
IEEE	Copyright	Notice	
Copyright	(c)	1993	IEEE	
Personal	use	of	this	material	is	permitted.	Permission	from	IEEE	must	be	obtained	for	all	
other	uses,	in	any	current	or	future	media,	including	reprinting/republishing	this	material	
for	advertising	or	promotional	purposes,	creating	new	collective	works,	for	resale	or	
redistribution	to	servers	or	lists,	or	reuse	of	any	copyrighted	component	of	this	work	in	
other	works.	

Published	in:	IEEE	Transactions	on	Software	Engineering,	Vol.	19,	No.	1,	
January	1993	

“State-Based Model Checking of Event-Driven Systems
Requirements”

Cite as:

BibTex:

DOI: http://dx.doi.org/10.1109/32.210305

J. M. Atlee and J. Gannon, "State-based model checking of event-driven system
requirements," in IEEE Transactions on Software Engineering, vol. 19, no. 1, pp. 24-40,
Jan. 1993.

@ARTICLE{210305,
author={J. M. {Atlee} and J. {Gannon}},
journal={IEEE Transactions on Software Engineering},
title={State-based model checking of event-driven system requirements},
year={1993},
volume={19},
number={1},
pages={24-40},
month={Jan},}

State-Based Model Checking of Event-Driven System RequirementsJoanne M. AtleeUniversity of WaterlooWaterloo, Ontario John Gannon�University of MarylandCollege Park, MarylandAugust 28, 1992AbstractIn this paper, we demonstrate how model checking can be used to verify safety properties for event-driven systems. SCR tabular requirements describe required system behavior in a format that is intuitive,easy to read, and scalable to large systems (e.g., the software requirements for the A7 aircraft). Modelchecking of temporal logics has been established as a sound technique for verifying properties of hardwaresystems. We have developed an automated technique for formalizing the semi-formal SCR requirementsand for transforming the resultant formal speci�cation onto a �nite structure that a model checker cananalyze. This technique was e�ective in uncovering violations of system invariants in both an automobilecruise control system and a water-level monitoring system.1 IntroductionA software requirements document is usually the �rst speci�cation of a system's required behavior.Errors in this document are di�cult and expensive to correct if propagated to the design phase (or worse,to the implementation) [24]. Designers must be able to formally analyze requirements before systemdesign begins.A requirements speci�cation is a behavioral speci�cation of the system's activities; it describes thesystem's modes of operation and the events that cause the system to change modes. The speci�cation oftenincludes a set of safety assertions that must also be enforced. These assertions are invariant propertiesof the system, so they should also be properties of the requirements speci�cation. As such, they areredundant information that can be used to verify that the requirements are internally consistent.Temporal logic and model checking have been used to verify safety properties in hardware systems[6, 11]. The hardware system is portrayed as a logical model, and safety assertions are represented aslogical formulas. One assumes that if a formula is true in the model, then the safety assertion holds inthe hardware system. One reason that this veri�cation technique is so promising is that model checkingcan be automated for some temporal logics.This paper demonstrates the feasibility of using model checking to analyze safety properties of softwarerequirements. Our analysis technique combines the SCR requirements speci�cation language [1, 19, 18]with the CTL model checker [8, 5]. SCR requirements are intuitive, easy to write and change, and scalableto large systems (e.g., the software requirements for the A7 aircraft [1]). The CTL model checker is an�This work was supported by the O�ce of Naval Research under Contract N00014-91-K-2029 and by the Air Force O�ceof Scienti�c Research under Contract AFOSR 90-0031. 1

automated analyzer that has been used successfully to verify properties of hardware systems [6]. Theresult is a formal method whose speci�cation language is easy read and understand, and whose analysisis automated.Section 2 of this paper reviews event-oriented requirements speci�cations and state-based model check-ing, and presents our algorithm for constructing state-based models of event-oriented system requirements.Section 3 describes two case studies of event-oriented requirements and their safety properties. Section 4contains a discussion of problems and solutions that arose during the case studies.2 Analysis TechniqueIn this section, we briey describe the models of SCR software requirements and CTL machines. Wealso present our automated technique for formalizing the software requirements and for transforming theevent-driven requirements into a state-based CTL machine that can subsequently be analyzed.2.1 Event-Driven Requirements Speci�cationsSCR requirements were developed by a research group at NRL as part of a general Software CostReduction project [1, 19, 18]. The model they developed is based on compositional, event-driven, mode-machines:� A mode is a set of system states that share a common property.� A modeclass is a set of modes, and the union of the modes in a modeclass must cover thesystem's state space.� The system is in exactly one mode of each modeclass at all times.� A mode transition occurs between modes in the same modeclass as a result of system statechanges.�Mode transitions are speci�ed by conditions and events, which comprise the machine's inputlanguage.Informally, each modeclass describes one aspect of the system's behavior, and the global behavior of theentire system is de�ned by the composition of all the system's modeclasses.Conditions and eventsThe input to the machines is the set of environmental conditions (e.g., whether a button is beingpressed). All conditions are boolean, although �rst-order predicate conditions that can be represented bya �nite number of boolean conditions (such as integer ranges and timing constraints) are also expressible.A system's behavior is de�ned and controlled by changes to the conditions' values. A change to acondition's value is an event, and events are only detectable at the point in time at which they occur. Forexample, event @T(Cond1)speci�es the point in time when the value of condition Cond1 changes from false to true. Similarly, event@F(Cond1) speci�es the time when condition Cond1 becomes false. In these events, we call conditionCond1 the events' triggered condition. The occurrence of an event might also depend on the values ofother conditions. For example, @T(Cond1) WHEN [Cond2]describes the event of condition Cond1 becoming true while condition Cond2 is also true. In the aboveevent, we call condition Cond2 the event's WHEN condition. More complex events can be created fromsimpler events and conditions using boolean operators.SCR semantics propose three de�nitions for an event occurrence and allow the requirements designerto decide which de�nition pertains to each event [1]. For a given event @T(A) WHEN [B] there is a

Current Mode New Mode

− −−

Running AboveDesiredTempTempOKBelowDesiredTemp

Inactive

Heat
Inactive

@T
Heat@T

@T

Off

@F

@F

@F

t
t

t

@T
@T

@T

@T
−

−

− −

−

Heat

Off
Inactive

Inactive

AC

AC

AC

Off

Off

Initial Mode: Off (~Running)

−

Temperature Control System:

−
−

−

−

−

− −
−

−
−

− −
−−

− −

−−Table 1: Mode Transitions for temperature control system.de�ned time �, such that if t@T (A) is the time that triggered condition A becomes true, then the eventoccurs if1) B is true throughout closed interval [t@T (A)��; t@T (A)], or2) B is true throughout interval [t@T (A); t@T (A)+�], or3) B is true throughout interval [t@T (A)��; t@T (A)+�]We use the �rst de�nition for all event occurrences. This de�nition allows us to distinguish between whenconditions (which must be satis�ed both before and at the time of the event) and triggered conditions(which must be unsatis�ed immediately before the event and satis�ed at the time of the event).Modes and transitionsThe system state is de�ned by the current values of the system conditions, and the system state spaceis the set of all combinations of the conditions' values. To reduce of the size of the state space, sets ofsystem states are collected into modes. The use of modes abstracts away details that do not contributeto the system's behavior; the values of all system conditions are not important at all times. In fact, theconditions' values are only important when they can a�ect mode transitions.A mode transition occurs between modes in the same modeclass as a result of the occurrence of anevent. A transition's transition event speci�es the event that triggers the transition. Mode transitionsoccur at the same time as their transition event and, like the event, take zero time units to complete.Two transitions from the same mode are simultaneously enabled if their transition events occur at thesame time. In such a case, the modeclass is nondeterministic, and the activation of either transition (butnot both) satis�es the requirements.Table 1 is a requirements speci�cation for a temperature control system. The speci�cation consists of asingle modeclass comprised of four modes: Off, meaning that the system is turned o�; Inactive, meaningthat the system is on, but neither the heater nor the air conditioner is on; andHeat andAC, meaning thateither the heater or the air conditioner, respectively, is on and controlling the temperature. ConditionRunning indicates whether or not the system has been turned on, and conditions BelowDesiredTemp,TempOK, and AboveDesiredTemp represent the current temperature.The initial state of the system is mode Off, in which the system is not Running. The system isunde�ned if Running initially true. Each row in the table speci�es the event causing the transition fromthe mode on the left to the mode on the right. Each column in the center of the table represents a system

condition. A table entry containing an upper-case letter (`@T' or `@F') signi�es that the condition isa triggered condition of the transition event, and must change value (to true or false, respectively) toactivate the mode transition. A table entry containing a lower-case letter (`t' and `f') signi�es that thecondition is a when condition of the transition event, and must have a particular value (true or false,respectively) both immediately before and at the time of the event occurrence. If a condition is neithera triggered condition nor a when condition of a transition event, then the corresponding table entry ismarked with a hyphen (`{').If the temperature control system is in mode Off and starts Running when the temperature is withindesired limits, then it will enter mode Inactive. The AC comes on when the system is Inactiveand the temperature rises above the desired temperature, or when the system starts Running while thetemperature is above the desired temperature. The AC cycles o� when the temperature falls to within3�F of the desired temperature. Transitions into and out of mode Heat resemble those of mode AC.Some of the global constraints that one would expect to hold in a temperature control system are:Off)�RunningInactive) (Running & TempOK)Heat) (Running & BelowDesiredTemp)AC) (Running & AboveDesiredTemp)(Running&BelowDesiredTemp) (Heat j O(Heat))1(Running&AboveDesiredTemp) (AC j O(AC))The �rst four formulas state that whenever the system is in a particular mode, certain system conditionshave invariant values. For example, if the system is in mode Heat, then the system is Running and thetemperature is AboveDesiredTemp. The last two formulas state that if certain conditions hold then eitherthe system is in a particular mode or the next system transition will be into that mode. For example,if the system is Running and the temperature is BelowDesiredTemp, then either the Heat is on or theHeat will come on imminently.SCR-style speci�cations and global assertions provide di�erent views of a system's requirements.Modes and mode transitions specify system properties that hold under certain conditions, whereas globalassertions specify properties that must always hold. Thus, the global assertions are redundant informationwhich already exists in the behavioral speci�cation. We use this redundancy to ensure that an SCR tabularrequirements speci�cation enforces a system's invariant properties.2.2 Formalizing SCR requirementsTo enhance readability of SCR-style requirements, redundant information is often excluded from thetabular requirements. A row in a mode transition table speci�es only the minimal set of triggered andwhen conditions the system designer needs to consider when determining whether or not the transitionevent has occurred. To the requirements and system designers, a condition value `{' in a transition eventmeans that the value of the condition is not important in the detection of this event occurrence. However,to an analyzer, a condition value `{' in a transition event means that the event can occur regardless of thevalue of the condition. If a condition is restricted to a certain value (or set of values), then this knowledgeshould be explicitly stated in the requirements speci�cation. Otherwise, invariant properties that dependon this missing information cannot be automatically veri�ed.The �rst type of information missing from the tabular requirements pertains to relationships betweencondition values. For example, the temperature in a room cannot simultaneously be AboveDesiredTemp,TempOK, and BelowDesiredTemp. If a mode transition is dependent upon condition AboveDesiredTemp1The symbol O is a modal logic operator often used as a nextstate operator. It is used here to specify what should betrue in the next system state.

Initial Mode: Off (~Running)

Operating:

Current Mode New Mode

− −−

Running AboveDesiredTempTempOKBelowDesiredTemp

Inactive

Heat

Inactive

@T
Heat@T

@T

Off

@F

@F

@F

t
t

t

@T

@T

−

−

−

− −

−

Heat

Off

Inactive

AC

AC

AC

Off

−

−

Off

@T− Inactivef @F

f@F

f @F

f
f

f
ff

f

@T− @F f

@F
@F

@T
f

@F
@F

f
@T

f@T@F@F

@F @F @T fTable 2: Mode transition tables with transitions due to simultaneous events.being true, then it is also dependent upon conditions TempOK and BelowDesiredTemp being false. Ourtransformation algorithm accepts a set of condition relationships and propagates the information through-out the mode transition tables (the details of this process are described in [2]). It is important to notethat these changes are not additional restrictions on the requirements; information from other parts ofthe requirements document (from the section that describes the conditions) is incorporated into the modetransition tables. The additional transition conditions in the temperature control system, due to therelationships between the temperature conditions, appear as bold characters in Table 2.The second step in the formalization of SCR software requirements involves sequences of instantaneousmode transitions [2]. SCR mode transitions are instantaneous. Also, the system need not spend aminimum amount of time in a mode before exiting the mode. Therefore, if a mode's transition conditionsare enabled at the time the mode is entered, a subsequent transition will occur and the system wille�ectively spend no time in the intermediate mode. For example, if the temperature control system is inmode Heat, and somebody turns the system o� at the same time as the temperature rises to TempOK,then transitions to modes Inactive and Off are both enabled. If the system nondeterministically entersthe former mode, then (since mode transitions take zero time to complete) the system will enter modeInactive at the instant the system is turned o�, causing a subsequent transition to mode Off. Ourtransformation algorithm follows all sequences of simultaneous mode transitions (Heat-Inactive-Off)and adds them to the requirements speci�cation as new distinct mode transitions (Heat-Off), whosetransition event is the conjunction of the transition events of the transitions that compose the sequence(@F(Running) & @T(TempOK)). Mode transitions added to the temperature control system to representsequences of instantaneous transitions appear in italics in Table 2.Next, the transformation algorithm detects all instances of nondeterminism in the speci�cation andissues a warning message for each instance [2]. For example, in Table 2, all of the italicized transitionevents trigger multiple nondeterministic mode transitions; event (@F(Running) & @T(TempOK)) in modeHeat triggers transitions into bothOff and Inactive. If nondeterminism is detected in the speci�cation,

Initial Mode: Off (~Running)

Operating:

Current Mode New Mode

− −−

Running AboveDesiredTempTempOKBelowDesiredTemp

Inactive

Heat
Inactive

@T
Heat@T

@T

Off

@F

@F

@F

t
t

t

@T

@T
−

−

−

− −

−

Heat

Off

Inactive

AC

AC

AC

Off

Off

@T Inactivef @F

f@F

f @F

f
f

f
ff

f

@T @F ft
t

t

tTable 3: Mode transition tables for deterministic temperature control system.the requirements designer must decided whether or not the nondeterminism should be allowed. Thedesigner may purposely specify nondeterministic requirements so that nonessential design decisions canbe delayed. Furthermore, unlike any of the formalization described so far, converting a nondeterministicrequirements speci�cation into a deterministic speci�cation changes the semantics of the speci�cationand forces additional restrictions on the designs that satisfy the requirements. Therefore, the designer isresponsible for deciding whether and how a nondeterministic speci�cation should be made deterministic.The temperature control system can be made nondeterministic by forcing condition Running to be awhencondition of all transitions among modes Inactive, Heat, and AC (see Table 3). One of the results ofthis change to the speci�cation is that there are no sequences of instantaneous mode transitions.Finally, if the speci�cation consists of multiple, concurrent modeclasses, the transformation algorithmcomposes the transition tables representing the di�erent modeclasses into a single global tabular speci-�cation [2]. The resultant speci�cation is in a form that can be formally analyzed. To use a particularanalysis tool, one needs to transform the global tabular speci�cation into the appropriate representationthat the tool will accept. Our approach is to convert this speci�cation into a CTL machine, which canthen be analyzed using the CTL model checker.2.3 State-Based Model CheckingIf a system's behavioral requirements can be represented as a �nite structure, and if the safety as-sertions can be expressed as propositional temporal logic formulas, then a model checker can be used todetermine if the structure is a model of the logic formulas (and by implication, that the safety assertionshold in the requirements speci�cation). We used an improved version of Clarke's EMC model checkingsystem [8], called MCB [5], as our model checker.Informally, the system is expressed as an extended �nite state machine, in which each state is anno-tated with transition conditions (input condition values) and attributes (properties distinct from inputconditions). The machine is in exactly one current state at all times. Once every time unit, one of thestate's transitions is activated, leaving the machine in a possibly new current state. The values of theinput conditions determine which of the current state's transitions is enabled. Since a transition is acti-vated every time unit, at least one of the current state's transitions must be enabled at all times. Thismeans that the disjunction of the current state's transition conditions must always be true. If more than

one transition is enabled, then one is nondeterministically chosen and activated2.This state machine can serve as a temporal logic model of a system, and we can test whether safetyproperties phrased as temporal formulas hold in the model. The formulas are expressed in a propositionalbranching time logic called computational tree logic (CTL), whose operators permit explicit quanti�cationover all possible futures. The syntax and semantics for CTL formulas are de�ned in [8] and are simplysummarized below:1) Every atomic proposition3 is a CTL formula.2) If f and g are CTL formulas, then so are: � f , f&g, f j g, AXf , EXf , A[fUg], E[fUg],AFf , EFf , AGf , EGf .The symbols � (not), & (and), and j (or) are logical connectives and have their usual meanings.Formula AXf (EXf) means that formula f holds in every (in some) immediate successor of the currentstate. U is the until operator, and formula A[fUg] (E[fUg]) means that along every (some) path thereexists a future state si in which g holds and f is true until state si is reached. The formula AFf (EFf)means that along every (some) path there exists some future state in which f holds. The formula AGf(EGf) means that f holds in every state along every (some) path.Safety assertions are invariant, so the formulas we want to check are of the form AGf . The safetyassertions for our temperature control system, described in section 2.1, are represented by the followingCTL formulas:AG(O� !�Running)AG(Inactive ! (Running & TempOK))AG(Heat ! (Running & BelowDesiredTemp))AG(AC ! (Running & AboveDesiredTemp))AG((Running & BelowDesiredTemp) ! (Heat j AX(Heat)))AG((Running & AboveDesiredTemp) ! (AC j AX(AC)))The model checker accepts a CTL machine and a CTL formula, and determines whether or not theformula holds in the machine. If the model checker determines the formula f is true, then the safetyproperty holds in the CTL state machine and also in the system requirements.2.4 Mapping SCR requirements onto CTL machinesThis section describes how to transform formalized SCR requirements into CTL machines. Mostelements of the SCR requirements model correspond naturally to elements of CTL machines:SCR requirements CTL machinemodes statesmode transitions state transitionsconditions input variablesevents ?There is no natural modeling of events in a CTL machine. CTL state transitions occur based on thecurrent state and the current values of the input conditions. Mode transitions, on the other hand, occurat the time of their transition events; the system spends zero time in a mode once one of its transitions2Note that above de�nition of a CTL machine di�ers from the one used in the earlier EMC version of the model checker[8]. Previously, states were annotated with attributes, which consisted of both input conditions and output propositions.The state transitions were unconditional. To model conditional transitions, one had to create multiple instances of the sourcestate and assign di�erent values to the copies' input conditions. In the new de�nition, all states annotated with the same setof output propositions are combined in a single state, and the transition conditions are related to the a state's transitionsrather than to the state.3The set of atomic propositions is the union of the set of input conditions and the set of state attributes.

has been activated. Therefore, we need to be able to detect changes in condition values and ensure thatstate transitions are activated by these value changes.To model an event, we can represent a mode as two CTL states: a CTL mode state and a CTL exitstate.
~Running & TempOK &
~BelowDesiredTemp &
~AboveDesiredTemp

Off NoFailure Off NoFailure Exit

RUNNING & TempOK &
~BelowDesiredTemp &
~AboveDesiredTempThe CTL mode state represents the system in the mode, and the CTL exit state represents the systemleaving the mode due to the occurrence of an event. Both the CTL mode state and its exit state areannotated with the names of the mode's component modes. The exit state is also annotated with anadditional state attribute Exit, to indicate that it is a CTL exit state. The transition from the CTLmode state to its exit state is annotated with the event'swhen conditions and the negations of the event'striggered conditions. The transition from the exit state (to the CTL mode state of the destination mode)is annotated with the event's triggered and when conditions. This representation captures the propertythat the event's triggered conditions must become satis�ed at the time of the mode transition; it alsocaptures the property that the when conditions must be satis�ed both before and at the time of thetransition. (To make the graphical CTL representation more readable, the triggered conditions from theexit state appear in upper-case characters, to distinguish them from the when conditions.) Multiple CTLexit states are needed to represent the events of multiple transitions from the same mode.

~Running & TempOK &
~BelowDesiredTemp &
~AboveDesiredTemp

RUNNING & TempOK &
~BelowDesiredTemo &
~AboveDesiredTemp

Off NoFailure Off NoFailure Exit

Off NoFailure Exit

Off NoFailure Exit

~Running & AboveDesiredTemp &
~ TempOK & ~BelowDesiredTemp

~Running & BelowDesiredTemp &
~TempOK & ~AboveDesiredTemp

RUNNING & AboveDesiredTemp &
~ TempOK & ~BelowDesiredTemp

RUNNING & BelowDesiredTemp &
~TempOK & ~AboveDesiredTemp Unfortunately, this intuitive representation does not model all desired properties of a mode. Inparticular, the invariant properties of the CTL mode state are not always equivalent to the invariantproperties of the SCR mode that it represents. Mode invariants are the invariant properties of a systemmode. A mode invariant must be true when the system enters the mode, must remain true while thesystem stays in the mode, and must either be true or become false when the system leaves the mode. Forexample in the temperature control system, condition Running is always false upon entering mode Offand the mode is always exited when Running becomes true. Therefore, �Running is an invariant propertyof mode Off. State invariants, on the other hand, are conditions that are always true when the CTLmachine is in that state. A state's output propositions are state invariants since they are properties of thestate. In addition, since one of the state's transitions must be enabled at all times, any input conditionthat is a transition condition of all the state's transitions is also a state invariant.The following examples show the circumstances under which our CTL representation of modes andtransitions does not always accurately model mode invariants. They also describe how the representation

can be re�ned to handle these cases.Example A: The model checking algorithm assumes that for each CTL state some outgoing transitionis always enabled. Therefore, the disjunction of a state's transition conditions must always be true. Thisassumption can cause a formula that is stronger than the mode's invariant to be a provable invariant ofthe CTL mode state. Consider our CTL representation for a mode whose sole transition event is @F(C):
Global ExitGlobal

C ~C Since some transition from the current CTL state must be satis�ed at all times, and since the CTL modestate in the above example has only one transition, its transition condition C is a state invariant of theCTL mode state. If condition C can be false when the system enters the mode, then C is not an invariantof the mode and there is a discrepancy between the invariant properties of the mode and the invariantproperties of its representative CTL mode state. To ensure that the disjunction of a CTL mode state'stransition conditions is no stronger than the mode's invariant, we add a transition from the CTL modestate back to itself and annotate it with the mode invariant:
Global ExitGlobal

INV

C ~C If C is a mode invariant, then the state invariant of the CTL mode state will not change with the additionof this transition. If C is not a mode invariant, then since the new transition is not annotated with it, Cwill not be a veri�able state invariant.Example B: Another problem with the representation is that a state invariant of a CTL mode statemay not be as strong as the mode invariant of its associated mode. Consider a speci�cation consisting ofmultiple modeclasses; the global mode-machine speci�es the system's global modes (each the compositionof one component mode from each modeclass) and the transitions between global modes. A transitionevent of a global transition is the conjunction of the transition events of a set of simultaneously occuringmode transitions. There is no guarantee that every global transition event will contain the source globalmode's invariant. If it does not, then the mode invariant of the global mode will not be veri�able. Considerour CTL representation for a global mode consisting of two component modes:
~A & B

ModeX1 ModeY1

ModeX1 ModeY1 Exit

ModeX1 ModeY1 Exit

ModeX2 ModeY1

ModeX1 ModeY2

A & B

E ~E

 E There is a mode transition from ModeX1 to ModeX2 if event @T(A) WHEN [B] occurs, and anothermode transition from ModeY1 to ModeY2 if event @F(E) occurs. If condition E is always true uponentering ModeY1, then it is an invariant property of both the mode ModeY1 and the global mode

ModeX1/ModeY1. Condition E is not a state invariant of the CTL mode state, however, since there isa transition from the state whose event does not require the truth of E. In the CTL model, this transitionimplies that it is possible to be in modeModeX1/ModeY1 and for condition E to be false in that state.To ensure that the state invariant of a CTL mode state is at least as strong as the global mode's invariant,we add the global mode invariant to the transition conditions of all state transitions from the CTL modestate to its exit states:
ModeX1 ModeY1

ModeX1 ModeY1 Exit

ModeX1 ModeY1 Exit

ModeX2 ModeY1

ModeX1 ModeY2

A & B

E ~E

~A & B & E

E Figure 1 contains the CTL machine representation of the temperature control system presented inTable 1. ModeOff is represented by one CTL mode stateOff and three CTL exit statesOff Exit. Thestates' attributes indicate which original system mode is represented by the state (Off), plus whether ornot the state is an exit state (Exit). The exit states' transitions are copied directly from the speci�cationtable. For example, the center Off Exit state is annotated with transition conditionRunning & TempOK & �BelowDesiredTemp & �AboveDesiredTempwhich represents the �rst transition leaving mode Off in Table 1. The CTL mode states' transitionconditions consist of the mode transitions'when conditions and the negations of their triggered conditions.For example, the state transition from the CTL mode state Off to the center exit state Off Exit isannotated with �Running (the negation of the triggered condition of the event) and with TempOK &�BelowDesiredTemp & �AboveDesiredTemp (the when conditions of the event).We now present our algorithm for transforming SCR speci�cations into CTL machines:1. Create a CTL input condition for each environmental condition in the requirements speci�cation.2. Create a CTL output proposition for each system mode in the original SCR requirements speci�-cation.3. Create output proposition Exit, which will be used to indicate CTL exit states.4. For each mode in the SCR requirements:(a) Create a CTL mode state and annotate it with the name of the SCR mode.(b) Create a state transition from the CTL mode state back to itself, and annotate this transitionwith the mode's invariant properties.(c) Create a unique CTL exit state for each transition from the mode. Annotate each exit statewith the name of the mode plus the attribute Exit.(d) For each CTL exit state and its associated mode transition, create a state transition from theCTL mode state to the CTL exit state and annotate the state transition with both the whenconditions and the negations of the triggered conditions of the mode transition event. Alsoannotate this transition with the mode's invariant properties.

RU
NN

IN
G

 &
 T

em
pO

K
 &

~B

el
ow

D
es

ire
dT

em
p

&

~A
bo

ve
D

es
ire

dT
em

p

Ru
nn

in
g

~R
U

NN
IN

G

Ru
nn

in
g

&
 ~

TE
M

PO
K

&
 B

EL
O

W
D

ES
IR

ED
TE

M
P

&

~A
bo

ve
D

es
ire

dT
em

p

Ru
nn

in
g

&
 ~

TE
M

PO
K

&
AB

O
VE

D
ES

IR
ED

TE
M

P
&

~B

el
ow

D
es

ire
dT

em
p

Ru
nn

in
g

~RUNNING

Ru
nn

in
g

&
 B

el
ow

D
es

ire
dT

em
p

&

 ~

Te
m

pO
K

&
~A

bo
ve

D
es

ire
dT

em
p

Ru
nn

in
g

~RUNNING

~R

un
ni

ng
 &

 B
el

ow
D

es
ire

dT
em

p
&

~T

em
pO

K
&

~A
bo

ve
D

es
ire

dT
em

p
~R

un
ni

ng
 &

 T
em

pO
K

 &

~B
el

ow
D

es
ire

dT
em

p
&

~A

bo
ve

D
es

ire
dT

em
p

~R
un

ni
ng

 &
 A

bo
ve

D
es

ire
dT

em
p

&

~B

el
ow

D
es

ire
dT

em
p

&
 ~

Te
m

pO
K

RU
NN

IN
G

 &
 ~

Te
m

pO
K

&

 A

bo
ve

D
es

ire
dT

em
p

&

 ~
Be

lo
wD

es
ire

dT
em

p

 R
un

ni
ng

 &
 A

bo
ve

D
es

ire
dT

em
p

&

 ~
Be

lo
wD

es
ire

dT
em

p
&

 ~
Te

m
pO

K

 R

un
ni

ng
 &

 T
EM

PO
K

 &

~B
EL

O
W

D
ES

IR
ED

TE
M

P
&

~A

bo
ve

D
es

ire
dT

em
p

 R
un

ni
ng

 &
 T

EM
PO

K
 &

 ~
Be

lo
wD

es
ire

dT
em

p
&

~A

BO
VE

D
ES

IR
ED

TE
M

P

 R

un
ni

ng
 &

 T
em

pO
K

 &

 ~

Be
lo

wD
es

ire
dT

em
p

&

~A
bo

ve
D

es
ire

dT
em

p

Ru
nn

in
g

 &
 T

em
pO

K
 &

 ~
Be

lo
wD

es
ire

dT
em

p
&

 ~

Ab
ov

eD
es

ire
dT

em
p

RU

NN
IN

G
 &

 ~
Te

m
pO

K

 B
el

ow
D

es
ire

dT
em

p
 &

~A
bo

ve
D

es
ire

dT
em

p

O
ff

O
ff

Ex

it
O

ff

Ex
it

O
ff

Ex

it

H
ea

t

H
ea

t
 E

xi
t

H
ea

t
 E

xi
t

In
ac

tiv
e

Ex

it
In

ac
tiv

e

Ex
it

In
ac

tiv
e

Ex

it

In
ac

tiv
e

AC

AC

 E
xi

t
AC

 E

xi
t

~R

un
ni

ng

In
iti

al
 E

xi
t

Figure 1: CTL representation of temperature control system.

(e) For each CTL exit state and its associated mode transition, create a state transition from theexit state to the CTL mode state of the destination mode of the mode transition. Annotatethis transition with the triggered conditions and the when conditions of the mode transitionevent.5. Create a unique CTL exit state that is only annotated with output propositions Initial (to indicatethat it is the initial state of the system) and Exit (to indicate it is a CTL exit state). For eachinitial mode, create a state transition from this exit state to the CTL mode state of the initial mode;annotate the state transition with the initial conditions of the initial mode.2.5 Putting it togetherSections 2.3 and 2.4 describe our transformation for formalizing a semi-formal SCR requirementsdocument and transforming it into a CTL machine representation. The steps of the methodology, andwho is responsible for performing each step, are summarized below.1. The requirements designer provides the tabular speci�cations, and the initial conditions under whicha mode is the initial mode of a modeclass.2. The (human) requirements analyzer declares the relationships that hold among the environmentalconditions. These relationships are manually transcribed from the section of the requirementsdocument that describes the environmental conditions.3. The transformation algorithmdetails the tabular requirements with respect to the declared conditionrelationships.4. The transformation algorithm derives all possible sequences of instantaneous mode transitions andexplicitly adds these sequences to the tables as `new' single mode transitions.5. The transformation algorithm detects all instances of nondeterminism in the detailed speci�cationand issues a warning message for each instance.6. The requirements designer decides whether any of the detected instances of nondeterminism invali-date the intended requirements. For each instance of undesired nondeterminism, the requirementsdesigner prioritizes the nondeterministic mode transitions and manually modi�es the speci�cationto enforce these priorities.7. The transformation algorithm composes the mode transition tables (represented by multiple mod-eclasses) into a global SCR speci�cation.8. The transformation algorithm constructs a representative CTL machine from the global SCR spec-i�cation.A more elaborate description of each of the above steps, and proofs that these steps preserve certainsystem properties, can be found in [2].The above algorithm is part of our automated transformation algorithm that accepts an SCR tabularrequirements speci�cation and creates a representative CTL machine that can be analyzed using theCTL model checker. All of the CTL machines presented in this paper are represented graphically, as inFigure 1. The ASCII notation used by the model checker is described in [5].

−

−
−
−
−
−
−
−

Current Mode New Mode

−

−
−

−
−

−

Off
Inactive

@T −
−

@F

@F

−
−
−
−

−

−
−
−

−

−−
−

Off
Inactive

Inactive

Cruise Control:

Cruise

Override

Ignited Running Toofast Brake Activate Deactivate Resume

−

−
−

−
−
−
−

−

−
−

−

−
−
−

−

−
−

−
−

−

Off
Cruise

−
− −

− f @Tt
@F

Off
Inactive

Override

− − −
−

@F
@T

@T
− @T

− −

− @F −
−
−

−
−

−
−f

f

t

t t
t t

@T
@T

Initial Mode: Off

−

−

−

−
−
−
−
−

−
−
−
−

−
CruiseTable 4: Mode transitions for automobile cruise control3 Case StudiesWe used our analysis technique to analyze two requirements documents, one for an automobile cruisecontrol system and one for a water-level monitoring system. The requirements speci�cations of the twosystems were originally speci�ed using an alternate version of SCR requirements [19]; in this paper thespeci�cations appear in the new SCR mode table format [12], which is easier to read and understand.We transformed these systems' requirements into CTL machines, rephrased the required safety propertiesas logical formulas, and veri�ed the formulas using the MCB model checker. In both studies, we founddiscrepancies between the systems' requirements speci�cations and their safety assertions.3.1 Case Study: Automobile Cruise ControlThe cruise control speci�cations used in this study come from [21]. The possible states of the cruisecontrol are partitioned into four modes:Off Ignition is o�Inactive Ignition is on, but cruise control is not onCruise Ignition and cruise control are on, controlling the vehicle's speedOverride Ignition and cruise control are on, but not controlling thevehicle's speedThe system always starts in mode Off.Table 4 contains the mode transition table. It shows the events and conditions which cause the cruisecontrol system to transition from one mode to another. The table uses the following conditions:Ignited Ignition is onRunning Engine is runningToofast Cruise control is unable to decelerate the automobile when speedis above the desired speedBrake Brake is onActivate Cruise control lever is set to activateDeactivate Cruise control lever is set to deactivate

−

−
−
−
−

−

Current Mode New Mode

−

−−

Off

Inactive

@T −

−

@F

@F

−

−
−
−

−

−−
−

Off
Inactive

Inactive

Cruise Control:

Cruise

Override

Ignited Running Toofast Brake Activate Deactivate Resume

−

−

−

−
−

−

−

−

−

−

−
−

−

−

−

Off

Cruise

−

−

− f @Tt

@F

Off
Inactive

Override

− −@F
@T

@T

@T

−

@F −
−

− f

f

t

t t

t t

@T

@T
Initial Mode: Off

−

−

−−− − −@F

− f @Tt t

 −

− @T

Cruise
− ft t @T
− ft t @T

t

t
t

t
t

t

t
t

t

f
f

f

f
@F

@F

@F

@F
f

f
@F f

@F
f

@F
@F

f

@F
f

@F
f@F

f

Table 5: Detailed mode transitions for adjusted cruise control speci�cations.Resume Cruise control lever is set to resumeThe requirements document for the cruise control system also lists the following safety properties4:Mode Safety PropertyOff :Ignited:Off IgnitedInactive Ignited ^ ((:Running) _ (:Activate))Cruise Ignited ^ Running ^ :BrakeOverride Ignited ^ RunningWhenever the system is in a particular mode, the associated safety assertion must hold. For example, ifthe system is in mode Off, then the automobile's ignition must be o�. The safety assertion for modeInactive is more complex: if the system is in mode Inactive, then the ignition is on, and either theengine is not running or the cruise control has not been activated. If any of these conditions does nothold, then the system should not be in the Inactive mode.CTL Machine ConstructionFirst, the transformation algorithm formalizes the software requirements. The following relationshipswere found in the requirements descriptions of the system conditions.Running) IgnitedActivate j Deactivate j Resume4The third safety assertion is actually (Inactive ! Ignited ^ ((:Running) _ (:StartIncr))), which uses a condition(StartIncr) not present in the requirements table. The assertion printed below is weaker than the original safety assertion:StartIncr is true when the driver has held the cruise control lever in the Activate position for a period of time, and thereforeStartIncr! Activate.

The �rst relationship states that the ignition must be on if the engine is running; the second relationshipdescribes the cruise control lever conditions as members of an enumerated type, of which exactly onemember is always true. Our transformation algorithm accepts condition relationships in the above formatand propagates the information throughout the mode transition tables. For example, whenever the valueof Activate is becoming true in the tables, the values of Deactivate and Resume are changed to either false(f) or becoming false (@F). A modi�ed speci�cation of the cruise control system is shown in Table 5.The additional mode transition conditions due to the above variable interrelationships appear as boldcharacters.The next step of the formalization process explicates sequences of instantaneous mode transitions. Forexample, if the system is in mode Cruise and the driver depresses the brake pedal at the same time as theengine fails, then the system can transition from Cruise into Override (because the brakes are on) andimmediately transition from Override into Inactive (because the engine has failed). Our transforma-tion algorithm �nds each sequence of simultaneous mode transitions (Cruise-Override-Inactive) andadds it to the requirements speci�cation as a new distinct mode transition (Cruise-Inactive), whosetransition event is the conjunction of the transition events of the transitions that compose the sequence(@F(Running) & @T(Brake).This process reveals hidden instances of unintended nondeterminism in the speci�cation. For example,the occurrence of the new compound event (@F(Running) & @T(Brake)) enables transitions to bothInactive and Override. The speci�cation should only allow a transition into Override if the enginecontinues Running.A STATEMATE speci�cation for a similar cruise control system [26] avoids this type of unintendednondeterminism by prioritizing the system's modes. STATEMATE speci�cations model a system's be-havior as a hierarchical state machine, where transitions from the same state are prioritized based onthe level of the destination state. In the STATEMATE cruise control speci�cation, the top level of thesystem consists of two states, Engine-Off and Engine-On5. State Engine-On represents an internalstate machine that describes the system's behavior when the engine is on; it includes states Cruise-Act and Cruise-Inact. (State Cruise-Act corresponds to mode Cruise, and state Cruise-Inactcorresponds to mode Override). Since state Engine-Off is at a higher level in the speci�cation thanstate Cruise-Inact, the transition from Cruise-Act to Engine-Off always takes precedence over thetransition from Cruise-Act to Cruise-Inact.We can capture the precedence information represented as STATEMATE hierarchies by adding con-ditions to mode transitions. Table 5 contains an adjusted cruise control speci�cation in which some of thetransitions have additional constraints on their enabling conditions to prevent them from being enabledwhen a transition of higher priority is enabled. For example, a transition from Cruise to Override canonly occur:� if the ignition is on (disabling the transition to Off),� the engine is running (disabling a transition to Inactive), and� the automobile is not going too fast (disabling the other transition to Inactive)The additional conditions added to prevent nondeterminism appear in italics in Table 5. There are nosequences of instantaneous mode transitions in the adjusted speci�cation.The CTL machine that corresponds to the adjusted cruise control speci�cations is shown in Figure 2.AnalysisOnce the CTL machine has been created, we can verify that the tabular speci�cations and the relation-ships between conditions were entered correctly. To do this, we rephrase the requirements speci�cationsas liveness properties, and use the MCB model checker to prove that they are true with respect to the5The STATEMATE speci�cation does not distinguish between the ignition being on and the engine running.

C
ru

is
e

O
ff

~I
gn

it
ed

 &
 ~

R
un

ni
ng

IG
N

IT
E

D

Ig
ni

te
d

&
R

un
ni

ng
 &

~B
ra

ke
 &

~T
oo

fa
st

 &
~A

ct
iv

at
e

&
 R

es
um

e
&

~D
ea

ct
iv

at
e

In
ac

tiv
e

Ig
ni

te
d

&
 R

un
ni

ng

 I
gn

it
ed

 &

~R
un

ni
ng

~I
G

N
IT

E
D

 &
~R

un
ni

ng
~I

G
N

IT
E

D
 &

~R
U

N
N

IN
G

A
C

T
IV

A
T

E
 &

 I
gn

it
ed

 &

R

un
ni

ng
 &

 ~
B

ra
ke

 &

 ~

T
oo

fa
st

 &
~D

ea
ct

iv
at

e
&

 ~
R

E
SU

M
E

Ig
ni

te
d

 &
 R

un
ni

ng
Ig

ni
te

d
 &

 R
un

ni
ng

Ig
ni

te
d

 &
 R

un
ni

ng
 &

 ~

T
oo

fa
st

Ig
ni

te
d

&
 ~

R
U

N
N

IN
G

Ig
ni

te
d

&
 T

O
O

F
A

ST

~I
G

N
IT

E
D

 &

 ~
R

U
N

N
IN

G

Ig
ni

te
d

 &
 R

un
ni

ng
 &

~T

oo
fa

st
 &

 B
R

A
K

E

Ig
ni

te
d

 &
 R

un
ni

ng
 &

~T

oo
fa

st
 &

 ~
A

C
T

IV
A

T
E

 &
D

E
A

C
T

IV
A

T
E

 &
 ~

R
es

um
e

Ig
ni

te
d

 &
 R

un
ni

ng
 &

 ~

T
oo

fa
st

 &
 ~

A
ct

iv
at

e
&

D
E

A
C

T
IV

A
T

E
 &

 ~
R

E
SU

M
E

Ig
ni

te
d

&

R
un

ni
ng

 &
~T

oo
fa

st
 &

A
ct

iv
at

e
&

~R

es
um

e
&

~D
ea

ct
iv

at
e

O
ve

rr
id

e

~I
gn

it
ed

 &
 ~

R
un

ni
ng

~R
un

ni
ng

 &
 I

gn
it

ed

Ig
ni

te
d

&

R
un

ni
ng

Ig

ni
te

d
&

 R
un

ni
ng

 I

gn
it

ed
 &

 R
un

ni
ng

 &
 ~

B
ra

ke
 &

A
ct

iv
at

e
&

 ~
R

es
um

e
&

 ~
D

ea
ct

iv
at

e

Ig

ni
te

d
&

 R
un

ni
ng

 &
 ~

B
ra

ke
 &

~A
ct

iv
at

e
&

 R
es

um
e

&
 ~

D
ea

ct
iv

at
e

Ig
ni

te
d

&
 R

un
ni

ng
 &

 ~

A
ct

iv
at

e
&

 ~
R

es
um

e
&

 D

ea
ct

iv
at

e

 I

gn
it

ed
 &

 R
un

ni
ng

 &

 ~
A

ct
iv

at
e

&
 ~

R
es

um
e

&

 D
ea

ct
iv

at
e

Ig
ni

te
d

 &
 R

un
ni

ng
 &

 ~

B
ra

ke
 &

 A
C

T
IV

A
T

E
 &

 ~

R
E

SU
M

E
 &

 ~
D

ea
ct

iv
at

e

 I

gn
it

ed
 &

 R
un

ni
ng

 &

~B

ra
ke

 &
 R

E
SU

M
E

 &
~A

C
T

IV
A

T
E

 &
~D

ea
ct

iv
at

e

Ig
ni

te
d

&
 R

un
ni

ng
 &

~B
ra

ke
 &

 R
E

SU
M

E
 &

 ~
A

ct
iv

at
e

&

~D
E

A
C

T
IV

A
T

E

Ig
ni

te
d

 &
 R

un
ni

ng
 &

 ~
B

ra
ke

 &

 A
C

T
IV

A
T

E
 &

 ~
R

es
um

e
&

 ~
D

E
A

C
T

IV
A

T
E

O
ff

 E
xi

t

~A
ct

iv
at

e
&

Ig

ni
te

d
&

R
un

ni
ng

 &

~B

ra
ke

 &
~T

oo
fa

st
 &

 ~

A
ct

iv
at

e
&

 ~
R

es
um

e
&

 D
ea

ct
iv

at
e

A
C

T
IV

A
T

E
 &

 I
gn

it
ed

 &

 R

un
ni

ng
 &

 ~
B

ra
ke

 &
 ~

T
oo

fa
st

 &
~D

E
A

C
T

IV
A

T
E

 &
 ~

R
es

um
e

In
ac

tiv
e

 E
xi

t
In

ac
tiv

e
 E

xi
t

In
ac

tiv
e

 E
xi

t
In

ac
tiv

e
 E

xi
t

 I

gn
it

ed
 &

 R
un

ni
ng

 &

 ~

T
oo

fa
st

 &
~B

ra
ke

 &

 A
ct

iv
at

e
&

 ~
R

es
um

e
&

 ~

D
ea

ct
iv

at
e

Ig
ni

te
d

&

R

un
ni

ng
 &

 ~

T
oo

fa
st

 &

 ~

A
ct

iv
at

e
&

 R
es

um
e

&

 ~

D
ea

ct
iv

at
e

C
ru

is
e

 E
xi

t

C
ru

is
e

 E
xi

t
C

ru
is

e
 E

xi
t

C
ru

is
e

 E
xi

t

C
ru

is
e

 E
xi

t

C
ru

is
e

 E
xi

t

O
ve

rr
id

e
 E

xi
t

O
ve

rr
id

e
 E

xi
t

O
ve

rr
id

e
 E

xi
t

O
ve

rr
id

e
 E

xi
t

O
ve

rr
id

e
 E

xi
t

O
ve

rr
id

e
 E

xi
t

~I
gn

it
ed

In
iti

al
 E

xi
t

Figure 2: CTL machine for adjusted cruise control speci�cations.

constructed machine. For each mode transition, we create two CTL formulas that state if the CTL ma-chine is in the transition's source mode and the transition event occurs, then the machine will transitioninto the transition's destination mode. The following formulas represent the �rst mode transition fromCruise to Override in Table 5; output proposition Exit is used to distinguish between the systembeing in the mode (�Exit) and the sytem exiting the mode (Exit).AG((Cruise & �Exit & Ignited & Running & �Toofast & �Brake)!AX((Cruise & Exit & Ignited & Running & �Toofast & �Brake)! AX(Override)))EF ((Cruise & �Exit & Ignited & Running & �Toofast & �Brake) &EX(Cruise & Exit & Ignited & Running & �Toofast & �Brake))The �rst formula states that if the system is in the source mode (Cruise & �Exit) and the transition'striggered condition is negated (�Brake) and the transition'swhen conditions hold (Ignited & Running &�Toofast); and if in the next state, the system is leaving the source mode (Cruise & Exit) with thetransition's triggered and when conditions satis�ed (Ignited & Running & �Toofast & �Brake); thenin the state after that, the system will be in the destination mode (Override). The second formula statesthat the hypothesis of the �rst formula is not false, thereby precluding the possibility that the �rst formulais determined to be true because it is vacuously true.Being able to verify that the speci�cation has been entered correctly is a secondary feature. Mostimportantly, we can verify that the CTL machine enforces the speci�cation's intended invariant properties.The next set of formulas are the required properties that were listed in the requirements document,restated as CTL formulas61. AG ((Off & �Exit)!�Ignited)2. AG (((Inactive j Cruise j Override) & �Exit)! Ignited)3. AG ((Inactive & �Exit)! (Ignited & (�Running j �Activate)))4. AG ((Cruise & �Exit)! (Ignited & Running & �Brake))5. AG ((Override & �Exit)! (Ignited & Running))The �rst formula states that the ignition is o� whenever the system is in CTL mode state Off.This formula was found not to be invariant. The system always exits Off when Ignited becomes true.However, Ignited is not always false upon entering Off; since the system can initially start in mode Offunder any initial conditions. If the initial conditions are changed such that the system starts in Off onlyif �Ignited (and the system is otherwise unde�ned), then the �rst formula becomes invariantly true.The fourth formula states that whenever the system is in CTL mode state Cruise, then the ignitionis on, the engine is running, and the brake is not being pressed. This formula was also found not tobe invariant, because �Brake is not an invariant property of Cruise. The transition that causes thesystem to leave mode Cruise when the brake is pressed is not unconditional (see Table 5); if the vehicleis going Toofast, then the transition is not enabled. �Brake would be an invariant property of Cruiseif when condition �Toofast were removed from the transition or if �Toofast were an invariant propertyof Cruise. The presence of when condition �Toofast in this transition is needed to prevent the systemfrom transitioning into Override when it should be transitioning into Inactive. (The transitions intoInactive have priority over those into Override.) Besides, the system really should not be in CTLmode state Cruise if the automobile is going too fast. To make �Toofast an invariant property ofCruise, we must modify the speci�cation so that Toofast is false whenever the system enters Cruise(i.e., we force �Toofast to be a when condition in all transitions entering Cruise). Since the system6Again, the output proposition Exit has been added to the formulas to specify that the system is in the mode and notexiting the mode.

unconditionally leaves mode Cruise when Toofast becomes true, �Toofast is a mode invariant of Cruisein the modi�ed speci�cations. This means that �Brake is also an invariant property of the Cruise in themodi�ed speci�cations, and that the fourth formula stated above is invariant.Lastly, the third formula to be veri�ed:AG ((Inactive & �Exit)! (Ignited & (�Running j �Activate))was also found not be invariant. This formula states that if the cruise control is Inactive, then theignition is on and either the engine is not running or the cruise control has not been activated. However,if the cruise control is Inactive, and a driver depresses the brake when the engine is running and thensets the cruise control lever to Activate, there is no transition to Cruise because the brake is on. Thus itis possible to be in mode Inactive when the ignition is on, the engine is running, and the cruise controlhas been activated.In fact, a presumably corrected version of this formula also did not hold:AG ((Inactive & �Exit)! (Ignited & (�Running j Brake j �Activate))Consider the above scenario, where the cruise control is Inactive, the engine is Running, the Brake isdepressed, and the driver sets the cruise control lever to Activate. The system remains in mode Inactivebecause the Brake is being pressed. If the driver then releases the brake but continues to hold the cruisecontrol lever in the Activate position, the cruise control will still remain Inactive and the invariant willbe violated.We believe the intended invariant properties of mode Inactive are that the ignition is on and either� the engine is not running� the brake is on� the cruise control lever has not been activated, or� the cruise control was activated, but not at a time when the other cruise control conditionsheld.The mode invariant needs to be changed to address this fourth case, which di�ers from the �rst threein that it deals with the values of the variables at a particular time (when the cruise control lever ischanged and set to Activate). These properties can be expressed by the following formulaAG ((Inactive & �Exit & �Activate & Ignited & Running & �Brake)!�EX(Inactive & �Exit & Activate & Ignited & Running & �Brake))which states that if the system is in mode Inactive and the cruise control when conditions are satis�ed(the engine Ignited and Running and the Brake released) but the cruise control lever is not set to Activate,then the system cannot transition to a state in which the system is still in mode Inactive with the cruisecontrol lever now set to Activate and the other cruise control conditions still satis�ed. If all of theproperties were true in the next state, then the transition from Inactive to Cruise would be triggeredand the system would actually be in mode Cruise.The MCB model checker determines that the above formula is false with respect to our CTL machinedepicted in Figure 2, but this is due to a weakness in our model. Our representation only characterizesthe conditions that cause mode transitions; it does not characterize the conditions under which a systemremains in a mode. According to our de�nition, a mode invariant is the set of properties that are alwayssatis�ed upon entering the mode and whose failure causes the system to unconditionally leave the mode.Using this de�nition, the mode invariant of Inactive isAG ((Inactive&Exit) ! Ignited)This formula states that if the system is in mode Inactive, then all we know is that the ignition is on.This formula is veri�ably invariant.

@T
f

@T

Water Level Monitoring System:

Initial Mode:

−
−

−
−
−

−

−

−
−

−

−

− −

−−
−

−

−

−

−
−

−

− −

@T
−

−

−
−
−

−

−

In
sid

eH
ys

Ran
ge

W
ith

inL
im

its

Slf
TstP

re
sse

d

Slf
Tes

tIn
ter

va
l

Tes
tIn

ter
va

l

Res
etI

nte
rv

al

Sh
utd

ow
nL

oc
kT

im
e

Current
Mode

New
Mode

Shutdown

Standby t − @T Operating

− @T Test
Operating @F f − Shutdown

− @T Test

@T f Operating
− f Standby
− − Test

Test − − − − Standby

Standby (~SlfTestInterval & ~TestInterval & ~ResetInterval & ~ShutdownLockTime)

t

f

t

t

t

t
f
f

f

Table 6: Mode transitions for water level monitoring system.3.2 Case Study: Water-Level MonitorThe requirements speci�cation of a water-level monitoring system (WLMS) used in this study comesfrom [27]. The system consists of two modeclasses, one that describes system behavior when the systemis operating correctly, and one that describes the behavior when the system has failed. The FAILUREmodeclass is simple and uninteresting, and exists independently of the OPERATING modeclass; therefore,we only studied the OPERATING modeclass. Table 6 contains the mode transition table. OPERATINGis comprised of four modes:Operating The system is runningStandby The system has been stopped, but has not failedShutdown The water level has fallen outside allowable limits, which maycause the system to halt if the water level is not restoredto within the hysteresis range within 200msTest The system is being testedThe system always starts in mode Standby.The system conditions that appear in the table are de�ned as followsWithinLimits LowLimit<WaterLevel<HighLimitInsideHysRange (LowLimit+0.5cm)<WaterLevel<(HighLimit-0.5cm)SlfTestPressed SelfTst button is being pressedSlfTestInterval SelfTst button pressed constantly for > 500msTestInterval System in Test mode for > 14sResetInterval Reset button pressed constantly for > 3sShutdownLockTime System in Shutdown mode for > 200msThe last four conditions are timing conditions; all of them must be false when the system is initiated.CTL Machine ConstructionLike the cruise control speci�cations, the WLMS mode transition table needed to be formalized beforeit could be analyzed. The following two relationships could be deduced from the descriptions of the

conditions, found in the section of the requirements document that speci�ed the environmental statevariables:InsideHysRange�>> WithinLimitsSlfTestPressed < SlfTestIntervalThe �rst relationship states that if the water level is inside the hysteresis water-level range, thenit is certainly within the allowable water-level range. The second relationship states that conditionsSlfTestPressed and SlfTestInterval represent the same environmental state variable (the SelfTest button),but that condition SlfTestInterval represents the state variable holding its value for a longer period oftime than does condition SlfTestPressed. The changes to the tabular speci�cations due to the abovecondition-relationships appear in boldface in the mode transition table (Table 6).The requirements designer of the water-level monitoring system used a speci�cation model that doesnot allow sequences of simultaneous mode transitions. The model regards the current mode as an addi-tional when condition of any transition event. Since the when conditions of an event must hold for some�nite period of time before the event occurs, no mode transition is immediately enabled upon entry intothe transition's source mode.The transformation algorithm warns that the two transitions leaving mode Standby can be simul-taneously enabled, indicating that the speci�cation is nondeterministic. However, since the requirementsspeci�cation never listed determinism as one of the system's requirements, we left the speci�cations non-deterministic. The resulting CTL machine is displayed in Figure 3.AnalysisFirst, we tested to see if we had entered the tabular speci�cations correctly by verifying the CTL-formula representation of all the mode transitions. Then we tried to verify expected invariant propertiesof the system. The software requirements document for the WLMS system did not include a list of safetyproperties. We inferred from the system description that the following properties should be invariant.1. AG ((SlfTestInterval & �Test)! AX(Test))2. AG ((Standby & �Exit)!�SlfTestInterval)3. AG ((Operating & �Exit)! (�SlfTestInterval & (WithinLimits j SlfTestPressed)))4. AG ((Shutdown & �Exit)! (�SlfTestInterval &((�InsideHysRange & �ShutdownLockT ime) j �SlfTestPressed)))We corroborated our inferred invariants with the requirements designer [28].The �rst formula states that if the SelfTst button has been pressed for 500 ms or more and thesystem is not currently in mode Test, then the system will be in mode Test after the next transition.This formula is not invariant. Refering to Table 6, if the machine is in Standby and both of the allowabletransitions are simultaneously enabled, the CTL machine may nondeterministically choose the transitionto Operating rather than the one to Test. Thus, the system's nondeterminism poses problems for thespeci�cation. To correct this, we made the speci�cation deterministic by giving priority to the transitioninto Test (giving priority to the transition into Operating would violate the formula). Adding whencondition �SlfTestInterval to the transition from Standby to Operating ensures that the system willalways transition into Test when the SelfTest has been pressed long enough, thereby making the �rstformula a system invariant.The second formula is an apparent consequence of the �rst formula. It states that �SlfTestIntervalis a mode invariant of Standby. However, this formula was found not to be invariant. The systemunconditionally exits mode Standby when SlfTestInterval becomes true; however it is not invariantly

In
si

de
H

ys
R

an
ge

 &
W

it
hi

nL
im

it
s

S
ta

nd
by T

es
t

S
hu

td
ow

n

O
pe

ra
tin

g

~T
es

tI
nt

er
va

l

~T
es

tI
nt

er
va

l

 S

lf
T

es
tP

re
ss

ed
 &

~S
lf

T
es

tI
nt

er
va

l

SL
F

T
E

ST
IN

T
E

R
V

A
L

 &
Sl

fT
es

tP
re

ss
ed

R
E

SE
T

IN
T

E
R

V
A

L
 &

~R
es

et
In

te
rv

al
 &

 I

ns
id

eH
ys

R
an

ge
 &

 W
it

hi
nL

im
it

s

S
ta

nd
by

 E
xi

t
S

ta
nd

by
 E

xi
t

 S

lf
T

es
tP

re
ss

ed
 &

~S
lf

T
es

tI
nt

er
va

l
 W

it
hi

nL
im

it
s

 &
 ~

In
si

de
H

ys
R

an
ge

 &

 ~
Sl

fT
es

tP
re

ss
ed

 &
 ~

Sl
fT

es
tI

nt
er

va
l

 ~
W

IT
H

IN
L

IM
IT

S
 &

~S

lf
T

es
tP

re
ss

ed
 &

~I
ns

id
eH

ys
R

an
ge

 &

~S
lf

T
es

tI
nt

er
va

l

SL
F

T
E

ST
IN

T
E

R
V

A
L

 &
Sl

fT
es

tP
re

ss
ed

O
pe

ra
tin

g
 E

xi
t

O
pe

ra
tin

g
 E

xi
t

Sl
fT

es
tP

re
ss

ed
 &

~S
lf

T
es

tI
nt

er
va

l

IN

SI
D

E
H

Y
SR

A
N

G
E

 &
~S

lf
T

es
tI

nt
er

va
l

&
~S

hu
td

ow
nL

oc
kT

Im
e

&

W
it

hi
nL

im
it

s
 &

~S
lf

T
es

tP
re

ss
ed

~I
ns

id
eH

ys
R

an
ge

 &
 W

it
hi

nL
im

it
s

&

~S

lf
T

es
tP

re
ss

ed
 &

~S
lf

T
es

tI
nt

er
va

l &

 ~

Sh
ut

do
w

nL
oc

kT
im

e

SL
F

T
E

ST
IN

T
E

R
V

A
L

 &
Sl

fT
es

tP
re

ss
ed

SH

U
T

D
O

W
N

L
O

C
K

T
IM

E
 &

 ~
Sl

fT
es

tI
nt

er
va

l
&

~S
lf

T
es

tP
re

ss
ed

S
hu

td
ow

n
 E

xi
t

S
hu

td
ow

n
 E

xi
t

S
hu

td
ow

n
 E

xi
t

~S
hu

td
ow

nL
oc

kT
im

e
 &

~S

lf
T

es
tP

re
ss

ed
 &

~S
lf

T
es

tI
nt

er
va

l

T
es

t
E

xi
t

In
iti

al

E
xi

t

~S
lf

T
es

tI
nt

er
va

l &
 ~

R
es

et
In

te
rv

al
 &

~T
es

tI
nt

er
va

l &
 ~

Sh
ut

do
w

nL
oc

kT
im

e

Figure 3: CTL machine for adjusted water-level monitoring system.

true that SlfTestInterval is false upon entry into Standby. If the operator presses the SelfTst buttonwhen the system is in mode Test, it is possible the button will have been pressed long enough to makeSlfTestInterval true before the system leaves mode Test and enters Standby. Adding when condition�SlfTestInterval to the transition from Test to Standby will ensure that SlfTestInterval is always falseupon entering Standby and will make the second formula invariant. However, this additional whencondition can cause the system to deadlock in mode Test; if the operator is pressing the SelfTst buttonwhen TestInterval becomes true, not only will the transition leaving Test not be activated but it willnever be activated, since its triggered condition will never be satis�ed again. To avoid this we add asecond transition from Test to Standby (not shown in Table 6) that is activated when the operatorreleases the SelfTst button if the system has been in mode Test for more than 14 seconds (the transitionevent has triggered condition @F(SlfTestPressed) and when condition TestInterval). The two new modetransitions ensure that SlfTestInterval is invariantly false in mode Standby.The third formula is more critical. It states that if the system is Operating, then the SelfTstbutton has not been pressed for more than 500 ms (if at all) and either the water level is WithinLim-its or the SelfTst button is being pressed. This property was also found not to be invariant. If thesystem is Operating and the SelfTst button is being pressed, then the transition into mode Shut-down is disabled; under these circumstances, the system will remain in the Operating mode if thewater level rises or falls outside the allowable limits. However, if the SelfTst button is released beforethe system transitions into Test, then the system remains in the Operating mode even though thewater level is not WithinLimits. In addition, the transition from Operating to Shutdown is nowdisabled because the event of the water level crossing the WithinLimits boundary has already occurredand can no longer be detected. The transition from Operating to Shutdown should not depend onwhether the SelfTst button is being pressed but rather on whether it has been pressed long enoughto enable the transition into Test. Thus, �SlfTestInterval should be a when condition in the transi-tion from Operating to Shutdown, and when condition �SlfTestPressed should be removed. If wemake this change to the tabular speci�cations, then we need to change the intended mode invariant toAG ((Operating & �Exit)! (WithinLimits& �SlfTestInterval)since whether or not the button is being pressed is no longer important.The fourth formula is also a safety-critical property. It states that if system is in mode Shutdown,then either the water-level is still outside the hysteresis water-level range and the system has been in modeShutdown for less than 200 ms or the SelfTst button is being pressed. Again, the system will ignoreevents @T(InsideHysRange) and @T(ShutdownLockTime) if the SelfTst button is being pressed; and ifthis button is then released before the system transitions into Test, then the system could deadlockin global mode Shutdown. As before, the transitions from Shutdown to Operating and Standbyshould not depend on whether the SelfTst button is being pressed but rather on whether it has beenpressed long enough to activate the transition into Test. Thus, we add �SlfTestInterval as a whencondition to these transitions and remove when condition �SlfTestPressed; we also modify the intendedmode invariant so that it no longer references SlfTestPressed.AG ((Shutdown & �Exit)! (�InsideHysRange & �ShutdownLockT ime& �SlfTestInterval))4 DiscussionIn both case studies, we used the model checker to disprove the invariance of several required safetyproperties. It has been observed [29] that many of the discrepancies in the cruise control speci�cationwould have been avoided if the system had originally been speci�ed using the more recent SCR tables[12] (which we used in this paper) rather than the original SCR tables [19]; the columns of conditions inthe tables help remind the requirements designer of all the conditions that need to be considered.

Other discrepancies between the tabular speci�cations and the intended global assertions were subtleand would have been di�cult to notice by inspection even if the requirements had been stated usingthe better speci�cation language. In our original experiments, in which the transformation from therequirements to the CTL machine was done by hand, two intended mode invariants (those for modes Offand Cruise) were thought to be enforced by the requirements [3]; these discrepancies were not detecteduntil the algorithm was automated.Furthermore, all of the discrepancies in the water-level monitoring system involved unexpected com-binations of events (e.g. the operator presses conicting buttons at the same time, or presses the SelfTstbutton when the system is already in Test mode) or race conditions (e.g., the water level drops belowdesired limits after the SelfTst button has been pressed but before it has been pressed long enough forthe system to enter mode Test). As a result, these discrepancies went unnoticed even though the systemwas implemented and tested.The remainder of this section addresses issues about our analysis technique and discusses related work.4.1 ObservationsThe MCB model checker has proven useful for verifying safety properties in the case studies presented.There are, however, limitations to this approach.� The MCB model checker is restricted to the study of �nite state machines (FSM). The system beingdeveloped need not be a FSM, but the requirements speci�cation that describes the transitionalbehavior of the system must be expressible as a FSM.� In this paper, we analyzed system requirements consisting of one modeclass. However, a system'srequirements may consist of multiple modeclasses, and as such would be modeled by the concurrentexecution of several CTL machines. Such a speci�cation is composed into a single global speci�cationand transformed into a global CTL machine, in which each state represents the combined currentstates of the machine's components. This leads to an exponential increase in the number of states.However, since we start with a relatively small number of states (CTL states represent systemmodes rather than system states), the size of the global machine might still be manageable. Inaddition, tools and techniques are being developed to tackle the larger problem. A symbolic modelchecker capable of checking very large CTL machines is described in [7]. Furthermore, [9] describesa compositional model checking method, whereby one can correctly assume that certain propertiesveri�ed against the speci�cation's components are also true of the global speci�cation.4.2 Related WorkModel checking is only one technique for analyzing requirements speci�cations. Other promisingapproaches include formal veri�cation, executable speci�cations, and theorem proving.One approach is to introduce a speci�cation language based on temporal logic and provide a proofsystem for that logic [22, 23, 25]. The requirements designer speci�es a system's behavior as a set oftemporal logical formulas, and then proves system properties using the logic's proof rules. Such formalveri�cation ensures a high degree of con�dence in the validated system. It is a laborious process, however,that entails detailed mathematical analysis, most of it unautomated. As a result of the high cost, fewreal-world systems have been formally veri�ed.A more popular approach is to de�ne an executable speci�cation language, which allows the designerto run the speci�cation and test that the speci�ed system works correctly [10, 15, 16]. STATEMATE[17], for example, is a programming environment for graphically specifying reactive systems. In additionto simulation capabilities, the STATEMATE system o�ers a set of dynamic tests that can be performed

automatically: consistency, reachability, nondeterminism, and deadlock. However, none of these tests canbe used to analyze or verify the functional behavior of the system being speci�ed.Modechart [20] is a variant of the STATEMATE language that was developed to incorporate timingrequirements into a system's requirements speci�cation. The primary use of this system is to con�rmthat timing constraints are enforced in the system's requirements. However, unless the components of thesystem are tightly coupled, the computation graph of the system (which explicitly represents all executionpaths in the system) is unmanageablely large for all but the smallest speci�cations.Hierarchical multi-state (HMS) machines [13, 14] is another speci�cation formalism, in which thesystem behavior is expressed as a hierarchical state machine. One can model check an HMS machineby expanding the system into a computation tree and verifying a temporal logical formula with respectto the computation tree. Alternatively, one can use a variation of the resolution-based theorem provingtechnique introduced in [4]: the property to be veri�ed is negated and added to the system speci�cationas an extra state; if this extra state is unreachable, then the system property is invariant. Unfortunately,neither of these veri�cation techniques has been automated.5 ConclusionWe have presented a technique whereby SCR-style event-oriented requirement speci�cations can bemodeled as state-based structures and analyzed using a state-based model checker. The result is aformal method whose speci�cation language is intuitive and scalable, and whose analysis is automated.The only aspect of this methodology that requires any real mathematical aptitude is the phrasing ofglobal properties as temporal logic formulas. Currently, we are investigating ways of extending the SCRrequirements language and the CTL model checker so that timing requirements can also be speci�ed andanalyzed.AcknowledgementsC. L. Heitmeyer and B. Labaw made valuable technical contributions to this work. D. Lamb,J. van Schouwen, and M. Zelkowitz helped in making this paper more presentable. V.S. Subrahmaniancontributed his time and library of logic papers.We would also like to thank the referees for their careful reading and perceptive comments.

References[1] T. Alspaugh, S. Faulk, K. Britton, R. Parker, D. Parnas, and J. Shore. Software Requirements forthe A-7E Aircraft. Technical report, Naval Research Laboratory, March 1988.[2] J. Atlee. Automated Analysis of Software Requirements. PhD thesis, University of Maryland, CollegePark, 1992.[3] J. Atlee and J. Gannon. \State-Based Model Checking of Event-Driven System Requirements". InProceedings of the ACM SIGSOFT'91 Conference on Software for Critical Systems, pages 16{28,1991.[4] W. Bledsoe and L. Hines. \Variable Elimination and Chaining in a Resolution-based Prover forInequalities". In Proceedings of 5th Conference on Automated Deduction: Lecture Notes in ComputerScience, pages 70{87, 1980.[5] M. Browne. Automatic Veri�cation of Finite State Machines Using Temporal Logic. PhD thesis,Department of Computer Science, Carnegie Mellon University, 1989.[6] M. Browne, E. Clarke, and D. Dill. \Automatic Veri�cation of Sequential Circuits Using TemporalLogic". IEEE Transactions on Computers, C-35(12):1035{1044, December 1986.[7] J. Burch, E. Clarke, K. McMillan, D. Dill, and J. Hwang. \Symbolic Model Checking: 1020 Statesand Beyond". In Proceedings of the 5th Annual Symposium on Logic in Computer Science, pages428{439, June 1990.[8] E. Clarke, E. Emerson, and A. Sistla. \Automatic Veri�cation of Finite State Concurrent SystemsUsing Temporal Logic Speci�cations". ACM Transactions on Programming Languages and Systems,8(2):244{263, April 1986.[9] E. Clarke, D. Long, and K. McMillan. \A Language for Compositional Speci�cation and Veri�cationof Finite State Hardware Controllers". Proceedings of the IEEE, 79(9):1283{1292, September 1991.[10] M. Degl'Innocenti, G. Ferrari, G. Pacini, and F. Turini. \RSF: A Formalism for Executable Require-ments Speci�cations". IEEE Transactions on Software Engineering, 16(11):1235{1246, November1990.[11] E. Emerson and E. Clarke. \Using Branching Time Temporal Logic to Synthesize SynchronizationSkeletons". Science of Computer Programming, 2:241{266, 1982.[12] S. Faulk. State Determination in Hard-Embedded Systems. PhD thesis, Department of ComputerScience, University of North Carolina, Chapel Hill, 1989.[13] A. Gabrielian and M. Franklin. \Multilevel Speci�cation of Real-Time Systems". Communicationsof the ACM, 34(5):51{60, May 1991.[14] A Gabrielian and R. Iyer. \Integrating Automata and Temporal Logic: A Framework for Speci�cationof Real-Time Systems and Software". In Proceedings of the Uni�ed Computation Laboratory, 1990.[15] C. Ghezzi, D. Mandrioli, and A. Morzenti. \TRIO, a logic language for executable speci�cations ofreal-time systems". Journal of Systems and Software, 12(2):107{123, May 1990.[16] D. Harel. \Statecharts: A Visual Formalism for Complex Systems.". Science of Computer Program-ming, 8:231{274, 1987.

[17] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, A. Shtull-Trauring, andM. Trakhtenbrot. \STATEMATE: AWorking Environment for the Development of Complex ReactiveSystems". IEEE Transactions on Software Engineering, 16(4):403{414, April 1990.[18] C. Heitmeyer and B. Labaw. \Consistency Checks for SCR-Style Requirements Speci�cations". (inpreparation).[19] K. Heninger. \Specifying Software Requirements for Complex Systems: New Techniques and TheirApplications". IEEE Transactions on Software Engineering, SE-6(1):2{12, January 1980.[20] F. Jahanian and A. Mok. \Safety Analysis of Timing Properties in Real-Time Systems". IEEETransactions on Software Engineering, SE-12(9):890{904, September 1986.[21] J. Kirby. Example NRL/SCR Software Requirements for an Automobile Cruise Control and Moni-toring System. Technical Report TR-87-07, Wang Institute of Graduate Studies, July 1987.[22] Z. Manna and A. Pnueli. \Tools and Rules for the Practicing Veri�er". Technical Report STAN-CS-90-1321, Department of Computer Science, Stanford University, 1990.[23] J. Ostro�. Temporal Logic for Real-Time Systems. Research Studies Press LTD., 1989.[24] D. Parnas, D. Smith, and T. Pearce. Making Formal Software Documentation More Practical: AProgress Report. Technical Report TR-88-236, Department of Computing and Information Science,Queen's University, 1988.[25] A. Pnueli. \The Temporal Logic of Programs". In Proceedings of 18th Annual Symposium on theFoundation of Computer Science, pages 46{57, 1977.[26] S. Smith and S. Gerhart. \STATEMATE and Cruise Control: A Case2 Study". In Proceedings ofCOMPAC '88, 12th Int. IEEE Computer Software and Application Conference, pages 49{56, 1988.[27] J. van Schouwen. The A-7 Requirements Model: Re-examination for Real-Time Systems and anApplication to Monitoring Systems. Technical Report TR-90-276, Department of Computing andInformation Science, Queen's University, Kingston, Ontario, May 1990.[28] J. van Schouwen. Private communications., 1991. (May 1991 - August 1991).[29] D. Weiss. Private communications., 1992. (August 1992).

	TSE93.Copyright
	TSE93

