which practitioners adopted the technology
* A-7E, A-7D aircraft (SCR)
» Ontario Hydro nuclear plant applications (Parnas Tables)
e Lockheed C130-J transport aircraft (CoRE)
» Medtronic medical applications (SCR)

Experiencesthat involved practitioners
e Trident (submarine) Emergency Preset System (SCR)
« AT&T Service Evaluation System (Parnas Tables)
o Traffic and Collision Avoidance System (RSML)
o Aircraft Separation Minima (HOL Parnas Tables)
* International Space Station (SCR)

Formal Semantics of Tables

Severa Tabletypeslook alike, and readers may misinter pret
a Table’ s meaning when they are given only the Table' s informal,

ad hoc semantics.

£ SO\
Up \\ Down Down Up
™ ‘
(:§ f.(f8 loc U Req[f]) true false true
$ f.(fEloc U Req[f]) true true false
dir Up Up Down Down

Decision Table

Inverted Table

Formal Semantics of Tables

To address this problem, there has been work on how to formulate
the formal semantics of atabular expression:

* predicaterule p+ to define the expression’s domain

e relation ruler+ to defines the expression’srange

« composition rule C+ to define how to combine subexpressions

JJL/ Up | | Down Down Up

\
C‘ﬁ f.(f8loc U Req[f]) true _[{ | false true

$ f.(fEloc U Req[f]) true true false
dir Up Up Down Down
\
Decision Table Inverted Table
Pp1- Hy=G pt. HoUG
rr: Hg rr: Hg

~ 3 - 4 =4 >3
cr: B (AL, Fi)) cr: By (B2 Fip)

Table Transformations

One may want to transfor m one table to another representation, to
formulate a more compact expression or deter mine the equivalence
of two table expressions.

Up Down

@ $ f.(loc UReq[f]) U
$ f.(f<loc U Req[f])

$ f.(ffloc U Req[f])

dir=Up $ f.(f loc U Req[f])

@ $ f.(fEloc U Req[f]) U
$ f.(f>loc U Req[f])

dir=Down

$ f.(f3loc U Req[f])

true false
. true dir Down
$ f.(fEloc U Req[f]) false Up dir

Table Transformations

But even a ssmple transformations, like one that exchanges grid
elementswith header elements, can require reorganization and
simplification to produce a concise table.

Up Down

$ f.(f loc U Req[f]) §£$$;fi:((ffg<llcc))(c:: Llj Eiqq[[ﬂ)) O\
@ $ f.(fEloc U Req[f]) U)

$ f.(f>loc U Reg[$ f'(%m‘\o @4

\/ =
$ f.(floc Ulq[ﬂ)

true false

e —
dir:Up\

dir:DoKn,

3 dir Do
false Up dir

|4
$ f.(fEloc U Req[f]) lrue

Automated Checking

Significant human effort may be needed to check that atableis
consistent and that it cover sthe expression’s domain. Since these
checks are application-independent and can be expressed as
constraints on predicates, many can be automated.

Reqfloc] PReqfloc]

2% Reqffl $f.(>loc UReq[[) U |$f.(Fdoc UReg[f) U | $f.(Fdoc UReq[f) U
R ggt.(fdoc UReq[) | @$.(E>loc UReqfl]) | $f.(F>loc UReqi])

dir dir dir Uo Doan dir

Speed idle idle movig moving moving

Reasoning about Table Composition

Each Table documents a separate concern. If the concerns are
not completely separate (e.g., if they react to changes in the same
variables) then, we need to review their composition.

Application-Independent

* reachabil |ty _ 'Zﬂ::i:lulmi:::jml :Zm:]" Tl HHI i}

 deadlock - R q;%z:ﬂu = 'fl‘ i mwn‘ R‘

o CyCle det&tlon [lPerdingRecupyiiy = | RUE [TRUE [R
Application-Dependent |

e abstractions g &S

* coordination _ VV | \HHHI" i m\-" HHHI“‘ i HHI“

o safety properties

e liveness properties
e invariant generation

Summary

Parnas Tables are practical formalismsthat
e emphasize abstraction and separ ation of concerns

» are amenable to readable, write-able, and review-able yet
precise software documents

 are useful at different degrees of formalism

L LIIARRR . .
Tabular Tabular expressions of Systematic | nspections of Mathematical

expressions mathematical relations inspections table compositions verification

