
Parnas Tables: A Practical Formalism

Joanne M. Atlee
Department of Computer Science

University of Waterloo

Software is increasingly used to control or manage critical systems
safety-critical systems in which a failure can lead to loss of life
(e.g., medical devices, nuclear power plants, airplanes, cars, trains)

mission-critical systems in which a failure can cause significant loss of property
(e.g., spacecraft, satellites, manufacturing, security systems, financial systems)

Critical Software

Medical Devices Transportation Telecommunications Automated
Manufacturing

There are several complementary verification activities.

1. Review software documents (requirements, design, code)
• to reveal errors early in the development process, when they are easier

to correct (cf. testing, code reviews)
• to exhaustively examine an artifact (cf. testing)

• to locate defects (cf. testing)

2. Test code systematically to confirm expected behaviour
to evaluate the final product in its operational environment (cf. reviews)

3. Test code randomly to reveal unexpected behaviour
to help assess the software’s reliability (cf. reviews)

4. Perform hazard analysis to detect and avoid causes of failures

This talk focuses on writing and reviewing software documentation

How to Achieve Confidence in Critical Software?

Software Documentation

Software Documentation - technical documents that explain a
software system’s

• requirements - required goals of system

• specification - specified functionality of system

• design - decomposition of system into modules, and
- specified functionality of each module

• descriptions - actual functionality of program fragments

(Im)Precise Documentation

If one does not have a precise definition of a system’s desired
behaviour, how can one possibly expect to evaluate that the
implemented system meets its requirements?

Mathematical Documentation

In other engineering disciplines, “precise documentation” means
mathematical definitions

• unambiguous

• consistency, completeness, and other desired properties are
well-defined and can be checked

• composition of components is well-defined

Mathematical Documentation
In contrast, mathematical methods are not widely used to document
software because software can implement a function

• that has many discontinuities
• whose domain and range are tuples of distinct types

making it difficult to express behaviour in a compact mathematical
definition.

Example: Elevator Direction

up

downD
ir

e
ct

io
n

Time

Elevator Example
An elevator’s direction depends on its current direction (dir), the
floor that it is on (loc), and what requests are pending (Req[]).

It travels in a given direction until
• there are no more pending requests in the current direction
• and there are pending requests in the opposite direction.

dir : {Up, Down}
loc: {1..n}
Req[1..n]: boolean

Up (dir = Up ∧ ∃ f.(f≥loc ∧ Req[f])) ∨
(dir = Down ∧ ¬ ∃ f.(≤loc ∧ Req[f]) ∧

∃ f.(f>loc ∧ Req[f]))

Down (dir = Down ∧ ∃ f.(f≤loc ∧ Req[f])) ∨
(dir = Up ∧ ¬ ∃ f.(f≥loc ∧ Req[f] ∧

∃ f.(f<loc ∧ Req[f]))

dir otherwise

ElevDir (dir,loc, Req[]) =

Practical Formalisms

Practical Formalisms are notations with precise semantics that can
be read and reviewed by domain experts and software professionals.

• They have a formal, mathematical model

• They encourage the use of separation of concerns and
abstraction to decompose and simplify a problem

• They have diagrammatic constructs for expressing functions
and relations

• …that encourage the writer to consider completeness

Examples: Statecharts, SDL, Petri-Nets,
Parnas Tables, SCR, CoRE, RSML, Tablewise

F2,A ≡ if PredA ∧ Pred2,A
then Result = Value2

F ≡ ∪i=1..3 Fi,j

Parnas Tables

Parnas Tables use tabular constructs to organize mathematical
expressions, where

• rows and columns separate an expression into cases

• each table entry specifies either the result value for some case
or a condition that partially identifies some case

Example: Inverted Table

Value1 Value2 Value3

PredA Pred1,A Pred2,A Pred3,A

PredB Pred1,B Pred2,B Pred3,B

j=A..B

Inverted Table

Up Down

dir=Up ∃ f.(f≥loc ∧ Req[f]) ¬ ∃ f.(f≥loc ∧ Req[f]) ∧
∃ f.(f<loc ∧ Req[f])

dir=Down ¬ ∃ f.(f≤loc ∧ Req[f]) ∧
∃ f.(f>loc ∧ Req[f]) ∃ f.(f≤loc ∧ Req[f])

ElevDir(dir,loc,Req[]) =

Up (dir = Up ∧ ∃ f.(f≥loc ∧ Req[f])) ∨
(dir = Down ∧ ¬ ∃ f.(f≤loc ∧ Req[f]) ∧

∃ f.(f>loc ∧ Req[f]))

Down (dir = Down ∧ ∃ f.(f≤loc ∧ Req[f])) ∨
(dir = Up ∧ ¬ ∃ f.(f≥loc ∧ Req[f] ∧

∃ f.(f<loc ∧ Req[f]))

dir otherwise

Multiple Table Types

Pred1 Pred2 Pred3

PredA Value1,A Value2,A Value3,A

PredB Value1,B Value2,B Value3,B

F2,A ≡ if PredA ∧ Pred2
then Result = Value2,A

F ≡ ∪ Fi,j

The term Parnas Tables actually refers to a collection of table types
and abbreviation strategies for organizing and simplifying functional
and relational expressions.

An expression can usually be represented in several table types.
The documenter’s goal is to choose (or create) a table format that
produces a simple, compact representation for that expression.

Example: Normal Table

i=1..3
j=A..B

Normal Table

∃ f.(f≤loc ∧ Req[f])
true false

true dir Up
∃ f.(f≥loc ∧ Req[f])

false Down dir

ElevDir(dir,loc,Req[]) =

Up (dir = Up ∧ ∃ f.(f≥loc ∧ Req[f])) ∨
(dir = Down ∧ ¬ ∃ f.(f≤loc ∧ Req[f]) ∧

∃ f.(f>loc ∧ Req[f]))

Down (dir = Down ∧ ∃ f.(f≤loc ∧ Req[f])) ∨
(dir = Up ∧ ¬ ∃ f.(f≥loc ∧ Req[f] ∧

∃ f.(f<loc ∧ Req[f]))

dir otherwise

A Decision Table is useful for representing a function or relation
whose domain is a tuple (possibly of distinct types). One dimension
of the table itemizes the elements of the domain tuple.

Decision Table

Up Down Down Up

dir Up Up Down Down
∃ f.(f≥loc ∧ Req[f]) true false --- true
∃ f.(f≤loc ∧ Req[f]) --- true true false

ElevDir(dir,loc,Req[]) =

Value1 Value2 Value3

ExprA Expr1,A Expr2,A Expr3,A

ExprB Expr1,B Expr2,B Expr3,B

F2 ≡ if ExprA=Expr2,A F ≡ ∪i=1..3 Fi
and ExprB=Expr2,B

then Result = Value2

Vector Tables

Pred1 Pred2 Pred3

VarA’ Value1,A Value2,A Value3,A

VarB’ Value1,B Value2,B Value3,B

F2,A ≡ if Pred2 F ≡ ⊗B ∪3
Fi,j

then VarA’ = Value2,A

A Vector Table is useful for representing a function or relation
whose range is a tuple (possibly of distinct types). One dimension
of the table itemizes the elements of the range tuple.

i=A j=1

¬ Req[loc]Req[loc]

¬ ∃ f.Req[f] ∃ f.(f>loc ∧ Req[f]) ∧
¬ ∃ f.(f<loc ∧ Req[f])

∃ f.(f<loc ∧ Req[f]) ∧
¬ ∃ f.(f>loc ∧ Req[f])

∃ f.(f<loc ∧ Req[f]) ∧
∃ f.(f>loc ∧ Req[f])

dir’ dir dir Up Down dir
speed’ idle idle moving moving moving

For each table type, there are rules for identifying
• distinct cases (subfunctions, subrelations)
• mission cases (incompleteness)
• conflicting cases (inconsistency)

Properties of Parnas Tables

Up Down ?? Down Up Down

dir Up Up Up Down Down Down
∃ f.(f≥loc ∧ Req[f]) true false false --- true true
∃ f.(f≤loc ∧ Req[f]) --- true false true false false

A-7E Experience

A-7E U.S. Naval Aircraft:
Onboard flight software for an operational naval aircraft
(navigation, navigational update, weapons delivery)

Project:
An experiment, funded by the Naval Research Laboratory (NRL),
to evaluate state-of-the-art software engineering methods

Experience:
• Introduced the first Parnas Tables (without formal definition)

in the Software Requirements Specification (SRS)

• SRS was reviewed by domain experts, pilots, who found
hundreds detail errors

A-7E Experience

Since Then:
• The software manager for the A-7D Air Force aircraft

had his team modify the A-7E document to reflect the
A-7D requirements.

This became the living document of A-7D software behaviour.

• NRL continues to study the use of Tables in documenting
software requirements and specifications (SCR method),
including methodology and tool support.

Darlington Experience

Darlington nuclear shutdown system:
Two independent systems, each of which is responsible for
shutting down the nuclear reaction in the event of an accident.

Project:
To determine whether the already-developed software and
documentation met standards and could be certified.

Experience:
• Introduced program-function tables for documenting code

• Defined and executed a systematic inspection process

• 35-person-years task; relatively few important discrepancies
found; but gained confidence in the code

Program Function Tables

NewDirection (dir, loc, Req)

R1 = (bottom ≤ loc ≤ top) ⇒

!ReqAbove(loc)! =
!ReqBelow(loc)!

¬ !ReqAbove(loc)! ∧
!ReqBelow(loc)!

!ReqAbove(loc)! ∧
¬ !ReqBelow(loc)!

dir’ = ‘dir down up

Light’[] |
 ∀f . bottom≤f ≤top

Light[f]=`dir
∀f . bottom≤f ≤top

Light[f]=down
∀f . bottom≤f ≤top

Light[f]=down

∧ NC(Req,loc)

Procedure signature

A Program Function Table is an annotated Mixed Vector Table that
describes the behaviour of a procedure or a sub-procedure.

Precondition
Vector Table

value before

macro NoChange:
(Req’=Req) ∧ (loc’=loc)

macros: !ReqAbove! = ∃f . loc<f ≤ top ∧ Req[f]
!ReqBelow! = ∃f . Bottom ≤ f <loc ∧ Req[f]

value after

value meets
constraint

N e w D i r e c t i o n (d i r , loc , R e q , L i g h t)

R 1 = (b o t t o m ≤ l o c ≤ t op) ⇒

!R e q A b o v e (loc)! =
!R e q B e l o w (loc)!

¬ !R e q A b o v e (loc)! ∧
!R e q B e l o w (loc) !

!R e q A b o v e (loc) ! ∧
¬ !R e q B e l o w (loc)!

d i r ’ = ‘dir d o w n u p

L ight ’ [] |
 ∀ f . bo t t om ≤ f ≤ t o p

L i gh t ’ [f]=`di r
∀ f . bo t t om ≤ f ≤ t op

L i g h t ’ [f] = d o w n
∀ f . b o t t o m ≤ f ≤ t op

L i gh t ’ [f]=down

∧ N C (Req , l o c)

Inspection Method

PendingAbove(floor) External variables: Req

∃f . [floor < f ≤ top ∧ Req[f]] =
true false

result’ = true false

∧ NC(Req)

Procedure NewDirection (var direction:enum; var Light:Vector; floor:integer) ;
var I : integer;
begin

if PendingAbove(floor) <> PendingBelow(floor) then begin
if direction = up

then direction := down
else direction := up;

for i := bottom to top do
Light[i] := direction

end
end;

PendingBelow(floor) External variables: Req

∃f . [bottom ≤ f < floor ∧ Req[f]] =
true false

result’ = true false

∧ NC(Req)

Systematic Inspections

Program
Fragment

program
function

requirement
relationrequirement

relationrequirement
relation

requirement
relation

Program
Fragment

program
function

Program
Fragment

program
function…

…

Requirements Design

Code
…

Program
Fragment

program
function

requirement
relationrequirement

relationrequirement
relationrequirement

relation
Program
Fragment

program
function

Program
Fragment

program
function…

…

0 Well-formedness of tabular expressions

Reviews and Inspections

0 Well-formedness of tabular expressions
Requirements Validation1

Program
Fragment

program
function

requirement
relationrequirement

relationrequirement
relationrequirement

relation
Program
Fragment

program
function

Program
Fragment

program
function

Domain Experts
1

…

…

⇔

Reviews and Inspections

Check that each case (subfunction, subrelation) produces the
correct output.

Requirements Validation

Up Down Down Up

dir Up Up Down Down
∃ f.(f≥loc ∧ Req[f]) true false --- true
∃ f.(f≤loc ∧ Req[f]) --- true true false

0 Well-formedness of tabular expressions

Reviews and Inspections

Program
Fragment

program
function

requirement
relationrequirement

relationrequirement
relationrequirement

relation
Program
Fragment

program
function

Program
Fragment

program
function

Domain Experts
1

⊕ ⊕ ⊕…

…

⇐2

⇔
Requirements Validation1

2 Software Design Inspection

Program
Fragment

program
function

requirement
relationrequirement

relationrequirement
relationrequirement

relation
Program
Fragment

program
function

Program
Fragment

program
function

Domain Experts
1

Requirements Validation1

2

…

…

2

Software Design Inspection

⇔ ⇔ ⇔

⇔

3 3 3

3 Code Inspection

⊕ ⊕ ⊕…⇐

Well-formedness of tabular expressions0

Reviews and Inspections

Darlington Experience

Since then:
Ontario Hydro and the Atomic Energy Canada Limited (AECL)
have developed a family of standards, procedures, and
guidelines for developing safety critical software for use in
nuclear power plants, incorporating

• tabular, mathematical representations of requirements,
design, and code

• systematic inspections of requirements

• mathematical verification or rigorous argument that
− the design meets the requirements
− the code meets the design

Other Experiences

Experiences in which practitioners adopted the technology
• A-7E, A-7D aircraft (SCR)
• Ontario Hydro nuclear plant applications (Parnas Tables)
• Lockheed C130-J transport aircraft (CoRE)
• Medtronic medical applications (SCR)

Experiences that involved practitioners
• Trident (submarine) Emergency Preset System (SCR)
• AT&T Service Evaluation System (Parnas Tables)
• Traffic and Collision Avoidance System (RSML)
• Aircraft Separation Minima (HOL Parnas Tables)
• International Space Station (SCR)

Decision Table Inverted Table

Formal Semantics of Tables

Several Table types look alike, and readers may misinterpret
a Table’s meaning when they are given only the Table’s informal,
ad hoc semantics.

Up Down Down Up

∃ f.(f≥loc ∧ Req[f]) true false --- true
∃ f.(f≤loc ∧ Req[f]) --- true true false

dir Up Up Down Down

OR

Decision Table Inverted Table
pT: H2=G pT: H2∧ G
rT: H3 rT: H3

CT: ∪j=1(⊗i=1 Fi,j) CT: ∪i=1 (∪j=1 Fi,j)

Formal Semantics of Tables

To address this problem, there has been work on how to formulate
the formal semantics of a tabular expression:

• predicate rule pT to define the expression’s domain
• relation rule rT to defines the expression’s range
• composition rule CT to define how to combine subexpressions

Up Down Down Up

∃ f.(f≥loc ∧ Req[f]) true false --- true
∃ f.(f≤loc ∧ Req[f]) --- true true false

dir Up Up Down Down

3 4 34

Up Down

dir=Up ∃ f.(f≥loc ∧ Req[f]) ¬ ∃ f.(f≥loc ∧ Req[f]) ∧
∃ f.(f<loc ∧ Req[f])

dir=Down ¬ ∃ f.(f≤loc ∧ Req[f]) ∧
∃ f.(f>loc ∧ Req[f]) ∃ f.(f≤loc ∧ Req[f])

Table Transformations
One may want to transform one table to another representation, to
formulate a more compact expression or determine the equivalence
of two table expressions.

∃ f.(f≥loc ∧ Req[f])
true false

true dir Down
∃ f.(f≤loc ∧ Req[f])

false Up dir

Up Down

dir=Up ∃ f.(f≥loc ∧ Req[f]) ¬ ∃ f.(f≥loc ∧ Req[f]) ∧
∃ f.(f<loc ∧ Req[f])

dir=Down ¬ ∃ f.(f≤loc ∧ Req[f]) ∧
∃ f.(f>loc ∧ Req[f]) ∃ f.(f≤loc ∧ Req[f])

Table Transformations
But even a simple transformations, like one that exchanges grid
elements with header elements, can require reorganization and
simplification to produce a concise table.

∃ f.(f≥loc ∧ Req[f])
true false

true dir Down
∃ f.(f≤loc ∧ Req[f])

false Up dir

¬ Req[loc]Req[loc]

¬ ∃ f.Req[f]
∃ f.(f>loc ∧ Req[f]) ∧
¬ ∃ f.(f<loc ∧ Req[f])

∃ f.(f<loc ∧ Req[f]) ∧
¬ ∃ f.(f>loc ∧ Req[f])

∃ f.(f<loc ∧ Req[f]) ∧
∃ f.(f>loc ∧ Req[f])

dir’ dir dir Up Down dir
speed’ idle idle moving moving moving

Automated Checking
Significant human effort may be needed to check that a table is
consistent and that it covers the expression’s domain. Since these
checks are application-independent and can be expressed as
constraints on predicates, many can be automated.

Reasoning about Table Composition

Button[up][fl] Button[fl] AtFloor[fl]

Up ¬(Location = fl ∧
Door=open)

¬(Location = fl ∧
Door=open)

Door=open

Down TRUE ¬(Location = fl ∧
Door=open)

FALSE

PendingReq[up][fl]’ = TRUE TRUE FALSE

Reachability
Graph

I d l e t @ T M o v i n g
@ T t M o v i n g

M o v i n g @ T t t I d l e

@ T t f I d l e

AtF
loo

r
[Lo

ca
ti

on
’] Pe

nd
ing

Re
q

[up
][L

oc
atio

n’]

Pe
nd

ing
Re

q

[do
wn][

Lo
ca

tion
’]

Pe
nd

ing
Re

q

Dire
ctio

n =
 up

Doo
r=c

los
ed

Initial Speed = Idle

Application-Independent
• reachability
• deadlock
• cycle detection

Application-Dependent
• abstractions
• coordination
• safety properties
• liveness properties
• invariant generation

Each Table documents a separate concern. If the concerns are
not completely separate (e.g., if they react to changes in the same
variables) then, we need to review their composition.

Summary

Parnas Tables are practical formalisms that
• emphasize abstraction and separation of concerns

• are amenable to readable, write-able, and review-able yet
precise software documents

• are useful at different degrees of formalism

Tabular
expressions

Tabular expressions of
mathematical relations

Systematic
inspections

Mathematical
verification

Inspections of
table compositions

