
ACM	Copyright	Notice	 
© ACM 2016 
Permission to make digital or hard copies of all or part of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 
on the first page. Copyrights for components of this work owned by others than ACM 
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, 
to post on servers or to redistribute to lists, requires prior specific permission and/or a 
fee. Request permissions from permissions@acm.org. 

Published	in:	Proceedings	of	the	International	Software	Product	Line	
Conference	(SPLC'16),	September	2016	

“Long-term Average Cost in Featured Transition Systems” 
 

Cite as: 
 
 
 
 
 
 
 
 
BibTex: 
 
 
 
 
 
 
 
 
 
 
 
 
DOI:   https://doi.org/10.1145/2934466.2934473 
 
 

Rafael Olaechea, Uli Fahrenberg, Joanne M. Atlee, and Axel Legay. 2016. Long-term 
average cost in featured transition systems. In Proceedings of the 20th International 
Systems and Software Product Line Conference (SPLC '16). ACM, New York, NY, USA, 
109-118. DOI: https://doi.org/10.1145/2934466.2934473 
 
 
 
 

@inproceedings{Olaechea:2016:LAC:2934466.2934473, 
 author = {Olaechea, Rafael and Fahrenberg, Uli and Atlee, Joanne M. and Legay, Axel}, 
 title = {Long-term Average Cost in Featured Transition Systems}, 
 booktitle = {Proceedings of the 20th International Systems and Software Product Line 
Conference}, 
 series = {SPLC '16}, 
 year = {2016}, 
 pages = {109--118} 
}  
 
 



Long-Term Average Cost in Featured Transition Systems

Rafael Olaechea, Uli Fahrenberg, Joanne M. Atlee, Axel Legay
University of Waterloo, Canada

Inria Rennes, France

ABSTRACT
A software product line is a family of software products that
share a common set of mandatory features and whose indi-
vidual products are differentiated by their variable (optional
or alternative) features. Family-based analysis of software
product lines takes as input a single model of a complete
product line and analyzes all its products at the same time.
As the number of products in a software product line may be
large, this is generally preferable to analyzing each product
on its own. Family-based analysis, however, requires that
standard algorithms be adapted to accomodate variability.

In this paper we adapt the standard algorithm for com-
puting limit average cost of a weighted transition system to
software product lines. Limit average is a useful and popular
measure for the long-term average behavior of a quality at-
tribute such as performance or energy consumption, but has
hitherto not been available for family-based analysis of soft-
ware product lines. Our algorithm operates on weighted fea-
tured transition systems, at a symbolic level, and computes
limit average cost for all products in a software product line
at the same time. We have implemented the algorithm and
evaluated it on several examples.

1. INTRODUCTION
Many of today’s software-intensive systems are developed

as a family of related systems (e.g., smart phones, automo-
tive software). In particular, a software product line (SPL)
is a family of software products that share a common set of
mandatory features and whose individual products are differ-
entiated by their variable (optional or alternative) features.

Analysis of software product lines can be categorized into
family-based or product-based [22]. Product-based tech-
niques analyze each possible product (or a sample subset
of products) individually, whereas a family-based analysis is
performed on a single model that represents all of the prod-
ucts in an SPL. Thus, family-based approaches avoid some
of the redundant computations inherent in product-based
analyses; but they require that standard analysis algorithms
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be adapted to accommodate variability in the SPL model.
Quality attributes of software systems (e.g., performance,

energy consumption) are a key concern when developing and
evaluating software products. An especially useful analysis
of quality attributes, called limit average, computes a long-
term average of a quality attribute for a product. In this
paper, we adapt this algorithm to perform a family-based
analysis that computes at once the limit average for all prod-
ucts in a software product line.

Our contributions include:

• A family-based algorithm that analyzes a model of an
SPL and computes the maximum limit average for a
quality attribute, for all products at the same time.

• An implementation of the family-based algorithm.

• An evaluation of the speed-up of our family-based ap-
proach versus the product-based approach.

Due to space constraints, we display some of our algorithms
in a separate appendix; but we give short explanations of
their working in the paper itself.

1.1 Related Work

Product Line Analysis.
Lauenroth et al. [20] introduce an algorithm to verify a

product line, represented as an I/O automaton with optional
transitions annotated with features, against properties ex-
pressed in computational tree logic (CTL). Their algorithm
checks that every possible I/O automaton that can be de-
rived satisfies a given CTL property. Lauenroth et al. men-
tion that CTL properties of a special form can be checked
by restricting the automaton and checking if all non-trivial
strongly connected components (SCCs) of this restricted au-
tomaton can be reached from the initial state. They then
adapt this algorithm by replacing the computation of SCCs
with a procedure to find a path to a cycle, keeping track
of the features required along such a path to a cycle. In
our case we are instead interested in finding all the products
for which each cycle with a given average cost is reachable.
Lauenroth et al. do not compare the performance of their
family-based approach with respect to a product-based ap-
proach.

Classen et al. [7] adapt the standard algorithm for model
checking properties of transition systems expressed in linear
temporal logic (LTL) to analyze a product line represented
as a featured transition system. Their approach is between



2 and 38 times faster than analyzing each product individ-
ually. Although they represent products symbolically, they
still represent the transition system using explicit states and
transitions. In subsequent work, Classen et al. [8] extend
their approach to transition systems represented symboli-
cally. They adapt the algorithm for model checking CTL
properties to a family based approach and show speed-ups
of several orders of magnitude versus verifying each prod-
uct individually. Hence both LTL and CTL model checking
have been adapted to analyze a family of transition systems
instead of individual products, showing orders of magnitude
speed-ups compared to analyzing each product individually.

More recently, Ben-David et al. [1] have adapted SAT-
based model checking of safety properties to a family based
approach and showed that such approach was substantially
faster than the methods by Classen et al.

Limit-Average Cost.
Quantitative methods are important in performance anal-

ysis [17], reliability analysis [21], and other areas of software
engineering. Long-term average values are often used, for
example to measure mean time between failures or average
power consumption; see also [13, 15] for further motivation.

In [3], Černý et al. show how limit average cost can be
used to measure the distance between a specification and
an incorrect implementation. They define a limit-average
correctness distance to capture how frequently the specifi-
cation has to “cheat” in order to simulate the incorrect im-
plementation. This work is generalized to interfaces and
abstractions in [4, 5].

In [11, 12], Fahrenberg and Legay argue more generally for
an approach of quantitative model checking which measures
distances between models and specifications; a similar pro-
posal is Henzinger and Otop’s [14]. As a specific example,
Boker et al. in [2] extend LTL with limit-average path accu-
mulation assertions and show that model checking quanti-
tative Kripke structures with respect to this LTL extension
is decidable.

We are not aware of any family-based analysis methods
which compute the limit average cost for all products in a
software product line.

2. BACKGROUND
A transition system (TS) is composed of a set of states,

actions, transitions and a set of initial states. Hence, it is a
tuple ts = (S,Act, trans, I), where trans ⊆ S×Act×S and
I ⊆ S. An execution of a transition system is an alternating
infinite sequence of states and actions π = s0α1s1α2 . . . with
s0 ∈ I such that (si, αi+1, si+1) ∈ trans for all i. The
semantics of a TS (written as JtsK) are given by its set of
executions.

A software system may have to satisfy not only functional
requirements, which can be expressed and verified for exam-
ple through logical properties, but also quality requirements
such as maximum energy consumption or timing constraints.
Hence transition systems have been extended with weights
to model these quality attributes. A weighted transition
system is thus a tuple wts = (S,Act, trans, I,W ), where
(S,Act, trans, I) is a transition system and W : trans→ R
is a function that assigns real weights to transitions.

2.1 Limit Average Cost
The limit average cost expresses the average of weights in

a single infinite execution of a weighted transition system.
Thus, if the weights represent the consumption of a resource,
then the limit average represents the long term rate of re-
source consumption along a single (infinite) execution.

Given an infinite execution π = s0α1s1α2 . . . of a weighted
transition system, we define a corresponding infinite sequence
of weights w(π) = v0v1 . . . where vi = W (siαi+1si+1). The
limit average of π is then defined to be

LimAvg(π) = lim inf
n→∞

1

n

n∑
i=0

vi .

The maximum (or minimum) limit average of a weighted
transition system is the maximum (or minimum) limit aver-
age over all of its execution traces. For example, by comput-
ing the minimum and maximum limit average of a weighted
transition system whose weights represent energy consump-
tion, we obtain the best-case and worst-case long-term rates
of energy consumption.

Computation of maximum or minimum limit-average cost
is entirely analogous. In this paper we focus on maximum
limit-average cost, but everything we do can also be applied
to minimum limit-average cost. The maximum limit aver-
age can be computed by a two-phase algorithm [23]: first
one computes the set of strongly connected components,
and then for each strongly connected component one iden-
tifies the cycle with the highest mean-weight. Finally, the
mean weight of the maximum mean-weight cycle reachable
from the initial state is the maximum limit average for the
weighted transition system.

A strongly connected component (SCC) is a maximal set
of nodes in a graph such that there exists a directed path
between every pair of nodes in the set. Any cycle in a graph
will be contained inside an SCC, hence by searching for max-
imum mean-weight cycles in each SCC of a graph we obtain
the maximum mean-weight cycle of the full graph.

The standard algorithm [10] for computing the SCCs of
a graph G = (V,E) performs a depth-first search of the
graph and computes for each node its “finishing time” in
the depth-first search. The finishing time F (v) of a node
v represents the temporal order at which a node and all its
forward neighbors have been fully explored, and ranges from
1 to |V |.

The algorithm for computing SCCs then processes the
nodes in decreasing finishing times. It starts at the node
v with F (v) = |V | and computes the set of nodes that can
be reached from v in the transpose of the graph (i.e. the
graph that has the same nodes and edges but with reversed
edge directions). These sets of nodes correspond to an SCC.
The algorithm then removes this SCC from the graph and
processes the remaining nodes in decreasing order of finish-
ing times, until each node has been assigned to an SCC. The
SCC algorithm takes time O(V + E).

In order to compute the maximum limit-average cost, we
now need to calculate the highest mean-weight cycle in each
SCC. This is usually done using Karp’s algorithm [19]. This
algorithm choses an arbitrary initial state s0 and then iter-
atively computes a function D which associates with each
state v and each k ∈ {0, . . . , n}, where n is the size of the
SCC, the maximal weight of a path of length k from v to s0.
By Karp’s theorem [19], the weight of the maximal mean-

weight cycle is then given as maxv mink<n
D[n,v]−D[k,v]

n−k
.



2.2 Weighted Featured Transition Systems
A feature model [18] is used to configure a software prod-

uct line. It represents the set of valid products. For our
purposes a feature model is used exclusively to distinguish
between valid and invalid products, hence it is a tuple d =
(N, px), where N is the set of features and px ⊆ P(N) is
the set of products. Here P(N) denotes the power set of N ;
an individual software product is thus composed of a set of
features.

A transition system represents the behavior of a single
software product. In order to analyze all the products of a
software product line at the same time, Classen et al. [7] have
introduced featured transition systems which compactly rep-
resent the behavior of all the products of a software product
line.

A boolean feature variable represents the presence or ab-
sence of a feature in a software product. A product is then
represented by an assignment of values to all feature vari-
ables (true if the feature is present in the product, false if
not). Hence we can represent a set of products by a boolean
feature expression - that is, a boolean formula over feature
variables, whose solutions represent the set of products. We
denote by B(N) the set of such feature expressions.

A featured transition system annotates each transition with
a boolean feature expression, which corresponds to the set
of products whose transition system include that transi-
tion. It is thus a tuple fts = (S,Act, trans, I, d, γ), where
(S,Act, trans, I) is a transition system, d = (N, px) is a fea-
ture model, and γ : trans → B(N) labels each transition
with a feature expression.

Therefore FTSs unify the transition systems of all prod-
ucts in a product line into a single annotated transition sys-
tem. The featured transition system provides a 150% model
of all products’ states and transitions – that is, it includes
more transitions and states than required for each individual
product.

The transition system for each specific software product
can be derived by removing all annotated transitions whose
feature expression is not satisfied by the product’s feature-
variable assignment. This transition system contains all
the states of the FTS and all the transitions whose fea-
ture expressions evaluate to true under the software prod-
uct. Formally, the projection of an FTS fts to a product
p ∈ JdK, noted fts|p, is the TS ts = (S,Act, trans′, I) where
trans′ = {t ∈ trans | p � γ(t′)}.

A featured transition system can be extended with weights
on transitions in the same way that transition systems can,
in which case each product of the software product line is
represented by a weighted transition system. Then we can
compute the maximum limit average for each product of the
software product line. A weighted featured transition system
(WFTS) is thus a tuple wfts = (S,Act, trans, I, d, γ,W ),
where (S,Act, trans, I, d, γ) is an FTS and W : trans → R
is a function that annotates transitions with weights.

A WFTS can be projected for a specific product into a
weighted transition system, analogously to FTS projection
as above: the projection of a WFTS wfts to a product p ∈
JdK, denoted wfts|p, is the WTS wts = (S,Act, trans′, I,W )
where trans′ = {t ∈ trans | p � γ(t)}.

3. MOTIVATING EXAMPLE
Figure 1 shows an (artificial) example of a combined taxi
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Figure 1: Taxi-shuttle example. In addition to
the feature guards shown, all dotted transitions are
guarded by the feature L.

and shuttle service. There are three pickup and release lo-
cations in the city, one of which is only available when the
car has an extra license (feature L). Additionally, passen-
gers can be picked up and released at the airport. Taxi ser-
vice (feature T ) is available within city locations, not just
for transportation to and from the airport. Shuttle service
(feature S) allows to pick up passengers at several pickup
locations before delivering them to the airport, or to pickup
passengers for several different city locations at the airport.

The weights on the transitions show their cost; positive
numbers are income for the driver, negative numbers are
expenses. To model the fact that travels to the airport
take longer time than travels in the city, the transitions to
and from the airport have length 2 (from the second pickup
point), 3 or 4. In practice we will model this by inserting
extra states and transitions of weight 0.

The example has thus three features, S, T and L, giving
rise to eight products: ∅, {L}, {S}, {T}, {L, S}, {L, T},
{S, T}, and {L, S, T}. An interesting problem is to compute
maximal income for the driver, depending on the product;
the maximum limit average cost is a reasonable approxima-
tion of this maximal income.

A product-based analysis reveals that regardless of the
feature selection, the transition system always has precisely
one SCC. For the product p = ∅, there are two cycles:

Airport-P → Release-1 → Pickup-1 →
→ Airport-R → Airport-P (1)

Airport-P → Release-2 → Pickup-2 →
→ Airport-R → Airport-P (2)

Their mean weights are 10.38 and 12.17, respectively (round-
ed to two places), hence cycle (2) between the airport and
city location 2 provides the maximal income.

For p = {L}, another cycle becomes available:

Airport-P → Release-ext → Pickup-ext →
→ Airport-R → Airport-P (3)

But its mean weight is only 10.30, so cycle (2) is still the
most profitable.

If p = {S}, then additionally to cycles (1) and (2) above,
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Figure 2: WFTS which implements several
grant/request scenarios

three other cycles become available:

Airport-P → Release-2 → Release-1 →
→ Pickup-1 → Airport-R → Airport-P (4)

Airport-P → Release-1 → Pickup-1 →
→ Pickup-2 → Airport-R → Airport-P (5)

Airport-P → Release-2 → Release-1 → Pickup-1 →
→ Pickup-2 → Airport-R → Airport-P (6)

Their mean weights are 11.63, 11.63, and 12.88, respectively,
hence for a pure shuttle, cycle (6) which picks up and releases
passengers at both city locations is most profitable.

Similar analyses can be done for the other five products,
but a family-based analysis which computes SCCs and max-
imum mean-weight cycles for all products at once would be
preferable. We will come back to this example in Section 5.

4. FAMILY-BASED LIMIT AVERAGE
COMPUTATION

We want to compute the maximum limit average cost
for each product in a software product line. We propose a
family-based algorithm that re-uses partial computation re-
sults that apply to multiple products. The algorithm starts
by computings SCCs (subsections 4.1 and 4.2) and then for
each SCC it computes its maximum mean cycle (subsection
4.3).

In order to illustrate the family-based SCC computation,
we introduce another example. Consider three solutions to
the problem of an arbiter granting access to a shared re-
source, modeled as a WFTS in Fig. 2. One solution involves
granting access only after a request has been received: this
will be the solution implemented by the basic system with-
out the optional features A or G. An alternative solution is
to always grant access, whether a request exists or not. This
is implemented by the product with feature G. A third op-
tion is to alternate between granting access and not granting
access, implemented by the product with feature A.

Each of these solutions satisfies the functional require-
ments of the system, namely that a request is always granted.
However the user may prefer one solution over another: for
example she might want to minimize the number of unneces-
sary grants. These preferences are encoded as weights on the
transitions, such that every time a grant is given when not
needed, or when a request has to wait before being served,
a penalty of −1 is given.

4.1 Symbolic Finishing Times
The algorithm for computing SCCs of a graph depends on
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Figure 3: Symbolic finishing-times tree for the FTS
from Fig. 2

the finishing times of states in a depth-first search. However
a featured transition system represents a set of transition
systems, each with a different set of transitions, which can
give rise to a different set of depth-first finishing times for
its states. For example the basic product in Fig. 2 (without
feature A nor G) would have the following finishing times of
states:

F (s3) = 1, F (s1) = 2, F (s0) = 3, F (s2) = 4 ,

whereas in any product that includes feature A, state s0 has
the highest finishing time:

F (s3) = 1, F (s1) = 2, F (s2) = 3, F (s0) = 4 .

Hence to adapt the SCC algorithm to featured transition
systems, we construct a tree that symbolically represents all
the possible finishing times of states.

Each path in such a symbolic finishing-times tree from the
root to a leaf node represents a unique set of finishing times
for the states in a featured transition system. The tree is
annotated with feature-expression labels on edges, associat-
ing products with states’ finishing times. Specifically, a tree
node representing state s at level d in the tree means that
the finishing time of state s is |S|−d+1 in all products that
satisfy the feature expressions along the path from the root
to the node.

For example, the WFTS from Fig. 2 gives rise to the sym-
bolic finishing-times tree shown in Fig. 3. This tree assigns
one set of finishing times for all products that contain ei-
ther feature G or A, and another set of finishing times for
products that contain neither feature.

Definition 1. Let fts be a featured transition system. A
symbolic finishing-times tree for fts is composed of a tree
T = (V,E) of height n = |S|, a node labelling function `v :
(V \ root) → S and a function `e : E → B(N) which labels
each edge with a feature expression. The tree T satisfies the
following conditions:
• All leaf nodes are at level |S| of the tree.
• For any path v0, . . . , vn from the root to a leaf node,

each node vi is mapped to a unique state: ∀i, j ∈
{1 . . . n}, i 6= j : `v(vi) 6= `v(vj). A path from the root
to a leaf node represents a set of products that share
the same finishing times for its nodes.
• The feature expressions of outgoing edges from a node

are disjoint: ∀(u, v), (u,w) ∈ E,w 6= v : J`e((u, v))K ∩
J`e((u,w))K = ∅.
• For any product p and level i, there exists a (necessarily

unique) path v0, . . . , vi from the root to a node in level i
such that the product p is contained in the conjunction
of the feature expressions along the edges of the path:
∀p ∈ JdK, i ∈ {1, . . . , n} : ∃ a path v0, . . . , vi : p ∈⋂i−1

j=0J`e((vj , vj+1))K.



Alg. 1 Featured transition system depth first search

1 Procedure DFS-Fts (G)
2 begin
3 for each u ∈ V [G]
4 color[u][White] ← >
5 time ← 0
6 for each u ∈ V [G]
7 if color[u][White] is satisfiable
8 DFS-Fts-Visit(u, color[u][White])
9 end-if
10 end
11 Procedure DFS-Fts-Visit(u, λ)
12 begin
13 Exploring ← color[u][White] ∧ λ
14 color[u][White] ← color[u][White] ∧¬λ
15 for each (u, v, λ′) ∈ E[G]
16 NextFExp ← λ′ ∧ λ
17 if (color[v][White] ∧ NextFexp) is sat.
18 DFS-Fts-Visit(v, NextFexp)
19 end-if
20 time ← time + 1
21 O[u][Exploring] ← time
22 end

• For any product p, level i, and the unique path from
the root v0, . . . , vi such that p ∈

⋂i−1
j=0J`e((vj , vj+1))K,

the finishing times in the projection fts|p of the states
`v(v1), . . . , `v(vi) are n, . . . , n− i+ 1, respectively.

The symbolic finishing-times tree is built in two phases.
In the first phase (performed by Alg. 1), a symbolic depth-
first search explores all states of an FTS and computes a
temporal ordering for when a state and all of its neighbors
are explored, depending on feature expressions. The second
phase (shown in appendix) uses this information to construct
a symbolic finishing-times trees in a breadth-first manner.

In Alg. 1, unlike in a standard depth-first algorithm, states
are not marked as visited by a boolean flag, but instead with
a feature expression representing under which set of products
they have been visited. Hence Alg. 1 stores and updates an
array White of boolean formulas: representing the products
for which a state has not been explored

Algorithm 1 starts by initializing array White to true (all
products) for each state (lines 3-4). It then iterates over all
states, and for each state that has not been fully explored, it
calls the subroutine DFS-Fts-Visit with that state and the
feature expression representing the set of unexplored prod-
ucts as parameters (lines 6-8).

The subroutine DFS-Fts-Visit starts by updating (reduc-
ing) the set of unexplored products for its given state (line
13). Then it iterates over each outgoing edge and checks if
there are products for which the target state has not been
explored, i.e. if color[v][White] ∧λ′∧λ is satisfiable (line 17).
If so, then it recursively calls itself to explore the destination
state. Finally, once all outgoing edges have been explored,
it sets the finishing time for the given state and feature ex-
pression to the current time counter and increments this
counter.

Once the feature-based depth-first ordering of states has
been computed, this data can be used to construct the sym-
bolic finishing-times tree for the FTS. We do this by iter-
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Figure 4: Symbolic SCC tree for the WFTS of Fig. 2

ating over the states in reverse finishing order, recursively
adding a new child to a tree node whenever a new pair (s, λ)
is found for which λ is not contained in the disjunction of
the feature expressions along the edges to the other children.
The algorithm, together with a precise explanation, can be
found in appendix.

4.2 Strongly Connected Components of a
Featured Transition System

After building the symbolic finishing-times tree, we use
this tree to compute the SCCs of an FTS. We adapt the
standard algorithm for computing SCCs (see Sect. 2.1) by
replacing the single set of finishing times by the symbolic
finishing-times tree. Hence we no longer compute a single
set of SCCs, but instead compute one such set for each path
from the root to a leaf node in the tree. This adaptation is
necessary as the“finishing times”of states in an FTS depend
on which features are present in a given product.

We explore each path from the root to a leaf node of the
symbolic finishing-times tree. In the standard SCC algo-
rithm, a boolean array keeps track of which states have been
assigned to an SCC. In our case, we use an array of feature
expressions representing for which products a state has been
assigned. The algorithm to compute the symbolic SCCs is
shown as Alg. 2. It uses a subroutine VisitDFS-For-SCC
which we show in appendix.

The output of Alg. 2 is a symbolic SCC tree. Its tree struc-
ture is the same as the symbolic finishing-times tree, but now
the tree nodes are labeled with mappings from S to B(N),
representing for which products a given state is assigned to a
particular SCC. As an example, the (very simple) symbolic
SCC tree of the grant/request WFTS is displayed in Fig. 4.

Algorithm 2 starts by successively exploring each outgoing
edge from the root of the tree (line 7). It then adds a triplet
consisting of the child of the root node, along with its state
and feature expression labels, to a stack of nodes to explore
(lines 9-11).

The algorithm then enters a loop where elements of the
stack are processed (lines 13-28), which corresponds to a
depth first exploration of the finishing times tree. A triplet
of tree node, state and feature expression is peeked from
the stack (without being popped). The feature expression
is compared to R′(s) which contains the set of products for
which the given state is already assigned to an SCC, and
if it is not contained in R′(s), then a new symbolic SCC is
computed by calling VisitDFS-For-SCC (line 16-17). The



Alg. 2 Computing strongly connected components for
an FTS given a symbolic finishing-times tree.

1 Procedure SymbolicSCC
2 Input: T, NodeLabel, EdgeLabel: a symbolic

finishing-times tree
3 Output: RC: A function from tree nodes

to symbolic SCCs
4 begin
5 NodesToExplore ← empty stack of triplets of

tree nodes, states and feature expressions
6 ReachabilityStack ← empty stack of

mappings S → B(N)
7 For each e = (Root(T), u) ∈ E(T )
8 R′ ← {}
9 λ0 ← EdgeLabel(e)
10 s0 ← NodeLabel(u)
11 NodesToExplore.push((u, s0, λ0))
12 ReachabilityStack.push(R′)
13 while NodesToExplore 6= [] do
14 u, s, λ← NodesToExplore.peek()
15 Visited(u)← True
16 if λ ∧ ¬R′(s) is satisfiable
17 RC(u) ← VisitDFS-For-SCC

(s, λ ∧ ¬R′(s), R′)
18 R′ ← R′ ∪RC(u)
19 end-if
20 Take v in Children(u) with

Visited(v)=False
21 if no such v exists:
22 NodesToExplore.Pop();
23 R′ ← ReachabilityStack.Pop()
24 else
25 λ′ ← EdgeLabel(u,v)
26 NodesToExplore.push((v,

NodeLabel(v), λ ∧ λ′))
27 ReachabilityStack.push(R′)
28 end-if
29 return RC
30 end

set of products assigned to an SCC for each state is then
updated.

After processing the current tree node, the algorithm looks
for a child that has not been explored (line 20). If no such
child exists, then the current element is popped from the
stack, otherwise a triplet is built from the child node, its
state label and the feature expression labelling the edge to
it and pushed to the stack of nodes to explore (lines 25-27).
The algorithm continues processing triplets in the stack until
it is empty and the complete finishing-times tree has been
explored.

The procedure VisitDFS-For-SCC computes the set of
states which are reachable from a given state s in the trans-
pose of the input DFS, parameterized by feature expressions.
This is inspired by the symbolic reachability algorithm of [7],
except that here we exclude states from the search which
have already been assigned to previous SCCs. The proce-
dure is shown as Algorithm B in appendix.

4.3 Maximum Mean Cycle Computation
To complete the limit average computation, we need to

Alg. 3 Computation of the maximum mean weight cycle
in an SCC.

1 Procedure Mean-Cycle-SCC()
2 Input: R : S → B(N): a symbolic SCC
3 Output: C : B(N)→ R: a symbolic maximum

mean-weight cycle
4 begin
5 Pick so ∈ S: an arbitrary initial state
6 for k = 0, . . . , n and v ∈ S \ {s0}
7 D[k, v, R(v)] ← −∞
8 D[0, s0, R(s0)] ← 0
9 for k = 1, . . . , n and v ∈ S
10 for (u, α, v) ∈ trans s.t. R(u) 6= ⊥
11 δ1 = γ((u, v))
12 for δ2 ∈ domain(D[k, v, • ])

and δ3 ∈ domain(D[k-1, u, • ])
13 if δ1 ∧ δ2 ∧ δ3 6|= ⊥ and

D[k-1, u, δ3] + W((u,α,v)) > D[k, v, δ2]
14 D[k, v, δ2 ∧ δ3 ∧ δ1] ←

D[k-1, u, δ3] + W((u,α,v))
15 D[k, v, δ2 ∧ ¬(δ3 ∧ δ1)] ← D[k, v, δ2]
16 Undef D[k, v, δ2]
17 end-if
18 C[R(s0)] ← −∞
19 for v ∈ S
20 M[v, R(v)] ← +∞
21 for k = 0, . . . , n− 1
22 for δ1 ∈ Domain(M[v, •]), δ2 ∈ Domain(D[n, v, •]),

and δ3 ∈ Domain(D[k, v, •])
23 if δ1 ∧ δ2 ∧ δ3 6|= ⊥ and

M[v, δ1] > (D[n, v, δ2] - D[k, v, δ3])/(n-k)
24 M[v,δ1 ∧ δ2 ∧ δ3] ←

(D[n, v, δ2] - D[k, v, δ3])/(n-k)
25 M[v, δ1 ∧ ¬(δ2 ∧ δ3) ] ← M[v, δ1]
26 Undef M[v, δ1]
27 end-if
28 for δ1 ∈ Domain(C[•]) and δ2 ∈ Domain(M[v, •])
29 if δ1 ∧ δ2 6|= ⊥ ∧ C[δ1] < M[v, δ2]
30 C[δ1 ∧ δ2] ← M[v, δ2]
31 C[δ1 ∧ ¬δ2] ← C[δ1]
32 Undef C[δ1]
33 end-if
34 return C

identify the maximum mean cycle in a strongly connected
component. We show the adapted algorithm as Alg. 3.

Our algorithm is a feature-aware variant of Karp’s original
algorithm [19]. As in Karp’s algorithm, we chose an arbi-
trary initial state s0 and start by computing a function D
which for each state v and each k ∈ {0, . . . , n} gives the max-
imal weight of a path of length k from v to s0. However, this
weight will also depend on the feature guards along paths,
so that D now takes a feature expression as extra input.

After initialization in lines 6-8, computation of D starts in
line 9. For each pair k, v, D[k, v] is defined on a feature par-
tition of R(v), the feature expression which governs whether
v is present in the current SCC. Initially (line 7), the domain
of D[k, v] is the coarsest partition of R(v), which is R(v) it-
self, and during the iteration in lines 9-17, this partition is
refined as necessary.

For each k ∈ {1, . . . , n}, each v ∈ S, and each transition



(u, α, v), we need to check whether D[k, v] < D[k − 1, u] +
W ((u, α, v)), and if it is, update it to this value. Now both
D[k, v] and D[k − 1, u] are defined on (possibly different)
feature partitions, and the transition (u, α, v) is only enabled
for some feature guard δ1. Hence we need to find each δ2 in
the domain of D[k, v] and each δ3 in the domain of D[k −
1, u] for which the conjunction δ1 ∧ δ2 ∧ δ3 is satisfiable (line
12) and then check whether D[k, v, δ2] < D[k − 1, u, δ3] +
W ((u, α, v)). If it is, then D[k, v] needs to be updated, but
only in the part of its partition where v can be reached from
u, hence only at δ1∧δ2∧δ3. That is (lines 14-16), we need to
split the domain of D[k, v], update the value at D[k, v, δ1 ∧
δ2 ∧ δ3], and keep the old value at D[k, v, δ2 ∧ ¬(δ1 ∧ δ3)].

In the next part of the algorithm (lines 19-27), we com-

pute M [v] := mink<n
D[n,v]−D[k,v]

n−k
for each v ∈ S. As this

again depends on the feature guards on the transitions, also
M [v] is defined on a feature partition which initially is set
to R(v) (line 20) and then refined as necessary. Finally, in
lines 28-33, we use the same partition refinement technique
once more to compute C := maxv∈S M [v], which per Karp’s
theorem [19] is the maximum mean cycle weight of the SCC.

5. IMPLEMENTATION AND
EVALUATION

We have implemented our algorithms within ProVeLines,
“a product line of verifiers for SPLs” [9]. ProVeLines takes
as input specifications written in fPromela, a feature-aware
extension of the Promela language [16], which we have ex-
tended to be able to specify transition weights. We have
modified the code of ProVeLines (written in C) to include
weights on transitions and perform a family-based and product-
based computation of the maximum mean cycle. For our
implementation, we have added 4300 lines of code to Pro-
VeLines.

5.1 Subject Systems
For testing and experiments, we have implemented a vari-

ant of the taxi-shuttle example in which the number of extra
licenses is parameterized. This variant has N different extra-
license features L1, . . . , LN , each with their own Pickup-exti
and Release-exti states and transitions a copy of the ones in
Fig. 1, but guarded by the feature Li. A formal description
of this parameterized example is available in appendix.

We also tested the algorithm on an FTS representing a
mine pump controller used in [6], with 2 optional features
and 4 products. We annotated the transitions with artificial
weights.

The taxi example had from 52 up to 2982 states, while
the mine pump controller example had 9441 states.

5.2 Results
Table 1 shows the running times of our implementation,

depending on the number of features (N + 2), for both
family-based and product-based analysis for the taxi exam-
ple and the mine pump controller example. We ran both
the family-based and product-based analysis ten times each.
The family-based approach is faster than the product-based
approach for the taxi example but not for the mine pump
controller example.

5.3 Discussion
In the taxi example many products share the same sym-

bolic strongly connected components. Hence the required
time is reduced by using a family based-approach as a sin-
gle computation over a symbolic strongly connected compo-
nent can provide answers that can be re-used across multiple
products.

We found that computing the maximum mean cycle for
very large symbolic SCC was taking most of the time in the
family based approach. Moreover the mine pump controller
example has a much larger state space than the taxi exam-
ple. Hence we decided to attempt to perform an abstraction
of the mine-pump controller state space to improve perfor-
mance.

The mine-pump controller has multiple processes running
in parallel. It was not necessary to consider all possible inter-
leavings of theses processes in order to consider all possible
cycles. Hence we labelled some of its key states as impor-
tant states and only considered transitions between them.
We performed the computation over a much smaller state
space and reduced the running times (to approximately 35
seconds and 6 seconds for the family-based and product-
based approach respectively) for both approaches while still
considering all cycles. However the product-based approach
was still faster than the family-based approach for the mine
pump controller example.

We also considered a different representation of strongly
connected components for the family based approach. In
this representation we used a binary tree with edges anno-
tated with presence or not of a feature. Moreover each node
would contain a set of all states that would be part of a
SCC in any product satisfying the feature expression for the
path from the tree to such node. Hence when computing the
maximum mean-cycle we analyzed all the possible concrete
SCCs in this tree. However this approach didn’t improve the
performance either as there was too little sharing of finishing
times between products.

By annotating the code we have realized that different
products induce different sets of finishing times over its states,
and that there is very little sharing across products of sym-
bolic strongly connected components. Therefore the family
based approach doesn’t improve the performance for this
example and the overhead introduced by the family based
approach means it is substantially slower than the product-
based approach.

6. CONCLUSION AND FUTURE WORK
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Alg. A Algorithm to build a symbolic finishing-times
tree for an FTS

1 Procedure ComputeTreeBfs(F, FInv)
2 begin
3 Q ← Empty Queue
4 T ← New Tree()
5 T.root.maxO ← |domain(F)|
6 Q.add(T.root)
7 while (¬Q.isEmpty())
8 Node ← Q.pop()
9 λ1 ← FeatureExpressionFromRoot(Node)
10 max ← Node.maxO
11 notChildren ← >
12 j ← max -1
13 while (j > 0)
14 u, λ ← FInv(j)
15 if (λ ∧ notChildren ∧ λ1 is SAT )
16 NewNode ← CreateNode(Node, u,
λ ∧ notChildren )
17 Q.add(NewNode)
18 notChildren ← notChildren ∧ ¬λ
19 end-if
20 j ← j − 1
21 return T
22 end
23 Procedure CreateNode(ParentNode, State, λ)
24 begin
25 NewNode ← New Node()
26 ParentNode.add(NewNode)
27 StateLabel(NewNode) ← State
28 EdgeLabel(ParentNode, NewNode) ← λ
29 end
30 Procedure FeatureExpressionFromRoot(Node)
31 begin
32 if Node = T.root
33 return >
34 else
35 return EdgeLabel(Parent(Node), Node) ∧

FeatureExpressionFromRoot(Parent(Node))
36 end-if
37 end

APPENDIX
A. CONSTRUCTING A SYMBOLIC FINISHING-

TIMES TREE
Algorithm A builds a symbolic finishing-times tree for an

FTS in a breadth-first manner. It uses the order numbers
generated by Alg. 1 for pairs of states and feature expres-
sions stored in the injective partial function O, as well as
an inverse function of it (denoted OInv) mapping an order
number to a pair of state and feature expression.

The algorithm starts by initializing a tree T with an empty
root node and adding it to a queue of tree nodes to explore
(lines 3-6). It then enters a loop where it processes tree
nodes from the queue and computes all their children (lines
7-20).

In order to identify all children of a tree node, the al-
gorithm iterates over order numbers lower than than the
maximum order number stored in the tree node in decreas-
ing order (lines 13-20). It searches for pairs of states and

Alg. B Reachability computation for the transpose of an
FTS, excluding states already assigned to an SCC.

1 Procedure VisitDFS-For-SCC(s0, λ0, R′)
2 Inputs: so: initial state of the SCC

λ0: initial feature expression of the SCC
R′ : S → B(N): the (symbolic) set of states

which are already assigned to an SCC, to exclude them
3 Output: R : S → B(N)
4 begin
5 R← {(s0, λ0)}
6 Stack.push((s0, λ0))
7 while Stack 6= [] do
8 (s, px) ← Stack.peek()
9 new ← {(s′, px′) ∈ Post (s, px) | px′ 6⊆ R(s′)
∪R′(s′)}
10 if new = ∅ then
11 pop(Stack);
12 else
13 Take (s′, px′) ∈ new
14 R(s′)← R(s′) ∪ (px′ ∩ ¬R′(s))
15 Stack.push((s′, px′ ∩ ¬R′(s)))
16 end-if
17 return R
18 end

feature expressions (s, λ) = OInv(i) such that the feature
expression (λ) combined with the negation of all other edges
leaving the tree node is satisfiable (line 15-19). If the fea-
ture expression is satisfiable, then it adds the new children
to the tree (line 16) and updates the expression representing
the negation of all edges leaving the tree node (line 18). It
records the order number in the tree node and then adds the
new tree node to the queue (line 17). After all children for
a tree node have been identified and added, any tree nodes
remaining in the queue are processed (line 7).

B. REACHABILITY FOR THE TRANSPOSE
OF AN FTS

Algorithm B is a modified reachability search that takes
as input an initial state, feature expression and symbolic set
of excluded states, and computes the symbolic set of states
reachable from the initial state and feature expression with-
out going through any of the excluded states. It is similar
to the symbolic reachability algorithm in [7], except we also
keep track of a set of excluded states. This modified reacha-
bility algorithm returns a symbolic set of states: a mapping
of states to feature expressions representing the set of states
reachable under a given product.

Algorithm B starts by initializing an empty reachability
relationship R with the initial state and feature expression
and pushing the initial state and feature expression into a
stack (line 7-9). It then enters a loop where it processes
elements of the stack until the stack is empty (lines 10-20).

The algorithm peeks at the top element of the stack and
computes the set of its successors that are not a member of
either R or of excluded states R′ (lines 11-12). If this set
of new elements is empty then it pops the top element of
stack (lines 14-15). Otherwise it takes a state and feature
expression that is a new element, updates R with it and
pushes the new element into the stack (lines 17-19). It then



continues processing elements of the stack until no more
remain and then returns R.
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