
Springer	Copyright	Notice	
© Springer Nature Switzerland AG 2012
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Published	in:	Software	and	Systems	Modeling,	May	2012	

“Code Generation for a Family of Executable Modelling Notations”

Cite as:

BibTex:

DOI: https://doi.org/10.1007/s10270-010-0176-6

Except where otherwise noted, content on this site is licensed under a Creative
Commons Attribution-NonCommercial-NoDeratives 4.0 International (CC-BY-NC-ND
4.0) license

Prout, A., Atlee, J.M., Day, N.A., Shaker, P. “Code Generation for a Family of Executable
Modelling Notations, in Software and Systems Modelling (2012) 11: 251.-272.

@article{ProutSoSym12,
 TITLE = {{Code Generation for a Family of Executable Modelling Notations}},
 AUTHOR = {Prout, A. and Atlee, J.M. and Day, N.A. and Shaker, P.},
 JOURNAL = {{Software and Systems Modelling}},
 PAGES = {251-272},
 YEAR = {2012}
}

Code Generation for Semantically

Configurable Modelling Notations

Adam Prout, Joanne M. Atlee, Nancy A. Day, Pourya Shaker

David R. Cheriton School of Computer Science
University of Waterloo, Waterloo Ontario, N2L 3G1, CANADA
e-mail: {aprout,jmatlee,nday,p2shaker}@uwaterloo.ca

The date of receipt and acceptance will be inserted by the editor

Abstract We are investigating semantically configurable model-driven en-
gineering, in which specifiers are able to configure the semantics of their
models. The goal of this work is a modelling environment that supports
flexible, configurable modelling notations, so that specifiers are better able
to represent their ideas, and yet still provides the types of analysis tools
and code generators normally associated with model-driven engineering.

In this paper, we describe semantically configurable code generation,
comprising (1) a modelling notation that is semantically configurable via
a set of parameter values specifying semantics choices and (2) a code-
generator generator that creates a suitable Java-code generator for each
derivable modelling notation. Our prototype code-generator generator sup-
ports 22 semantics parameters, 57 parameter values, and 7 composition
operators. As a result, we are able to produce code generators for a sizable
family of modelling notations, though at present the performance of our
generated code is about an order of magnitude slower than that produced
by commercial-grade generators.

1 Introduction

One of the obstacles to successful model-driven engineering (MDE) is the
semantic gap between the modelling notation and the system being mod-
elled. It is because of this gap that there exist multiple variants of modelling
notations, such as variants of statecharts and process algebras, and variation
points in the Unified Modelling Language. Notations are often customized
or tweaked during use, to ease the modelling in a particular domain or of a
particular problem.

To help bridge this gap, we propose semantically configurable model-
driven engineering as a way of accommodating semantic variability among

2 Adam Prout, Joanne M. Atlee, Nancy A. Day, Pourya Shaker

related modelling notations. Semantically configurable MDE enables speci-
fiers to create or customize their own modelling notations, and yet still have
access to the modelling tools – that is, the editing environments, model an-
alyzers, code generators, etc. – that are normally associated with MDE.
Note that our work is distinct from complementary efforts on configurable
tools [13,15] that support configurability with respect to the abstract syntax
of a family of notations [32] but do not support configurable semantics.

In previous work, we introduced template semantics [28,29], by which we
configure the semantics of a modelling notation. Template semantics struc-
tures the operational semantics of a family of modelling notations as a set
of predefined templates that are instantiated with user-provided parameter
values. Thus, a member of this family can be succinctly described as a set
of template parameter values. The intended scope of template semantics is
the family of notations whose semantics can be expressed operationally in
terms of execution traces. This family includes process-algebras (e.g., CCS,
CSP, basic LOTOS), statecharts variants (e.g., statecharts, STATEMATE,
RSML, UML StateMachines), and even more sophisticated notations like
SCR [19], SDL88 [21], and BoxTalk [41]. Because a notation’s semantics can
be expressed as a collection of parameters, it can be easily parsed, and we
are starting to develop semantically parameterized tools [26]. For example,
Metro [28] is a suite of semantically parameterized analysis tools, and Ex-
press [26] is a semantically parameterized translator to the Symbolic Model
Verifier (SMV) [27].

As anecdotal evidence of the utility of semantically configurable mod-
elling, we relate our experiences with graduate-student modellers. Students
taking a graduate course on computer-aided verification used our config-
urable modelling notation to specify the behaviour of elevators, an office
lighting system, and a hotel-room safe. They used Express to transform
their models into representative SMV models and then verified their mod-
els using the SMV model checker. The students were free to choose their own
modelling semantics, and only one student used a semantics that conforms
to the classic semantics of some existing notation. Some specifications had
a statecharts-like semantics, but used rendezvous for a critical synchroniza-
tion. Other specifications had a CCS-like semantics, but used global shared
variables. These observations suggest that (student) modellers are comfort-
able manipulating the semantics of a modelling notation as a strategy to
producing a correct model – as opposed to manipulating only the model
and correctness properties until the analysis is successful.

In this paper, we provide an extended description of our prototype of a
semantically configurable code-generator generator (CGG), which was first
presented in [36]. The CGG takes as input a description of a modelling
notation’s semantics, expressed as a set of template-semantics parameter
values, and produces a code generator for that notation. Problems that we
addressed in the course of this work include

– Configurable CGG: A primary contribution of this work is the code
structure of the CGG, which isolates code that pertains to individual

Code Generation for Semantically Configurable Modelling Notations 3

template-semantics parameters and parameter values. This structure
eases the task of adding new parameter values that support new se-
mantic choices.

– Configurable execution semantics: A second contribution is the
run-time architecture of the generated Java programs. The generated
programs have a common abstract execution step that is specialized by
composition operators and whose details are parameterized by template-
semantics parameters (similar to the execution step of SMV models gen-
erated by Express [26]).

– Representing composition operators in Java: A side effect of the
above contribution is Java implementations of a variety of composition
operators. The Java scheduler imposes an interleaving semantics on con-
current threads, whereas many modelling notations have composition
operators that are more tightly synchronized, such as parallel composi-
tion and rendezvous.

– Resolving nondeterminism: There are several natural sources of non-
determinism in models (e.g., selecting one of many enabled transitions
to execute). While it may be appropriate to leave such nondetermin-
ism unresolved during the modelling phase, nondeterminism in source
code is unnatural. The transformation of a model into source code may
involve decisions to eliminate nondeterminism.

– Performance evaluation: A long-term concern of this work is how
efficient CGG-generated code is, given the competing concern that a
configurable CGG be general enough to support a family of modelling
notations. As a baseline, we compare the performance of our generated
code against the performance of code generated by three commercial
tools: IBM Rational Rose RT [20], IBM Rational Rhapsody [39], and
SmartState [1] – each of which has been optimized for a particular mod-
elling notation.

The rest of this paper is organized as follows. In Section 2, we review
template semantics, which we use to configure the semantics of modelling
notations. This section includes summaries of the semantics parameters and
composition operators that are supported in our approach. In Sections 3
and 4, we describe our code-generator generator and the architecture of the
generated code, respectively. We discuss techniques for resolving nondeter-
minism in Section 5. We present the results of our performance evaluations
in Section 6, and we conclude the paper with discussions on related work,
limitations, and future work.

2 Semantically Configurable Notations

In this section, we describe the syntax and semantics of our modelling nota-
tion. The semantics can be configured via a set of user-specified parameter
values, which we will also review. We achieve configurability using template
semantics [29,30]. Understanding how we support semantically configurable

4 Adam Prout, Joanne M. Atlee, Nancy A. Day, Pourya Shaker

runwayR1

landing

clear

t1:

landonR1

/busyRW1=true

onRunway

takeoff

t7: enterTW3 /busyRW1=false
t6: enterTW2 /busyRW1=false
t5: enterTW1 /busyRW1=false

t2:

landR1Complete

t4:

takeoffR1Complete

/busyRW1=false

t3:

takeoffOnR1

/busyRW1=true

Fig. 1 Example HTS

modelling notations helps in understanding the degree of configurability sup-
ported by our CGG and in understanding the user’s task of configuring the
CGG.

2.1 Syntax

To accommodate a variety of modelling notations, we base the syntax of our
notation on a form of extended finite-state machine that we call hierarchi-
cal transition systems (HTS), which are adapted from statecharts [18]. An
example HTS is shown in Figure 1. It includes control states and state hi-
erarchy, state transitions, events, and typed variables, but not concurrency.
Concurrency is achieved by composing multiple HTSs. Transitions have the
following form:

source dest
name: event [cond] ^gen /asn #priority

Each transition has a source state, is triggered by zero or more events, may
have a guard condition (a predicate on variable values), and may have an
explicit priority. If a transition executes, it leads to a destination state, may
generate events, and may assign new values to variables. An HTS designates
an initial state for each hierarchical state and initial variable values (not
shown). In UML terminology, an HTS corresponds to a simple-composite
state with only one region.

2.2 Semantic Domain

The semantics of an HTS is the set of its possible execution sequences. The
semantic domain of HTS execution is sequences of snapshots, where a snap-
shot records information about the model’s execution at a discrete point in
the execution. Snapshot information is stored in distinct elements:

Code Generation for Semantically Configurable Modelling Notations 5

CS - the current states
IE - the events to be processed
AV - the current variable-value assignments
Ia - data about inputs to the HTS
O - the generated events (to be communicated to other HTSs)

In addition, the snapshot includes auxiliary elements that, for different no-
tations, store different types of information about the HTS’s execution:

CSa - data about states, such as enabling or history states
IEa - data about events, such as enabling or nonenabling events
AVa - data about variable values, such as old values

An execution starts with an initial snapshot of initial states and vari-
able values. Consecutive snapshots ssi and ssi+1 represent a “step” in the
HTS’s execution. There are two levels of granularity for steps: a micro-step
represents the execution a single transition, and a macro-step is a sequence
of zero or more micro-steps taken between consecutive inputs I from the
environment.

2.3 Parameterized Semantics

Many modelling notations have comparable language constructs (e.g., states,
events, typed variables, transitions) and semantic domains (sequences of
snapshots), but they vary in how a model’s execution affects snapshot val-
ues and vice versa. For example, many notations have a notion of enabled
transition, representing the set of possible “next steps” that a model in a
particular execution state is ready to perform, but use different information
to decide which of a model’s transitions are enabled.

The semantic mapping from our modelling syntax to the semantic do-
main is defined in terms of functions and relations over snapshot elements.
In previous work, we developed a formalism called template semantics [29]
in which semantic-mapping definitions are parameterized, resulting in a defi-
nition for a family of modelling notations. The parameters effectively repre-
sent semantic variation points. We provide two template definitions below,
as examples:

enabled trans(ss, T) ≡

{τ ∈ T |en states(ss, τ) ∧ en events(ss, τ) ∧ en cond(ss, τ)}

execute(ss, τ, ss′) ≡

let 〈CS′, IE′, AV ′, O′, CS′

a
, IE′

a
, AV ′

a
, I ′

a
〉 ≡ ss′ in

next CS(ss, τ, CS′) ∧ next CSa(ss, τ, CS′

a
)∧

next IE(ss, τ, IE′) ∧ next IEa(ss, τ, IE′

a
)∧

next AV(ss, τ, AV ′) ∧ next AVa(ss, τ, AV ′

a
)∧

next O(ss, τ, O′) ∧ next Ia(ss, τ, I ′

a
)

Template enabled trans returns the subset of transitions (where T is
the HTS’s full set of transitions), whose source states, triggering events,

6 Adam Prout, Joanne M. Atlee, Nancy A. Day, Pourya Shaker

Table 1 Template parameters provided by users

Construct Start of Macro-step Micro-step
states reset CS(ss, I, CS′) next CS(ss, τ, CS′)

reset CSa(ss, I, CS′

a
) next CSa(ss, τ, CS′

a
)

en states(ss, τ)
events reset IE(ss, I, IE′) next IE(ss, τ, IE′)

reset IEa(ss, I, IE′

a
) next IEa(ss, τ, IE′

a
)

reset Ia(ss, I, I′

a
) next Ia(ss, τ, I′

a
)

en events(ss, τ)
variables reset AV(ss, I, AV ′) next AV(ss, τ, AV ′)

reset AVa(ss, I, AV ′

a
) next AVa(ss, τ, AV ′

a
)

en cond(ss, τ)

outputs reset O(ss, I, O′) next O(ss, τ, O′)

additional macro semantics

parameters pri(T) : 2T

resolve

and guard conditions are all enabled in snapshot ss. Predicates en states,

en events, and en cond are template parameters for how the snapshot
elements are used to determine the set of enabled transitions. Template ex-

ecute is a relation over consecutive snapshots ss and ss′, with unprimed
elements referring to snapshot values before the transition τ executes and
primed elements referring to snapshot values after the transition executes.
The template definition uses parameters next X, one for each snapshot
element X , as placeholders for how the execution of a transition τ affects
the individual snapshot elements. For example, executing a transition might
result in a new set of current control states, updates to variable values, an
update to the set of enabling events, and so on. There are five template def-
initions, including the above, that, taken together, reflect the identification
of enabled transitions, the effects of inputs from the environment, and the
effects of executing a micro- or macro-step.

2.4 Semantics Parameters

Our template-semantics definitions have a total of 22 parameters that rep-
resent variations on how a model’s snapshot can change during execution.

There are eight reset X(ss, I) predicates, each specifying how one snap-
shot element, ss.X , is updated to new value X ′ at the start of a macro-step
due to new environmental inputs I. Example values for some of these pa-
rameters include

– reset IE: Empty the set of events IE that were generated in the previ-
ous macro-step.

– reset Ia: Add inputs I to the snapshot element Ia, which records input
events.

– reset CS: Make no change to the set of current states CS.

There are also eight next X(ss, τ, X ′) predicates, each specifying how a
snapshot element, ss.X , is updated on execution of a transition τ . Example
values for some of these parameters include

Code Generation for Semantically Configurable Modelling Notations 7

Table 2 Event-Related Semantics Parameter Values

Parameter Parameter Value Informal Definition

reset IE(ss, I, IE′) IE′ = ∅ Set IE to be empty
IE′ = ss.IE Make no change to IE
IE′ = I Set IE to the inputs I from the environment
IE′ = ss.IE ∪ I Add inputs I to the set of events IE
IE′ = ss.IE ⌢ I Append inputs I to end of the queue IE of events

next IE(ss, τ, IE′) IE′ = gen(τ) Set IE to the events generated by τ

IE′ = ss.IE ∪ gen(τ) Add the events generated by τ to the events already in set IE
IE′ = ss.IE ⌢ gen(τ) Append the events generated by τ to the end of queue IE
IE′ = (ss.IE \ {trig(τ)}) ∪ gen(τ) Remove the trigger event from IE, and add the generated events
IE′ = tail(ss.IE) ⌢ gen(τ) Remove head element from IE’s queue, and append generated

events
reset IEa(ss, I, IE′

a
) IE′

a
= ∅ Set IEa to be empty

IE′

a
= {head(ss.Ia)} Set IEa to be the head element in event queue Ia

∃q ∈ ss.Ia.[IE′

a
= {(q, head(q))}] Set IEa to be the head element of an arbitirary input queue in

Ia’s set of queues
next IEa(ss, τ, IE′

a
) IE′

a
= ∅ Set IEa to be empty

IE′

a
= ss.IEa Make no change to IEa

IE′

a
= ss.IEa ∪ gen(τ) Add the events generated by τ to the events already in set IEa

IE′ = ss.IE ⌢ gen(τ) Append the events generated by τ to the end of queue IEa
reset Ia(ss, I, I′

a
) I′

a
= ∅ Set Ia to be empty

I′

a
= I Set Ia to the inputs I from the environment

I′

a
= ss.Ia ∪ I Add inputs I to the events already in set Ia

I′

a
= ss.Ia

⌢ I Append input events I to the end of input queue Ia
I′

a
= tail(ss.Ia) ⌢ I Remove head element from queue Ia, and append the inputs I

∀q ∈ ss.Ia.[Ia.q′ = ss.Ia.q ⌢ directed(q, I)] Append each input i=(queue, event) to its appropriate destina-
tion queue

next Ia(ss, τ, I′

a
) I′

a
= ∅ Set Ia to be empty

I′

a
= ss.Ia Make no change to Ia

I′

a
= ss.Ia ∪ gen(τ) Add the events generated by τ to the events already in set Ia

I′

a
= ss.Ia

⌢ gen(τ) Append τ ’s generated events to the end of input queue Ia
I′

a
= ss.Ia \ {trig(τ)} Remove τ ’s triggering event from Ia

∀q ∈ ss.Ia.[if (q, head(q)) ∈ trig(τ)
Remove τ ’s triggering event, and append each generated event
i=(queue, event) to its appropriate destination queue

then Ia.q′ = tail(ss.Ia.q) ⌢ directed(q, gen(τ))
else Ia.q′ = ss.Ia.q ⌢ directed(q, gen(τ))]

en event(ss, τ) trig(τ) ⊆ ss.IEa Transition’s triggering event(s) must be in IEa
trig(τ) ⊆ (ss.Ia ∪ ss.IE) Transition’s trigger(s) must be in Ia or IE
trig(τ) ⊆ (ss.Ia ∪ ss.IEa) Transition’s trigger(s) must be in Ia or IEa
trig(τ) = head(ss.IE) Transition’s trigger matches the head of queue IE

– next IE: Update the set of enabling events IE to be exactly the events
generated by τ

– next IE: Add the events generated by τ to the set of events already in
IE

– next AV: Update the current variable values in AV based on τ ’s as-
signments

There are the three enabled trans parameters that specify how the
snapshot elements are used to identify enabled transitions. Function pri

specifies a default priority scheme on transitions (e.g., transitions with
higher-ranked source states might have priority over transitions with lower-
ranked source states). Parameter macro semantics specifies when new
inputs are sensed from the environment (e.g., after every micro step, or
when no transition is enabled). Parameter resolve specifies how to resolve
concurrent assignments to shared variables.

The 22 parameters are listed in Table 1, organized by language construct.
Parameters that are associated with the same language construct tend to

8 Adam Prout, Joanne M. Atlee, Nancy A. Day, Pourya Shaker

have compatible values. For example, the seven event-related parameters
work together to determine which events can enable transitions and which
events remain to be processed. Example parameter values for event-related
semantics parameters are listed in Table 2.

2.5 Composition Operators

So far, we have discussed the execution of a single HTS. Composition oper-
ators specify how multiple HTSs execute concurrently and how they share
information. Informally, a composition operator defines an “allowable (col-
lective) step” that a collection of HTSs takes. What differentiates one com-
position operator from another are the conditions under which it allows, or
forces, its component HTSs to take a step.

Our prototype code-generator generator supports variations of seven bi-
nary composition operators. Each operand is either an HTS or a collection
of previously composed HTSs.

– interleaving: One of the operands takes a step if enabled, but not both.
– parallel: Both operands execute simultaneously if both are enabled.

Otherwise, one or the other operand executes, if enabled.
– interrupt: Control passes between the operands via a set of interrupt

transitions.
– sequence: One operand executes to completion, then the other operand

executes to completion.
– choice: One operand is chosen to execute, and thereafter only the chosen

operand executes.
– environmental synchronization: All HTS components that have a

transition enabled by a specified synchronization event execute those
transitions simultaneously. Otherwise, the operands’ executions are in-
terleaved.

– rendezvous: A pair of HTS components (one in each operand) execute
simultaneously only if (1) one HTS component has an enabled transition
that generates a specified rendezvous event, and (2) the other HTS com-
ponent has a transition that is enabled by the same event. Otherwise,
the operands’ executions are interleaved.

Composition operators may be combined in the same model to affect differ-
ent types of synchronization and communication among the model’s com-
ponents. We use the term composition hierarchy to refer to a model’s com-
position structure, because the structure forms a binary tree (see the left
side of Figure 3).

Figure 2 shows the composition hierarchy for a Ground-Traffic Control
System [40] that is used throughout the paper to exemplify aspects of our
approach. The airport-controller component responds to airplanes’ requests
to take off, land, and taxi by telling them which runway or taxiway to use.
The models for runways (Figure 1) and taxiways keep track of the current

Code Generation for Semantically Configurable Modelling Notations 9

Rendezvous

A
ir

po
rt

 C
on

tr
ol

le
r

R
un

w
ay

 R
1

R
un

w
ay

 R
2

T
ax

iw
ay

 C
1

T
ax

iw
ay

 C
2

T
ax

iw
ay

 C
3

Env SyncInterlv Interlv Interlv

Fig. 2 Compositional Hierarchy for a Ground-Traffic Control System

states of the real-world entities they represent. The runways are interleaved
with each other, as are the taxiways. The environmental synchronization
operator synchronizes the runways with the taxiways, so that both are aware
when an airplane is at the intersection of a runway and a taxiway. The
rendezvous operator synchronizes the controller and the runways to ensure
that they have a shared understanding of the status of the runways.

3 CGG Architecture

We use template semantics as the basis for realizing semantically config-
urable code generation. Because semantics is specified as parameter val-
ues, we can create a parameterized code-generator generator (CGG) that
produces a code generator specialized to a particular modelling notation’s
semantics; the produced code generator transforms models from that mod-
ellng notation into representative Java programs.

Our prototype CGG is implemented using preprocessor directives and
conditional compilation as a primitive form of generative programming.
Other generative-programming technologies could have been explored [4,
5,7,22]. However, preprocessor directives were sufficiently powerful and its
technology is stable. Moreover, it was not clear how easy it would be to
express one of the semantics parameters, macro-semantics, as a plugable
component: its values are not predicates or functions, like those of the other
parameters, but rather are names that specify the granularity of an execu-
tion step.

The CGG source code is annotated with preprocessor directives that in-
dicate the parts of the source that are specific to each supported parameter
value. The user provides a file that lists a preprocessor #define declara-
tion for each template parameter, specifying the value of that parameter.
Compiling the CGG source code along with the parameter-definition file
compiles only the parts of the CGG code that are associated with the spec-
ified parameter values, thereby producing a code generator for the user’s
modelling notation. We then execute the produced code generator on an
input model, thereby generating a Java program whose executions match
the model’s execution traces.

Our prototype CGG supports 57 parameter values, roughly 2-5 values
per parameter. We have not attempted to identify or implement a com-

10 Adam Prout, Joanne M. Atlee, Nancy A. Day, Pourya Shaker

plete set of parameter values, as “completeness” depends on the desired
family of notations to be supported. We expect specifiers to devise new
semantic variants as they try to model unusual problems. To that effect,
we have structured the CGG program such that the preprocessor directives
are highly localized, easing the task of adding support for new parameter
values.

4 Generated Java Code

Java natively supports concurrency using threads and supports synchro-
nization using monitors. Intuitively, mapping HTSs to Java threads and
mapping composition operators to Java monitors seems like a good idea.
The problem is that some template-semantics composition operators, such
as rendezvous and environmental synchronization, require global knowledge
to determine whether concurrent machines ought to execute simultaneously.
For example, the environment synchronization operator, borrowed from pro-
cess algebras, needs to know about all HTS components that have transi-
tions enabled by some synchronization event. Collecting this information
effectively synchronizes all of the program’s threads, and the savings that
would be gained from executing the HTS steps in parallel is not large enough
to offset the cost of this synchronization.

Instead, we generate a single-threaded program that controls the ex-
ecution of the program’s concurrent components via method calls. The
program’s run-time structure resembles the structure of the model from
which it is created. For example, the object model of the program gener-
ated from our model of the Ground-Traffic Control System (from Figure 2)
is shown in Figure 3. Each composition operator and HTS is implemented
as a (shaded) Java object, and these classes are organized as a tree that
mirrors the model’s composition hierarchy. Moreover, every HTS object has
member variables that refer to local objects implementing local snapshot el-
ements (CS, IE, IEa, etc.). The snapshot elements Ia, AV, AVa are shared,
and every HTS object has references to these global objects.

The generated program simulates the “steps” of the model’s possible
behaviours. A step has two phases. In the first phase, the System object
requests information about all enabled transitions in all HTSs. This request
is triggered by the sensing of input events from the environment (object
Inputs in Figure 3), and is recursively passed down the composition hier-
archy, with each operator class requesting information from its operands’.
At the leaf nodes of the hierarchy, each of the HTS objects identifies its en-
abled transitions, stores its results locally in member variables, and passes
its results back to its parent node in the composition hierarchy. In turn,
each operator class combines its operands’ results and passes the informa-
tion to its parent node, and so on until the System object receives all of the
information.

In the second phase, execution decisions in the form of constraints flow
from the System object down the composition hierarchy to the HTSs: every

Code Generation for Semantically Configurable Modelling Notations 11

Airport

Controller

Runway

R1

Runway

R2

Taxiway

C1

Taxiway

C2

Taxiway

C3

RendSync

Type

EnvSync

Type

Interlv

Type
Interlv

Type

Interlv

Type

CS
RunwayR1

CSa
RunwayR1

IE
RunwayR1

O
RunwayR1

CS
RunwayR2

CSa
RunwayR2

IE
RunwayR2

O
RunwayR2

●
●
●

●
●
●

CS
TaxiwayC1

CSa
TaxiwayC1

IE
TaxiwayC1

O
TaxiwayC1

●
●
●

CS
TaxiwayC2

CSa
TaxiwayC2

IE
TaxiwayC2

O
TaxiwayC2

●
●
●

CS
TaxiwayC3

CSa
TaxiwayC3

IE
TaxiwayC3

O
TaxiwayC3

●
●
●

Ia

AV

AVa

System

Inputs

Global

Snapshot

Elements

Operator

Classes

HTS

Classes

Local

Snapshot

Elements

Fig. 3 Code structure for Ground Traffic Control System example. Shaded ob-
jects mimic the composition hierarchy of the model from Figure 2

operator object (1) receives constraints from its parent node, restricting
which enabled transition(s) should be selected for execution, (2) possibly
asserts additional constraints, and (3) recursively sends the cumulation of
constraints to one or both of its operands. Constraints may be as specific as
stipulating that a particular transition be executed or as general as requiring
that some enabled transition execute. Constraints reach only the HTSs that
are chosen to execute. Each chosen HTS executes a transition that satisfies
its constraints and updates its snapshot.

In the rest of this section, we discuss the generated Java classes in more
detail. The discussion is structured in terms of the phased execution de-
scribed above: we consider each class’s contribution to the identification of
enabled transitions followed by each class’s contribution to the selection and
execution of transitions. The generated code preserves any nondeterminism
in the model, which is useful for simulation and reasoning about all possi-
ble executions. In Section 5, we discuss ways of resolving nondeterminism,
to produce deterministic code from nondeterministic models. We conclude
with a discussion of how we optimize the generated code.

12 Adam Prout, Joanne M. Atlee, Nancy A. Day, Pourya Shaker

VAR Set enabledTrans
VAR Map syncTrans, rendTrans
VAR Transition exec
VAR EventSnap &Ia = globalIa
VAR VarSnap &AV = globalAV
VAR VarSnap &AVa = global AVa
VAR StateSnap CS
. . .
VAR EventSnap O

1: IsEnabled(set syncEv, rendEv; bool enabled)
2: enabled = false
3: for each transition τ in HTS do

4: if en state(τ) ∧ en cond(τ) ∧ en events(τ) then

5: enabled = true
6: if τ is triggered by a rendezvous event e then

7: rendEv.add(e)
8: rendTrans.insert(e,τ)
9: else if τ is triggered by a sync event e then

10: syncEv.add(e)
11: syncTrans.insert(e,τ)
12: else

13: enabledTrans.add(τ)
14: end if

15: end if

16: end for

1: Execute(event syncEv, rendEv)
2: if rendEv is not null then

3: exec = rendTrans.lookup(rendEv)
4: else if syncEv is not null then

5: exec = syncTrans.lookup(syncEv)
6: else

7: exec = top priority τ ∈ enabledTrans
8: end if

9: {update snapshot elements}
10: Ia.next(exec)
11: AV.next(exec)
12: AVa.next(exec)
13: CS.next(exec)
14: CSa.next(exec)
15: IE.next(exec)
16: IEa.next(exec)
17: O.next(exec)

Fig. 4 Pseudocode for Taxiway HTS. Configurable code is highlighted in small

caps.

4.1 HTS - Enabled Transitions

A separate class is generated for each HTS in the input model. Figure 4
sketches the class generated for the C1Taxiway HTS from the Ground-
Traffic Control System example. The Taxiway class contains a member
variable for each of the HTS’s snapshot elements, some of which are lo-
cal objects and some of which are references to global snapshot objects. In
addition, there are member variables that store information about enabled
transitions.

Each HTS object is responsible for determining which of its HTS’s tran-
sitions are enabled in the current snapshot. It has an IsEnabled() method
that identifies the enabled transitions (shown on the left in Figure 4). Much
of this task is done by methods that implement the semantic parameters
en state, en event, and en cond (lines 4-5). These methods compare a
transition’s source state, triggering event, and guard against the contents
of the snapshot objects and determine whether the transition is currently
enabled. IsEnabled() also computes and stores any enabledness information
that is needed by any of the composition operators in the model: enabled
rendezvous transitions are stored in rendTrans (lines 6-8), enabled transi-
tions that are triggered by a synchronization event are stored in syncTrans
(lines 9-11), and ordinary enabled transitions are stored in enabledTrans
(lines 12-13). Abstract information about enabled transitions –such as that
there exists some enabled transition, or that there exists a transition en-
abled by a particular synchronization event – are passed back to the HTS’s
parent node via assignments to the method’s parameters (lines 1, 5, 7, 10).

Code Generation for Semantically Configurable Modelling Notations 13

VAR bool LEnabled, REnabled
VAR operand compToExecute

1: IsEnabled(bool enabled)
2: left.IsEnabled(LEnabled)
3: right.IsEnabled(REnabled)
4: enabled = LEnabled ∨ REnabled

1: Execute()
2: if LEnabled ∧ REnabled then

3: compToExecute = choose left or right child
4: compToExecute.execute()
5: else if LEnabled then

6: left.Execute()
7: else if REnabled then

8: right.Execute()
9: end if

Fig. 5 Pseudocode for interleaving composition.

4.2 Composition Operators - Enabled Components

In this section, we describe the Java implementations of composition oper-
ators. To ease presentation, we first assume that a model employs only one
type of operator. In Section 4.4, we describe how an operator’s implementa-
tion changes when it is combined with other types of composition. Details
beyond the implementation sketches provided below can be found in [35].

A Java class is generated for each operator type used in the model, and
an object is instantiated for each operator instance in the model. Thus,
the code for our Ground-Traffic Control example includes three operator
classes: rendezvous, environmental synchronization, and interleaving. The
interleaving class is instantiated three times.

The implementations of composition operators are model independent.
Each operator class has an IsEnabled() method that determines whether
the operator’s components have enabled transitions. This method (1) re-
cursively calls the IsEnabled() methods of its two operands (each of which
is either an HTS or a composition operator with its own operands), (2) com-
bines its operands’ enabledness information, (3) stores the results in member
variables, and (4) passes the results to its parent node via pass-by-reference
parameters.

4.2.1 Interleaving and Parallel Composition The IsEnabled() method for
the interleaving operator is shown on the left in Figure 5. The parameter
encodes the enabledness information that is returned. In interleaving, the
only enabledness information is an enabled flag that indicates whether the
operator has any descendent HTS with enabled transitions. The method
calls the IsEnabled() methods of its two operands and stores the results
in member variables (L/R)Enabled (lines 2-3). The method then computes
the operator’s own enabledness, which is true if either of the operands is
enabled (line 4), and returns the result via its parameter (line 1). The IsEn-
abled() method for the parallel composition operator is the same as that for
interleaving composition.

4.2.2 Environmental Synchronization The operators that synchronize the
execution of multiple transitions have more intricate implementations. Fig-
ure 6 presents the pseudocode for the Java class that implements envi-
ronmental synchronization composition. This operator introduces a set of
synchronization events (syncEvents), and all enabled transitions in com-

14 Adam Prout, Joanne M. Atlee, Nancy A. Day, Pourya Shaker

ponent HTSs that are triggered by the same sync event execute simulta-
neously. Each instance of this composition operator has member variables
(L/R)Enabled that record whether its left and right operands have enabled
transitions. In addition, it has two other member variables, (L/R)SynEv,
that record all synchronization events that trigger enabled transitions in
the left and right operands, respectively1. The variable syncEvents refers to
the static set of synchronization events associated with this instance of the
operator, as declared in the model.

The IsEnabled() method collects enabledness information from its operands
(lines 2-3), and then computes its own enabledness. An environmental syn-
chronization operator is enabled if both of its operands have transitions en-
abled by one of the operator’s syncEvents (line 5) or if either of its operands
has a transition that is enabled by some non sync event (line 4). The op-
erator passes back to its parent a flag indicating whether it is enabled and
the set of sync events that enable its components’ transitions.

4.3 Composition Operators - Execution Phase

At the end of the first phase, each object in the composition hierarchy is
populated with information about the transitions enabled in its HTS or com-
ponent HTSs. In the second phase, a subset of these transitions is selected
for execution The selection process is incremental, with each composition
operator contributing to the process by imposing constraints on the final
selection of transitions. These constraints can be light constraints (e.g., an
arbitrary enabled transition from among its right operand’s HTSs) or can
be a tight constraint (e.g., transitions enabled by a specific event).

The selection process starts at the top of the composition hierarchy
with a call to the root node’s Execute() method. Each operator class has an
Execute() method that propagates and contributes selection constraints to
its operands. In general, the method (1) receives selection constraints via its
parameters, (2) possibly asserts additional, operation-specific constraints,
and (3) recursively calls the Execute() method of one or both of its operands,
providing an augmented set of constraints

At the end of the execution phase, the selection constraints reach the
HTS objects, each of which selects and executes one of its enabled transitions
that satisfies all imposed constraints.

4.3.1 Interleaving and Parallel Composition The Execute() method for an
interleaving operator is shown on the right in Figure 5. If both of operator’s
operands are enabled, then one is nondeterministically chosen to execute
(lines 2-4)2. Otherwise, the solely enabled operand is instructed to execute

1 Actually, all sync events that enable the operands’ transitions are passed to the
parent node, rather than just those identified on line 5, because other operators
in the composition hierarchy may be interested in these other events.

2 The generated Java program uses random number generators to make such
nondeterministic choices.

Code Generation for Semantically Configurable Modelling Notations 15

VAR bool LEnabled, REnabled
VAR set LSyncEv, RSyncEv

1: IsEnabled(bool enabled, set syncEv)
2: left.IsEnabled(LSyncEv,LEnabled)
3: right.IsEnabled(RSyncEv,REnabled)

4: un-sync = LEnabled ∨ REnabled
5: sync = (LSyncEv ∩ RSyncEv ∩ syncEvents) 6= Ø
6: enabled = un-sync ∨ sync
7: syncEv = LSyncEv ∪ RSyncEv

1: Execute(event constraint)
2: {Case 1: enforce synchronization imposed by ancestor}
3: if constraints is not null then

4: if constraint∈(LSyncEv ∩ RSyncEv ∩ syncEvents) then

5: left.Execute(constraint)
6: right.Execute(constraint)
7: else if constraint ∈(LSyncEv ∩ RSyncEv) then

8: compToExecute = choose left or right child
9: compToExecute.Execute(constraint)

10: else if constraint ∈ LSyncEv then

11: left.Execute(constraint)
12: else if constraint ∈ RSyncEv then

13: right.Execute(constraint)
14: end if

15: else

16: {Case 2: make local decisions about synchronization}
17: sub sync events = (LSyncEv ∩ RSyncEv ∩ syncEvents)
18: if sub sync events 6= Ø ∧ LEnabled ∧ REnabled then

19: choice = choose sync or un-sync
20: else if LEnabled ∨ REnabled then

21: choice = un-sync
22: end if

23: if choice==sync {Case 2a } then

24: event = choose an event in sub sync events
25: left.Execute(event)
26: right.Execute(event)
27: else if choice==un-sync {Case 2b} then

28: if LEnabled ∧ REnabled then

29: compToExecute = choose left or right child
30: compToExecute.Execute()
31: else if LEnabled then

32: left.Execute()
33: else if REnabled then

34: right.Execute()
35: end if

36: end if

37: end if

Fig. 6 Pseudocode for Environmental Synchronization

16 Adam Prout, Joanne M. Atlee, Nancy A. Day, Pourya Shaker

(lines 5-8). It is guaranteed that at least one of the operands is enabled,
otherwise the operator’s Execute() method would not have been invoked.
The Execute() method for the parallel composition operator is almost the
same, except that in parallel composition, if both operands are enabled then
both are instructed to execute simultaneously.

4.3.2 Environmental Synchronization Synchronization operators have more
complicated Execute() methods because of their potential for operator-
specific transition-selection constraints. It is for this reason that we initially
present each composition operator in isolation (i.e., we assume that models
employ only one type of composition operator). The Execute() method for
environmental synchronization is separated into three cases:

1. Imposed constraint: The invocation of Execute() includes as a param-
eter a constraint asserting that the selected transition(s) be triggered by
a particular sync event. If the imposed synchronization-event constraint
is one of the operator’s own sync events, then the operator will synchro-
nize its operands’ executions: if both operands have transitions triggered
by this event, then both are instructed to execute (lines 4-6). Otherwise,
at most one operand may execute, and only if it has transitions enabled
by the constraint’s sync event (lines 7-14).

2. Constraint Free: The invocation of Execute() does not include an
imposed synchronization-event constraint, which means the operator is
free to impose its own constraint.
(a) Sync: If both operands have transitions that are triggered by one

of the operator’s sync events, then the operator may choose to syn-
chronize its operands’ executions (lines 17-19), asserting a new event
constraint (lines 17, 24-26).

(b) Nonsync: The operator instructs one of its enabled operands to
execute some transition that does not involve any of the operator’s
sync events (lines 27-36).

In all cases, all imposed and new constraints are propagated in the recursive
calls to the operands’ Execute() methods.

Note that if both the new constraint and the nonsync cases are both
possible, then one is nondeterministically chosen. Thus, the composition
hierarchy of a model does not impose a priority scheme among composition
operators and their selection of enabled transitions to be executed.

4.3.3 Other Composition Operators. Our CGG also supports rendezvous,
interrupt, sequence, and choice composition operators. The Java classes
generated for these operators resemble the class generated for the environ-
mental synchronization operator, in that they introduce member variables
to keep track of operator-specific enabledness information, and their Exe-
cute() methods are structured into three cases: accommodating an imposed
transition-selection constraint, imposing an operator-specific constraint, or
imposing no constraint. The details of how all supported composition oper-
ators are implemented can be found in [35].

Code Generation for Semantically Configurable Modelling Notations 17

4.4 Heterogenous Compositional Hierarchies

In this section, we describe how the implementations of composition oper-
ators, as presented in the previous section, change when multiple types of
operators are used in the same model. For example, most of the composi-
tion operators track distinct enabledness information: environmental syn-
chronization keeps track of the synchronization events that trigger enabled
transitions, and rendezvous composition keeps track of both the rendezvous
events that are generated by enabled transitions and the rendezvous events
that would trigger transitions.

In a heterogeneous composition hierarchy, each operator node must keep
track of, and pass as IsEnabled() parameters, all information needed by
any operator in the composition hierarchy. Thus, all operator classes have
member variables for all types of enabledness information, and all of their
IsEnabled() methods include parameters for these data. In fact, all of the
operator classes’ IsEnabled() methods are the same, except for how their
respective enabled parameters are computed, which are operator-specific
and are as described in the previous section.

The operators’ Execute() methods must expand to accommodate any
transition-selection constraint imposed by any type of ancestor operator.
Among all of the composition operators supported by CGG, there are only
four types of constraints:

1. A particular (interrupt) transition
2. Transitions triggered by syncEvents
3. Some (one) transition triggered by a rendezvous event
4. Some (one) transition that generates a rendezvous event

Of these, an Execute() method would receive at most one constraint specify-
ing a particular transition and at most one constraint specifying a particular
event (and would receive both only if the specified transition were triggered
by the specified event). In the case of an imposed constraint, an operator
asserts its semantics within the set of enabled transitions satisfying the con-
straints. If no constraint is imposed, then the operators’ Execute() methods
behave as described in the previous sub-section.

4.5 HTS - Execute Transitions

Each HTS object is responsible for making the final selection of transitions
to execute and for realizing their executions. Each HTS also has an Ex-
ecute() method (shown on the right in Figure 4) that is called when the
HTS is instructed to execute as part of a step. In this method, one of the
enabled transitions identified by IsEnabled() is chosen for execution. Invo-
cation may include transition-selection constraints as parameters (line 1), in
which case the transition chosen for execution must satisfy the constraints
(lines 2-5). If there are no selection constraints, then the top-priority transi-
tion in enabledTrans is selected to execute (lines 6-7). In the end, the chosen

18 Adam Prout, Joanne M. Atlee, Nancy A. Day, Pourya Shaker

transition is “executed” via inline procedures that implement the next X

template parameters, which in turn update all of the snapshot elements
(lines 10-17).

4.6 Optimizations

The CGG employs a number of simple optimizations to improve the per-
formance of the generated Java code. Some optimizations are based on the
modelling notation’s semantics. For example, the Java classes for unused
snapshot elements are not generated. As another example, the search for
enabled transitions is done in order of the transitions’ priority (based on
the model’s composition hierarchy, the HTS’s state hierarchy, and the value
of the priority template parameter). Thus, when an enabled transition is
found, no transition of lower priority is checked.

Most optimizations are model independent. For example, some compu-
tations can be statically computed or optimized, such as the determination
of which HTS states are entered and exited when a transition executes. As
another example, if a composition operator is associative, then consecutive
applications of that operator can be compressed into a single operator with
multiple operands. A flattened composition hierarchy results in a more effi-
cient execution step because there are fewer recursive calls and less caching
of enabledness information.

5 Resolving Nondeterminism

The code described in the previous section simulates a model’s nondetermin-
ism. Such a semantics-preserving transformation is useful during modelling
and analysis, but is not appropriate for a deployable implementation. Our
CGG can either generate a nondeterministic program that completely sim-
ulates the input model or generate a deterministic program that satisfies
the model’s specification.

Our general strategy for resolving nondeterminism is to use priorities. If
the priorities provided by the specifier – in the form of explicit priorities on
transition labels, on synchronization events, the notation’s priority scheme
pri – are not sufficient to make the model deterministic, then we impose
default priorities on the remaining nondeterministic choices. Because the
specifier has implicitly indicated that all choices are equally valid, any de-
fault priority that we choose should be acceptable. In cases where a default
priority would introduce an asymmetry that could lead to unfair executions,
we rotate priority among the enabled entities:

– HTSs: simultaneously enabled transitions within an HTS, if they are
not prioritized by explicit priorities on the transition labels or by the
template parameter values, are “prioritized” according to the order in
which they are declared.

Code Generation for Semantically Configurable Modelling Notations 19

– interleaving: the interleaving of two simultaneously enabled compo-
nents is “prioritized” by alternating which component is executed when
both are enabled.

– synchronized operations: simultaneously enabled synchronized tran-
sitions (enabled by multiple simultaneous sync or rend events), if not
prioritized by an explicit ordering on the events, are “prioritized” by the
order in which the events are declared.

– synchronized operations: if synchronized and non-sychronized transi-
tions are simultaneously enabled, the synchronized transitions are given
higher priority, so that components do not miss the opportunity to react
to a synchronization event.

– rendezvous operations: if components can synchronize either by send-
ing or receiving a rend event, the role (sender or receiver) that a com-
ponent plays alternates.

The result of these decisions is a deterministic program that satisfies
the model. A beneficial side effect is improved performance, because less
enabledness information is communicated and there is no generation of ran-
dom choices.

6 Evaluation

We report on the correctness, efficiency, and limitations of our work.

6.1 Correctness

To assess whether our generated code matches the semantics of its corre-
sponding model, we compared the code’s sequence of snapshots, taken at
the end of execution steps, against the model’s sequence of snapshots for the
same sequence of input events. We designed a test suite of models that ex-
ercised different parts of the CGG. The test suite covered each implemented
template-semantics parameter and each composition operator at least once,
covered all pairs of composition operators, and tested more complicated hi-
erarchies involving some of the more complicated operators. All testing was
done on deterministic programs. Nondeterministic programs were manually
inspected.

In order to test more complex composition hierarchies involving some of
the more sophisticated operators, we also evaluated CGG on the Ground-
Traffic Control System that was introduced in Section 2.5. This example
also introduced a new template-parameter value (e.g., an enabling event
persists until it triggers some transition). We generated the code for this
model and tested it on input sequences that exercise a number of safety
properties (e.g., an airplane can taxi across a runway only if the runway is
not in use). We inspected the code’s execution traces and verified that they
conform to the model’s traces.

20 Adam Prout, Joanne M. Atlee, Nancy A. Day, Pourya Shaker

6.2 Efficiency

We also evaluated the performance of our generated code, as an assessment
of the performance penalty for supporting semantic configurability. We com-
pared our generated code to that of three commercial tools: IBM’s Rational
Rose Realtime (Rose RT) [20], IBM Rational Rhapsody (Rhapsody) [39],
and SmartState [1], each of which generates code for a single modelling no-
tation. For each tool, we expressed its notation in template semantics and
produced our own code generator for that notation. We then used the code
generators to generate Java programs for four models:

– PingPong is an example model provided in the distribution of Rose RT.
It consists of two concurrent machines that execute a simple request-
reply protocol.

– An Elevator for a three floor building, whose components model the
controller, service-request buttons, the engine, and the door and door
timer.

– A Heater, whose components model the controller, the furnace, and sen-
sors in the room.

– A hotel-room Safebox, whose components model a keypad for entering
security codes, a display, and the status of the lock.

The PingPong model is a simple request-reply protocol that passes a token
between two components a set number of times before terminating. The
other three models are small but typical software controllers for embed-
ded systems. Each of the embedded-system models is composed with an
appropriate environment component that feeds input events to the system
model. By forming a closed-world model of the system and its simulated
environment, we are able to evaluate the performance of the generated code
without having to interact with the program while it executes.

The first two studies, shown in Table 3, compare our generated code
against that generated by Rose RT and Rhapsody. These two tools support
the Unified Modelling Language (UML) and have similar semantics: com-
munication between machines is via message passing, all generated messages
are sent to a single global queue3, and only the event at the head of this
queue can trigger transitions. One difference between them is that in Rose
RT a message event triggers only one (compound) transition, whereas in
Rhapsody an event can initiate a sequence of transitions.

Using CGG, we generated code generators that simulate the semantics
of the Rose RT and Rhapsody code generators. We ran the code generators
on all four models, and then measured the execution times of the generated
programs. The results reported in Table 3 are the average execution times
over 10 runs, with each run consisting of 100,000 iterations between the
system and environment components in Heater, Elevator, and Safebox, and
500,000 iterations between the Ping and Pong components in PingPong.

3 Both Rose RT and Rhapsody allow multiple event queues and allow the spec-
ifier to indicate which machines share which event queues.

Code Generation for Semantically Configurable Modelling Notations 21

Table 3 UML Comparisons (seconds)

Model Rose RT Rhapsody CGG-Det

PingPong-UML 0.5 1.3 1.2

Elevator-UML 3.5 18.8 53.3

Heater-UML 0.4 2.3 5.3

Safebox-UML 1.1 3.2 4.5

Table 4 Statecharts Comparisons (seconds)

Model SmartState CGG-Det

PingPong-SS 1.3 1.6

Elevator-SS 16.6 14.3

Heater-SS 3.9 2.6

Safebox-SS 6.8 6.2

All runs were performed on a 3.00Ghz Intel Pentium 4 CPU with 1GB of
RAM, running Windows XP Professional Version 2002. We used the default
code generation settings of both Rhapsody and Rose RT. Alternative set-
tings (e.g., the time model setting of Rhapsody) were not applicable to our
models, and so the possible code generation optimizations afforded by these
settings were not applied in our evaluation. On average, deterministic CGG-
generated programs (CGG-Det) took 8.8 times longer to run than Rose RT
generated programs, and 1.9 times longer to run than Rhapsody generated
programs. The deterministic CGG version of PingPong performed slightly
better than the Rhapsody version. Similar comparisons with nondetermin-
istic CGG-generated programs had similar results. This is not surprising
given that all of the models in our evaluation suite are deterministic.

We also generated a statecharts-based code generator and compared
its generated code to that generated by SmartState. SmartState semantics
uses parallel composition and broadcasting of events. In addition, Smart-
State assumes open-world models, so we removed the environmental com-
ponent from each input model and provided an application wrapper that
generates environmental events for the model. The performance results are
summarized in Table 4. On average, SmartState generated programs ran
1.2 times longer than deterministic CGG generated programs (CGG-Det).
The SmartState generated PingPong program slightly outperformed the
deterministic CGG generated program.

Overall, the cost of semantically configurable code generation appears
to vary with the semantics chosen and the number of concurrent compo-
nents. Our statecharts-based code generator performs slightly better than
SmartState on the larger models, but not as well on the toy model Ping-
Pong. Our UML-based code generators are competitive with Rhapsody for
models with fewer components (PingPong, Heater, Safebox), but less so on
the larger model, Elevator. Rose RT significantly outperforms Rhapsody
and CGG-Det on all models. We believe that with an investment in further

22 Adam Prout, Joanne M. Atlee, Nancy A. Day, Pourya Shaker

optimizions to CGG generated code, this performance gap can be reduced.
For example, when the input model does not use any of the synchronization
operators, each HTS could run on its own thread and the coordination of
selecting which transitions to execute could be loosened.

In addition to the above case studies, we generated code for the Ground-
Traffic Control System described in Section 2.5, composed with an environ-
ment component as in the embedded system case studies. The code for this
case study could not be compared with that of commercial code generators,
because it uses notation semantics and composition operators (namely en-
vironment synchronization and rendezvous) that are not supported by the
other tools. The average execution time over 10 runs, with each run consist-
ing of 100,000 iterations between the system and environment components
was 15.1 seconds. The runs were performed on the same platform as the
other case studies.

6.3 Limitations

The most significant limitation of our work is its inefficiency. In the current
implementation, the generated code is single threaded, and each step of
the program involves consulting all HTS and composition-operator objects
to identify an admissible set of transitions to execute. That said, we were
pleasantly surprised by how well our generated code performed compared to
code generated by commercial tools. Moreover, there are several additional
optimizations that could be explored. The most promising of these would
be to detect when the input model does not use any of the composition op-
erators involving synchronization (parallel, environmental synchronization,
and rendezvous); and in these cases, replace the globally-coordinated step
with a more distributed execution step. For example, any HTS that does
not have an ancestral synchronization operator in the composition hierarchy
could execute on its own thread.

A second limitation is with the extensibility of the CGG tool. Most ob-
viously, the scope of the CGG is limited to what can be expressed using
template semantics. Thus, adding new syntax and accompanying semantics
(e.g., real-time clocks and timers) is outside the scope of the CGG. Adding
new template-parameter values is the easiest change to make because the
CGG has been structured to localize the code pertaining to parameter val-
ues. In contrast, implementing a new composition operator is not so easy. In
addition to implementing a new class for the operator, the HTS and other
operator classes would have to be changed to compute and communicate
any new enabledness information needed by the new operator, and to re-
alize and communicate any new transition-selection constraints asserted by
the new operator.

Code Generation for Semantically Configurable Modelling Notations 23

7 Related Work

Most model-driven-engineering environments are centred on a single mod-
elling notation that has a single semantics [8,20,38,39]. Configurability in
such systems is geared more towards flexibility in the target language or
platform [9,14] than in the modelling notation. There are a few excep-
tions. For example, Rational RoseRT and Rhapsody have options to choose
whether event queues are associated with individual objects, groups of ob-
jects, or the whole model. Rhapsody allows both parallel and interleaving
execution of concurrent regions and objects. BetterState supports multi-
ple priority schemes on transitions and choices on the ordering of state
entry/exit actions vs. transition actions. Such options allow the specifier
some control over the modelling notation, but are not nearly as rich as our
template-semantics parameters.

Our work can be viewed as an instance of generative programming, where
template semantics is a domain-specific language for describing “features”
of modelling notations, and CGG is a generator for a family of model-driven
code generators. What distinguishes our work from typical generative pro-
gramming is that the “features” are not functional requirements or compo-
nents, but instead are semantic parameters of a general-purpose behavioural
modelling notation.

Meta-modeling [32] notations are more expressive than template seman-
tics in describing modelling notations. However, their focus is on the ab-
stract syntax of a modelling notation and not on its semantics. Model
transformation technologies, such as QVT [31] and graph grammars [25],
facilitate the transformation of models whose meta-models are well-defined.
However, it is not clear that these technologies will help meta-model de-
signers to create code generators for their modelling notations. Instead, the
state of the art in code generation seems to be to support configurable lan-
guage features [13,15], and to embed the semantics of those features in the
implementation of the code generator.

There are mechanisms other than template semantics, such as hyper-
graphs [34], inference graphs [12], graph grammars [3], structured opera-
tional semantics rules [6,12], higher-order logic [10], that support seman-
tically configurable modelling notations and that have been used to create
semantically configurable tools. More generally, compiler generators [23] are
able to construct compilers directly from a language’s semantics expressed
using denotational semantics [2,33], operational semantics and rewrite rules [16,
17], natural semantics [11], and language algebras [24]. A key disadvantage
of these approaches is that one has to write a complete semantics for the
modelling notation, or at least must provide a complete definition of the
semantic mapping [3]. The main premises behind our work on semantically
configurable modelling environments are that (1) writing a notation’s formal
semantics is hard (sometimes worthy of a research publication), and (2) we
can simplify the task of writing semantics definitions by taking advantage of
the commonalities among notations’ semantics. In the template-semantics

24 Adam Prout, Joanne M. Atlee, Nancy A. Day, Pourya Shaker

approach, specifying the semantics of a modelling notation is reduced to
providing a collection of relatively small semantics-parameter values that
instantiate a predefined semantic mapping. The trade-off is that our CGG
creates code generators only for template-semantics expressible notations
– although template semantics has been shown to be expressive enough to
represent a wide variety of language semantics [29,30,37], and the CGG is
structured to facilitate the adding of new template-parameter values.

8 Conclusion

In this work, we explore template semantics as a parse-able semantics de-
scription that enables semantically configurable code generation. Configura-
bility is in the form of semantics parameters, so that the specifier is spared
from having to provide a complete semantics definition.

We built a proof-of-concept code-generator generator that supports 7
different composition operators, 22 semantics parameters, and 57 parameter
values that can be combined in multiple ways. Using this environment, we
are able to create and generate code for models whose semantics vary from
that of standard modelling notations, in ways that better fit the problem
being modelled. We demonstrate the utility of our approach on an airport-
runway model that could not so easily have been modelled and implemented
using existing specification notations or code generators.

We view semantically configurable MDE as an appropriate compromise
between a general-purpose, single-semantics notation that has significant
tool support and a domain-specific language that has a small user base and
few tools. Another potential use is to provide tool support for UML, which
has a number of semantic variation points that match template semantics’
variation points [37]. Our technology does not yet compete with commercial-
grade code generators, but its future looks promising enough to continue
investigating.

References

1. ApeSoft. Smartstate v4.1.0. http://www.smartstatestudio.com, 2008.
2. A. W. Appel. Semantics-directed code generation. In Proc. ACM Sym. on

Prin. Prog. Lang. (POPL’85), pages 315–324. ACM Press, 1985.
3. L. Baresi and M. Pezzè. Formal interpreters for diagram notations. ACM

Trans. on Soft. Eng. Meth., 14(1):42–84, 2005.
4. D. Batory and S. O’Malley. The design and implementation of hierarchical

software systems with reusable components. ACM Trans. Soft. Eng. Meth.,
1(4):355–398, 1992.

5. C. Cleaveland. Program Generators with XML and Java. Prentice-Hall, 2001.
6. R. Cleaveland and S. Sims. Generic tools for verifying concurrent systems.

Sci. of Comp. Prog., 41(1):39–47, Jan 2002.
7. K. Czarnecki and U. W. Eisenecker. Generative programming: methods, tools,

and applications. ACM Press/Addison-Wesley Publishing Co., 2000.

Code Generation for Semantically Configurable Modelling Notations 25

8. D. Harel et al. STATEMATE: A working environment for the development of
complex reactive systems. IEEE Trans. on Soft. Eng., 16(4):403–414, April
1990.

9. A. D’Ambrogio. A model transformation framework for the automated build-
ing of performance models from uml models. In Proc. Intl. Work. on Soft.
and Perf. (WOSP’05), pages 75–86. ACM Press, 2005.

10. N. A. Day and J. J. Joyce. Symbolic functional evaluation. In TPHOLs,
volume 1690 of LNCS, pages 341–358. Springer, 1999.

11. S. Diehl. Natural semantics-directed generation of compilers and abstract
machines. Form. Asps. of Comp., 12(2):71–99, October 2000.

12. L. Dillon and R. Stirewalt. Inference graphs: a computational structure sup-
porting generation of customizable and correct analysis components. IEEE
Trans. on Soft. Eng., 29(2):133–150, Feb 2003.

13. G. S. S. et al. Clearwater: extensible, flexible, modular code generation. In
Proc. IEEE/ACM Intl. Conf. on Aut. Soft. Eng.(ASE’05), pages 144–153,
New York, NY, USA, 2005. ACM Press.

14. J. Floch. Supporting evolution and maintenance by using a flexible automatic
code generator. In Proc. Intl. Conf. on Soft. Eng. (ICSE’95), pages 211–219.
ACM Press, 1995.

15. J. Grundy et al. Generating Domain-Specific Visual Language Editors from
High-level Tool Specifications. In Auto. Soft. Eng. (ASE), pages 25–36, 2006.

16. J. Hannan. Operational semantics-directed compilers and machine architec-
tures. ACM Trans. Prog.. Lang. Sys., 16(4):1215–1247, 1994.

17. J. Hannan and D. Miller. From operational semantics to abstract machines.
Math. Struct. Comp. Sci., 2(4):415–459, 1992.

18. D. Harel. On the formal semantics of statecharts. Symp. on Logic in Comp.
Sci., pages 54–64, 1987.

19. C. L. Heitmeyer, R. D. Jeffords, and B. G. Labaw. Automated consistency
checking of requirements specifications. ACM Trans. Soft. Eng. and Meth.
(TOSEM), 5(3):231–261, 1996.

20. IBM Rational. Rational Rose RealTime v7.0.0.
http://www.ibm.com/rational, 2005.

21. ITU-T. Recommendation Z.100. Specification and Description Language
(SDL). Technical Report Z-100, International Telecommunication Union -
Standardization Sector, 1999.

22. N. Jones, C. Gomard, and P. Sestoft, Eds. Partial Evaluation and Automatic
Program Generation. Prentice-Hall, 1993.

23. N. Jones, Ed. Semantics-Directed Compiler Generation, volume LNCS 94.
Springer-Verlag, 1980.

24. J. L. Knaack. An algebraic approach to language translation. PhD thesis,
University of Iowa, 1995.

25. A. Königs and A. Schürr. Tool integration with triple graph grammars – a
survey. Elect. Notes in Theor. Comp. Sci., 148(1):113–150, 2006.

26. Y. Lu, J. M. Atlee, N. A. Day, and J. Niu. Mapping template semantics to
SMV. In Proc. of Auto. Soft. Eng. (ASE’04), pages 320–325, 2004.

27. K. McMillan. Symbolic Model Checking: An Approach to the State Explosion
Problem. Kluwer Academic, 1993.

28. J. Niu. Metro: A Semantics-Based Approach for Mapping Specification Nota-
tions to Analysis Tools. PhD thesis, University of Waterloo, 2005.

29. J. Niu, J. M. Atlee, and N. A. Day. Template Semantics for Model-Based
Notations. IEEE Trans. on Soft. Eng., 29(10):866–882, October 2003.

26 Adam Prout, Joanne M. Atlee, Nancy A. Day, Pourya Shaker

30. J. Niu, J. M. Atlee, and N. A. Day. Understanding and comparing model-
based specification notations. In Proc. IEEE Intl. Req. Eng. Conf. (RE’03),
pages 188–199. IEEE Computer Society Press, 2003.

31. Object Management Group. Revised submission for MOF 2.0
Query/View/Transformation RFP. http://www.omg.org/docs/ad/05-03-
02.pdf.

32. Object Management Group. Meta Object Facility Core Specification,
Formal/06-01-01, 2006.

33. L. Paulson. A semantics-directed compiler generator. In Proc. ACM Sym. on
Prin. of Prog. Lang. (POPL ’82), pages 224–233. ACM Press, 1982.

34. M. Pezzè and M. Young. Constructing multi-formalism state-space analysis
tools. In IEEE Int. Conf. on Soft. Eng. (ICSE), pages 239–249. ACM Press,
1997.

35. A. Prout. Parameterized Code Generation From Template Semantics. Mas-
ter’s thesis, School of Computer Science, University of Waterloo, 2005.

36. A. Prout, J. Atlee, N. Day, and P. Shaker. Semantically configurable code
generation. In ACM/IEEE Int. Conf. on Mod. Driven Eng. Lang. and Sys.,
pages 705–720, 2008.

37. A. Taleghani and J. M. Atlee. Semantic variations among UML statemachines.
In ACM/IEEE Int. Conf. on Mod. Driven Eng. Lang. and Sys., pages 245–
259, 2006.

38. Telelogic. Telelogic TAU SDL Suite. http://www.telelogic.com/corp/products/tau/sdl/index.cfm.
39. Telelogic. Rhapsody in J v7.1.1.0. http://modeling.telelogic.com/products/rhapsody/index.cfm,

2007.
40. T. Yavuz-Kahveci and T. Bultan. Specification, verification, and synthesis

of concurrency control components. In Proc. Intl. Symp. on Soft. Test. and
Anal. (ISSTA’02), pages 169–179. ACM Press, 2002.

41. P. Zave and M. Jackson. A call abstraction for component coordination. In
International Colloquium on Automata, Languages, and Programming: Work-
shop on Formal Methods and Component Interaction, 2002.

