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Abstract

In this paper, we demonstrate how model checking
can be used to verify safety properties for event-driven
systems. We present a technique for transforming
event-oriented software requirements into state-based
structures, which we can then analyze using a state-
based model checker. This technique was effective
in uncovering violations of system invariants in both
an automobile cruise control system and a water-level
monitoring system.

1 Introduction

A software requirements document is usually the first
specification of a system’s required behavior. Errors in
this document are difficult and expensive to correct, if
propagated to the design phase (or worse, to the im-
plementation)[21]. Designers must be able to formally
analyze requirements before system design begins.

The requirements specification is a behavioral speci-
fication of the system’s activities; it describes the sys-
tem’s modes of operation and specifies the events that
cause the system to change modes. The specification
often includes a set of safety assertions that must also
be enforced. These assertions are invariant properties
of the system, so they should also be properties of the
requirements specification. As such, they are redun-
dant information that can be used to verify that the
requirements are internally consistent.

Temporal logic and model checking are techniques
that have been used successfully to verify safety prop-
erties in hardware systems [4,9]. The hardware system
is portrayed as a logical model, and safety assertions
are represented as logical formulas. One assumes that
if a formula is true in the model, then the safety as-
sertion holds in the hardware system. One reason that
this verification technique is so promising is that model
checking can be automated for some temporal logics.

This paper demonstrates the feasibility of using
model checking to analyze safety properties of soft-
ware requirements. Section 2 reviews event-oriented re-

quirements specifications and state-based model check-
ing, and presents a method for constructing state-based
models of event-oriented system requirements. Sec-
tion 3 describes two case studies of event-oriented re-
quirements and their safety properties. Section 4 con-
tains a discussion of problems and solutions that arose
during the case studies.

2 Analysis Technique

In this section, we briefly describe the models of
event-oriented requirements and state-based systems,
and present a method by which properties of an event-
oriented system can be simulated by a state machine.

2.1 Event-Driven Requirements Specifications

Our studies concentrated on techniques for analyz-
ing SCR-style (Software Cost Reduction) requirements
specifications [1,16,17]. A system’s behavioral require-
ments are abstractly specified as a set of finite mode-
machines that execute concurrently:

e a mode is a set of system states that share
a common property
e a mode classis a set of modes, and the union
of the modes in a mode class must cover
the system’s state space
e a mode transition occurs between modes in
the same mode class as a result of system
state changes.
e mode transitions are specified by conditions
and events, which comprise the machine’s
input language.
The system is in exactly one mode of each mode class
at all times. Informally, the modes and transitions in
each mode class form a mode-machine that describes
one aspect of a system’s behavior, and the transitional
behavior of the entire system is defined by the compo-
sition of all the system’s mode-machines.

Conditions are boolean state variables, and a sys-
tem’s state space is the set of all possible combinations
of its conditions’ values. By partitioning the state space
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Mode Requestl Request2 | Mode
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Table 1: Mode transition table for monitor.

into modes, we reduce the size of the requirements spec-
ification. The result is a higher-level specification that
abstracts away details that do not contribute to a sys-
tem’s local behavior; the values of all variables are not
important at all times.

In SCR requirements specifications, variable values
are only important when they can effect mode transi-
tions. A mode transition is activated by the occurrence
of an event, which represents the point in time when a
condition’s value changes. For example, event

@T(Condl)
occurs when condition Condl becomes true. Simi-
larly, event @QF(Cond1) signifies a time when condition
Condl becomes false. The occurrence of an event might
depend on the values of other conditions. For example,
event
@T(Condl) WHEN [CondZ]

occurs when condition Condl becomes true while con-
dition Cond?2 is true. More complex events can be cre-
ated from simpler events and conditions using boolean
operators.

A mode transition condition specifies the event that
triggers the transition. Two transitions from the same
mode are simultaneously enabled if their trigger events
occur at the same instant. In such a case, the mode-
machine is nondeterministic, and the activation of ei-
ther transition (but not both) satisfies the require-
ments.

Table 1 is a requirements specification for a mon-
itor that encapsulates data shared by two processes.
The specification consists of a single mode class com-
prised of three modes: EMPTY, meaning that the data
protected by the monitor is not being used; INUSE],
meaning that PROCESS1 currently has access to the
shared data; and INUSE2, meaning that PROCESS2 has
access to the shared data. The system always starts in
mode EMPTY. Conditions Request! and Request? in-
dicate whether or not PROCESS1 and PROCESS2, re-
spectively, have requested access to the protected data.
Since the monitor can only be in one mode at a time,
mutual exclusion is ensured.

Each row in the table specifies the event causing the
transition from the mode on the left to the mode on the
right. Each column in the center of the table represents
a specification condition (state variable). Upper-case
letters ‘@T’ and ‘QF’ signify that the condition must
change (to new value true or false, respectively) to acti-
vate the mode transition. Lower-case letters (‘t” and f7)
signify that the condition must have a particular value
(true or false, respectively) for the event to occur. If a
condition does not affect a particular mode transition,
then its value in the table 18 marked with a hyphen
(‘“=7). For example, if the system is in mode EMPTY
when condition Request]! becomes true, it can transi-
tion into mode INUSE] without regard to the value of
condition Request?. The system leaves mode INUSE1
when Request] becomes false. If Request?2 is true when
the system leaves mode INUSEL, then the system will
transition into mode INUSEZ2; otherwise the system will
transition into mode EMPTY. The two transitions from
mode EMPTY can be simultaneously enabled if both
processes request access to the shared data at the same
time. The requirements are therefore nondeterminis-
tic, and the system designer (not the requirements de-
signer) will be responsible for deciding how to choose
between the two transitions.

The tabular format of SCR-style requirements spec-
ification is both easy to write and easy to understand.
Even so, a requirements designer will often augment
the behavioral specification with a set of global con-
straints on the system’s behavior. The purpose of the
global constraints is to give a compact view of a sys-
tem’s invariant properties that may otherwise be diffi-
cult to extract from a behavioral specification. Some-
times, the global constraints are explicitly included in
the requirements document, though they may not be
expressed mathematically; their format can range from
logical formulas [19] to natural language sentences [1].
Other times, they are not included in the requirements
document, but are implicit assumptions made by the
requirements designer [26,27]. The safety assertions of
our monitor example are:

EMPTY = (—Request] A —Request2)
INUSE]l = Requestl
INUSE2 = Request2

These formulas state that whenever the system is in
a particular mode (EMPTY), certain system conditions
have invariant values (Request! and Request? are false).

SCR-style specifications and global assertions pro-
vide different views of a system’s requirements. Modes
and mode transitions specify system properties that
hold under certain conditions, whereas global asser-
tions specify properties that must always hold. Thus,
the global assertions are redundant information that al-



ready exists in the behavioral specification. We want to
use this redundancy to detect inconsistencies between
a system’s requirements specification and its expected
invariant properties.

2.2 State-Based Model Checking

We used an improved version of Clarke’s EMC model
checking system [6], called MCB [3], as our model
checker. If a system’s behavioral requirements can be
represented as a finite structure, and if the safety asser-
tions can be expressed as propositional temporal logic
formulas, then the MCB model checker can be used to
determine if the structure is a model of the logic formu-
las (and by implication, that the safety assertions hold
in the requirements specification).

Informally, the system is expressed as an extended
finite state machine, in which each state is annotated
with transition conditions (input condition values) and
attributes (properties distinct from input conditions).
This machine can serve as a temporal logic model of
a system, and we can test whether safety properties
phrased as temporal formulas hold in the model.

The formulas are expressed in a propositional
branching time logic called computational tree logic
(CTL), whose operators permit explicit quantification
over all possible futures. The syntax and semantics for
CTL formulas are defined in [6] and are simply sum-
marized below:

1) Every atomic proposition! is a CTL for-
mula.

2) If f and ¢ are CTL formulas, then so are:
~ [ f&, [l AXS, EX[, AlfUg],
E[fUg), AFf, EFf, AGf, EGY.

The symbols ~ (not), & (and), and | (or) are log-
ical connectives and have their usual meanings. For-
mula AXf (EXf) means that formula f holds in ev-
ery (in some) immediate successor of the current state.
U is the until operator, and formula A[fUg] (E[fUg])
means that along every (some) path there exists a fu-
ture state s; in which ¢ holds and f is true until state
s; is reached. The formula AFf (EFf) means that
along every (some) path there exists some future state
in which f holds. The formula AGf (EG f) means that
f holds in every state along every (some) path.

Safety assertions are invariant, so the formulas we
want to check are of the form AGf. The safety asser-
tions for our monitor example are represented by the
following CTL formulas:

AG(Empty — (~ Request] & ~ Request2))
AG(InUsel — Requestl)
AG(InUse2 — Request2)

1The set of atomic propositionsis the union of the set of input
conditions and the set of state attributes.

MCB accepts a CTL machine and a CTL formula,
and determines whether or not the formula holds in the
machine. If the model checker determines the formula f
is true, then the safety property holds in the CTL state
machine and, presumably, in the system requirements.

2.3 Mapping SCR Requirements onto CTL
Structures
In our experiments, we mapped SCR-style mode-
machines onto representative CTL structures. This sec-
tion describes how to transform such requirements into
CTL machines.
Most elements of the SCR requirements model cor-
respond naturally to elements of CTL structures:

CTL structure

modes states

Requirements

mode transitions state transitions

conditions input variables
There is no natural modeling of events because of the
differences between mode transitions and state transi-
tions. CTL state transitions occur based on the current
state and the current values of the input conditions.
Mode transitions, on the other hand, occur simulta-
neously with events; the system spends zero time in
a mode once one of its transitions has been activated.
Therefore, we need to be able to detect changes in con-
dition values and ensure that state transitions are ac-
tivated by these value changes.

To model events, we can represent modes as two
CTL states: a mode state and a trigger state. The
mode state represents the system in ¢ mode, and all
transitions into the original system mode are modeled
as transitions into the representative mode state. The
trigger state represents the system leaving a mode, all
transitions leaving the original mode are represented as
transitions leaving the associated trigger state. We an-
notate the trigger state’s transitions with the original
mode’s transition conditions, and we annotate the tran-
sition from the mode state into the trigger state with
the negation of the transitions’ trigger events. For ex-
ample, for mode transition condition T(A)WHEN[B],
the the mode state would be annotated with transition
condition ~A, and the trigger state would be annotated
with transition condition A& B. This representation
captures the event of condition A changing from value
false (in the mode state) to value true (in the trigger
state).

Unfortunately, this intuitive representation does not
model all system modes: in the above example, con-
dition A 1s represented as always being false in the
mode state, which may not be accurate. The follow-
ing set of examples demonstrate how modes that have
complex transition conditions can be transformed into
state-based representations.



Example A: If a transition condition is a simple
event @T'(C) and condition C' is never true upon en-
tering the mode, then we can model the event by an-
notating the mode state with transition condition ~ C'
and annotating the trigger state with transition condi-
tion C:

Example B: In the above example, our mode rep-
resentation forces condition C to be false in the mode
state. The input conditions in a CTL state must always
satisfy one of the state’s transition conditions. There-
fore, since the mode state in the above example has
only one transition, with transition condition (~ C),
condition €' must always be false. This is an invalid
representation if condition C' can be true when the sys-
tem enters the mode (the transition is only triggered if
C' becomes true while in the mode). To allow condition
C to be true in the mode state, but still force C' to be
false immediately before the system leaves the mode,
we add a transition from the mode state back to itself
and annotate it with condition C':

Example C: If a mode has multiple outgoing
transitions, multiple trigger states may be needed
to distinguish between events. For example, if a
mode’s transition conditions are QT(A)WHEN[B],
@T(C)WHENID], and @F(E), then three trigger states
are needed to represent the three distinct events

@T(A4), @QT(C), and QF(F):

This representation forces condition A to be false in
the mode state, if the system exits the mode because
event @T(A)WHEN][B] occurs; conditions C' and F can
have either value in the mode state, given this sequence
of events. Likewise, condition C' must be false in the

mode state if the system leaves the mode when event
@T(C)WHEN[D] occurs; conditions A and E can have
either value in the mode state, given this sequence of
events. There is no need for a transition from the mode
state back to itself, since the mode state’s transition
conditions allow the conditions A, (', and E to be either
true or false in the mode state.

Example D: If condition £ (in Example C) is al-
ways true whenever the system enters the mode, then
our representation of the mode is not accurate. If F
i1s true upon mode entry, then it can never have value
false, since the event of £ becoming false would trigger
a transition out of the mode. However, the above rep-
resentation allows condition F to have any value in the
mode state. The mode representation can be corrected
by appending condition £ to all of the transitions from
the mode state to the trigger states:

This representation ensures that condition £ is invari-
antly true when the system is in the mode.

Figure 1 contains the CTL machine representation of
the monitor requirements specification presented in Ta-
ble 1. Monitor mode EMPTY is represented by a mode
state EMPTY and two trigger states EMPTY ENABLED.
The states’ attributes indicate which system mode is
represented by the state (EMPTY), plus whether or
not the state is a trigger state (ENABLED). The trig-
ger states’ transition conditions are copied directly
from the specification table. For example, the left-
most EMPTY ENABLED state is annotated with tran-
sition condition Regquestl, representing the first tran-
sition leaving mode EMPTY in Table 1. The mode
states’ transition conditions represent the negation of
the mode’s @T" and @F' transition conditions. For ex-
ample, state EMPTY is annotated with two transition
conditions ~ Request] and ~ Request2, which indicate
that neither transition out of mode EMPTY is enabled.

We now present our algorithm for transforming SCR
specifications into CTL structures:

1. Create an input condition for each state variable
in the requirements specification.?

20ne can also create input conditions to represent the values
of first-order predicate conditions, such as integer ranges and
timing constraints, as long as there is a finite number of such
predicates.
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Figure 1: MCB Machine for monitor specifications.

. Create an attribute proposition for each system back to itself and annotate it with condition
mode in the requirements specification. C (~C). Otherwise, the mode representation

will restrict the value of condition C' to being

. Create attribute Fnabled, which will be used to invariantly false (true) in the mode state.

indicate trigger states.
) ) ) e For all simple mode transition conditions
. For each system mode described in the require- (that have no WHEN conditions) in which

ments: the condition always enters the mode negated

(i.e., if the trigger event is @T(C') and C' is
always false upon mode entry), append the
negation of the trigger event (~C') to all tran-
sition conditions between the mode state and
the trigger states. Otherwise, the mode rep-
resentation will allow condition C' to have any
value in the mode state, which would not be

e Create a mode state and annotate it with the
associated attribute proposition.

e Create a unique trigger state for each con-
dition C' whose changing value (@T(C) or
@F(C)) triggers a mode transition. Anno-
tate each trigger state with the both the at-
tribute representing the system mode and the

. te.
attribute Enabled. accurate
e Annotate each trigger state with all of the 5. For each mode transition from mode M1 to M2 in
mode transitions activated by a particular the requirements specification

condition cha.ngmg Value.. For example, an- e find the particular trigger state of M1 that
notate one trigger state with all of the tran- e
represents the mode transition’s trigger event

sitions enabled by event @T(C'). QT(C)

e Annotate the mode state with transitions e create a state transition from that trigger

leading to all of the trigger states; the en- state to the mode state of mode M2, and
abling condition of each transition is the

negation of the event that the destination
trigger state represents. For example, if a

e associate the enabling condition of the mode
transition with the new state transition

t?igger s.tate represents those mode transi- All of the CTL structures presented in this paper
thI}S actlvat.e.d by event @T(Q) ’ then the en- are represented graphically, as in Figure 1. The ASCII
abling condition of the transition from the notation used by the model checker is described in [3].

mode state to that trigger state is ~ C|,
thereby capturing the event of condition C' 3 Case Studies

becoming true. We used our analysis technique to analyze two re-
e If all of a mode’s transitions are activated by quirements documents, one for an automobile cruise
the same event @T(C') (or event @F((')), and control system and one for a water-level monitoring
if condition C' can be true (false) on mode en- system. The requirements specifications of the two sys-

try, then add a transition from the mode state tems were originally specified using an alternate version



Current New
Mode Ignited  Running Toofast Brake Activate Deactivate Resume | Mode
OFF @T - - - - - INACTIVE
INACTIVE @F - - - - - OFF
t t - f @T - - CRUISE
CRUISE @F - - - - - OFF
- @F - - - - INACTIVE
_ _ @T _ _ _
- - - @T - - OVERRIDE
_ _ _ _ @T _
OVERRIDE @F - - - - - OFF
- @F - - - - INACTIVE
t t - f - @T CRUISE
t t - f @T - -

Table 2: Mode Transitions for Automobile Cruise Control

of SCR requirements [16]; in this paper the specifica-
tions appear in the new SCR mode table format[10],
which is easier to read and understand. We trans-
formed these systems’ requirements into CTL struc-
tures, rephrased the required safety properties as logi-
cal formulas, and verified the formulas using the MCB
model checker. In both studies, we found discrepancies
between the systems’ requirements specifications and
their safety assertions.

3.1 Case Study: Automobile Cruise Control

The cruise control specifications used in this study
come from [19]. The possible states of the cruise control
are partitioned into four modes:

OFF Ignition is off.
INACTIVE  Ignition is on, but cruise control is not on.
CRUISE Ignition is on and the cruise control

system is on, controlling the
automobile’s speed.

OVERRIDE Ignition is on and the cruise control
system is on, but not controlling the
automobile’s speed.

The system always starts in mode OFF.

Table 2 contains the mode transition table. It shows
the events and conditions which cause the cruise control
system to transition from one mode to another. The
table uses the following conditions:

ITgnited Ignition is on

Running Engine is running

Toofast Cruise control is unable to decelerate the
vehicle when the speed is above the
desired speed

Brake Brake is on

Activate Cruise control lever is set to ACTIVATE

Cruise control lever is set to DEACTIVATE
Cruise control lever is set to RESUME

Deactivate
Resume

The requirements document for the cruise control sys-
tem also lists the following safety properties®:

Mode Safety Property

OFF —Ignited

-OFF Ignited

INACTIVE Ignited A ((~Running) V (—Activate))
CRUISE Ignited A Running A (—Brake)
OVERRIDE Ignited A Running

Whenever the system is in a particular mode, the asso-
clated safety assertion must hold. For example, if the
system is in mode OFF, then the automobile’s ignition
must be off. The safety assertion for mode INACTIVE is
more complex: if the system 1s in mode INACTIVE, then
the ignition is on, and either the engine is not running
or the cruise control has not been activated. If any of
these conditions does not hold, then the system should
not be in the INACTIVE mode.

CTL Machine Construction

While constructing the CTL machine, we noticed
that the mode transition table in Table 2 contained
implicit information, making it difficult to map SCR
requirements onto CTL structures automatically.

The first type of implicit information consists of in-
terrelationships between conditional values. For exam-
ple, the cruise control lever cannot be simultaneously

3The third safety assertion is actually (Inactive — Ignited
A ((mRunning) V (- StartIncr))), which uses a condition (Start-
Incr) not present in the requirements table. The assertion printed
below is weaker than the original safety assertion: StartIncr is
true when the driver has held the cruise control lever in the Ac-
tiwate position for a period of time, and therefore Startincr —
Activate.



Current New
Mode Ignited  Running Toofast Brake Activate Deactivate Resume | Mode
OFF @T - - - - - - INACTIVE
INACTIVE @F f - - - - - OFF
t t - f @T f f CRUISE
CRUISE @F f - - - - - OFF
t QF - - - - - INACTIVE
t - @T - - - -
t t f @T - - - OVERRIDE
t t f - f @T f
OVERRIDE @) f - - - - - OFF
t QF - - - - - INACTIVE
t t - f f f @T CRUISE
t t - f @T f f

Table 3: Mode Transitions for adjusted cruise control specifications

set at values Activate, Deactivate and Resume. There-
fore, if a mode transition is dependent upon condition
Activate being true, then it is also dependent upon con-
ditions Deactivate and Resume being false. The fact
that these additional conditions do not normally appear
in a mode transition table shows the difference between
the minimal amount of information needed to specify a
system’s requirements and the additional information
needed to verify these same requirements. We detected
the following relationships between system conditions:

Running = Ignited

Activate = (mDeactivate A ~Resume)
Deactivate = (mActivate A ~Resume)
Resume = (- Activate A = Deactivate)

A modified specification of the cruise control system
is shown in Table 3. The additional mode transition
conditions due to the above variable interrelationships
appear in italics.

The second type of implicit information involves se-
quences of instantaneous mode transitions. For exam-
ple, if the system is in mode CRUISE, and the driver
uses his brakes at the same time as the engine fails,
then transitions to modes INACTIVE and OVERRIDE
are both enabled. If the system nondeterministically
transitions to the latter mode, then (since mode tran-
sitions take zero time to complete) the system will be in
mode OVERRIDE at the instant the engine fails, caus-
ing a subsequent transition to mode INACTIVE. Thus,
despite the apparent non-determinism in this scenario,
the system will actually spend zero time in the interme-
diate mode OVERRIDE and will always end up in mode
INACTIVE.

A STATEMATE specification for a similar cruise
control system [25] avoids sequences of instantaneous
mode transitions by prioritizing the system’s modes.

STATEMATE specifications model a system’s behav-
ior as a hierarchical state machine, where transitions
from the same state are prioritized based on the level
of the destination state. In the STATEMATE cruise
control specification, the top level of the system con-
sists of two states, ENGINE-OFF and ENGINE-ON*.
State ENGINE-ON represents an internal state machine
that describes the system’s behavior when the engine is
on; it includes states CRUISE-ACT and CRUISE-INACT.
(State CRUISE-ACT corresponds to mode CRUISE, and
state CRUISE-INACT corresponds to mode RESUME.
Since state ENGINE-OFF is at a higher level in the
specification than state CRUISE-INACT, the transition
from CRUISE-ACT to ENGINE-OFF always takes prece-
dence over the transition from CRUISE-ACT to CRUISE-
INacrT.

We can capture the precedence information repre-
sented as STATEMATE hierarchies by adding condi-
tions to mode transitions. Table 3 contains an adjusted
cruise control specification in which some of the transi-
tions have additional constraints on their enabling con-
ditions to prevent them from being enabled when a
transition of higher priority is enabled. For example, a
transition from CRUISE to OVERRIDE can only occur:

e if the ignition is on (disabling the transition to OFF),

e the engine is running (disabling a transition to INAC-
TIVE), and

o the automobile is not going too fast (disabling the other
transition to INACTIVE)

The additional conditions appear as bold italic charac-
ters in Table 3.

The CTL machine that corresponds to the adjusted

4The STATEMATE specification does not distinguish be-

tween the ignition being on and the engine running.
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Figure 2: MCB Machine for adjusted cruise control specifications

cruise control specifications is shown in Figure 2.
Analysts

Once the CTL machine has been created, we need
to verify that the machine and the propositional values
were entered correctly. To do this, we rephrase the
requirements specifications as safety properties and use
the MCB model checker to prove that they are true
with respect to the constructed machine.

For each CTL state, we verified that the system prop-
erties associated with that state (displayed as state an-
notations in Figure 2) were true whenever the system
was in that state. The following formulas represent the
properties for the CRUISE and CRUISE ENABLED states:

AG (Cruise — (Ignited & Running & ~Toofast& ~ Brake
& ~Deactivate))

AG ((Cruise &Enabled) — ((~Ignited & ~Running) |
(~Running &Ignited) | (Toofast &Ignited) |
(Brake &Ignited & Running & ~Toofast) |
(Deactivate &Ignited & Running & ~Too fast)

The next set of formulas were listed in the require-
ments document as invariants of the system:

AG (Of f — ~Ignited)

AG ((Inactive | Cruise | Override) — Ignited)

AG (Inactive — (Ignited & (~ Running | ~ Activate))
AG (Cruise — (Ignited & Running & ~ Brake))

AG (Override — (Ignited & Running))

One of these invariants did not hold:

AG (Inactive — (Ignited & (~ Running | ~ Activate))
If a driver depresses the brake when the engine is run-
ning in INACTIVE mode and then sets the cruise con-
trol lever to Activate, the specifications prevent a mode
transition to CRUISE because the brake is on. Thus it
is possible to be in mode INACTIVE when the ignition
is on, the engine is running, and the cruise control has
been activated.

In fact, a presumably corrected version of this invari-
ant also did not hold:

AG (Inactive — (I gnited &(~Running | Brake |~Activate))
Consider the above scenario, where the system is in
mode INACTIVE, the engine is Running, the Brake is
depressed, and the driver sets the cruise control lever
to Activate. The system remains in mode INACTIVE
because the Brake is being pressed. If the driver then
releases the brake but continues to hold the cruise con-
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Figure 3: Modified representation of mode INACTIVE.

trol lever in the Activate position, the system will still
remain in mode INACTIVE and the invariant will be vi-
olated.

We believe the intended invariant properties of mode
INACTIVE are that the ignition is on and either

e the engine is not running

e the brake 1s on

e the cruise control lever has not been acti-
vated, or

e the cruise control was activated, but not at
a time when the other cruise control con-

ditions held.

The invariant needs to be changed to address this
fourth case, which differs from the first three in that
it deals with the values of the variables at a particular
time (when the cruise control lever is set to Activate).
These properties can be expressed by the following for-
mula
AG ((Inactive & ~Activate) —

~EX (Inactive&Ignited& Running &~Brake&Activate))
which states that if the cruise control lever is not set
to Activate in mode INACTIVE, then the system cannot
transition to a state in which the system is still in mode
INACTIVE with the cruise control lever now set to Ac-
tivate, the engine Ignited and Running and the Brake
released. If all of the properties were to be true in the
next state, then the transition from mode INACTIVE to
mode CRUISE would be triggered and the system would
actually be in mode CRUISE 1n the next state.

The MCB model checker determines that the above
formula is true with respect to the system described in
Figure 2, but only because our representation of the
cruise control system has one CTL state representing
the INACTIVE mode state (making it impossible for any
two consecutive states to both be annotated with at-
tribute INACTIVE). Our representation only character-
1zes the conditions that cause mode transitions; 1t does
not characterize the conditions under which a system
remains in a mode.

In order to represent the conditions that keep the
system in a particular mode, we need to multiply the

number of mode states representing that mode. Con-
sider the modified representation of mode INACTIVE
shown in Figure 3. The mode is entered via the top
INACTIVE mode state. The transition from the upper
mode state to the upper trigger state represents the
event that activates the transition to mode CRUISE;
this representation is attained by annotating the mode
state with transition condition ~Activate® and annotat-
ing the trigger state with transition condition
Activate & Ignited & Running & ~Brake

The transition from the upper mode state to the lower
mode state, on the other hand, represents the event of
Activate becoming true but not triggering the transi-
tion to mode CRUISE; this representation is attained by
annotating the upper mode state with transition con-
dition ~Activate and annotating all of the lower mode
state’s transitions with enabling condition

Activate & (~Running | Brake)

The intended safety property for mode INACTIVE is
really an invariant of the mode transition from INAC-
TIVE to CRUISE rather than of the INACTIVE mode
itself: the formula states that if event @T(Activate)
occurs and the WHEN conditions for the transition to
mode CRUISE are satisfied, then the system does not
remain in mode INACTIVE. To verify this kind of prob-
lem, we need to represent the circumstances in which
the system does remain in the mode, which the above
representation of mode INACTIVE does. Even so, the
above representation only describes the conditions un-
der which the system remains in mode INACTIVE when
condition Actiwate becomes true. Additional mode
states would be needed to represent the status of the
system when other conditions change value; and in the
worse case, we would need 2" mode states to completely
represent the behavior of a system having n input con-
ditions. While such a complete representation of the
system would allows us to verify more expressive for-
mulas, we lose the reduced state space that the mode
abstraction provided. Thus, there is a trade off between

5The mode state is also annotated with transition condition
Ignited to indicate that the transition to mode OFF has not been
activated.
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Table 4: Mode Transitions for Water Level Monitoring System.

the size of the system representation and the expres-
siveness of the formulas that can be checked against
the system.

Given our original representation of the cruise control
system (which only characterizes the conditions under
which the system changes modes), the strongest invari-
ant for the INACTIVE mode that can be verified with
the MCB model checker is

AG (Inactive — Ignited)
which states that if the system is in mode INACTIVE,
then all we know is that the ignition is on.

3.2 Case Study: Water-Level Monitor

The requirements specification of a water-level mon-
itoring system (WLMS) used in this study comes from
[26]. The system consists of two mode classes, one
that describes system behavior when the system is op-
erating correctly, and one that describes the behavior
when the system has failed. The FAILURE mode class
is simple and uninteresting, and exists independently of
the OPERATING mode class; therefore, we only stud-
ied the OPERATING mode class. Table 4 contains the
mode transition table. OPERATING is comprised of
four modes:

OPERATING  The system is running

STANDBY The system has not been running for at
least 200ms, but has not failed

SHUTDOWN  The system stopped running within the
last 200ms

TEST The system is being tested

The system always starts in mode STANDBY.
The propositional variables that appear in the table
are defined as follows

Within Limits

LowLimit<WaterLevel <HighLimit
InsideHysRange

(LowLimit40.5cm)< WaterLevel < (HighLimit-0.5cm)
SlfTestPressed

SIfTst button is being pressed
SlfTestInterval

SIfTst button is pressed constantly for > 500ms
TestInterval

System in TEST mode for > 14s
ResetInterval

Reset button is pressed constantly for > 3s
ShutdownLockTime

System is in SHUTDOWN mode for > 200ms

CTL Machine Construction

Like the cruise control specifications, the WLMS
mode transition table contained implicit information
that we needed to make explicit before constructing
the CTL machine. Additional conditions were added
to satisfy the following relationships between system
conditions:

Inside Hys Range = Within Limits
SlfTestInterval = SlfTestPressed

The added conditions appear in italics in the mode
transition table.

The WLMS specification does not allow sequences of
simultaneous mode transitions. The model regards the
current mode as an additional WHEN condition of any
transition condition, and the WHEN conditions of an
event must hold for some finite period of time before the
event occurs. Therefore, no further adjustments to the
requirements specification were needed. The resulting
CTL machine is displayed in Figure 4.

Analysts

First, we tested to see if we had entered the speci-
fications correctly, by verifying that the properties as-
sociated with each state (as depicted in Figure 4) held
whenever the system was in that state. Then we tried
to verify some system invariants. Although, the soft-
ware requirements document for the WLMS system did
not include a list of safety properties, we inferred that
the following properties should be invariant:
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AX (Test))
AG ((Operating — (WithinLimits | SlfTestPressed))

The first formula asserts that if the SIfTst button
has been pressed for 500 ms or more and the system
is not currently in mode TEST (or its trigger state
TESTENABLED), then the next state is TEST. This
formula is false because if the machine is in mode
STANDBY and both of its transitions are simultaneously
enabled, the CTL machine may nondeterministically
choose the transition to the OPERATING mode, rather
than the one to mode TEST. This nondeterminism vi-
olates an intended invariant property [27].

The second formula is more critical. It states that if
the system is in mode OPERATING, then either the wa-
ter level is WithinLimats or the SHTst button is being
pressed. This property is not invariant. If the system
is in mode OPERATING and the SIfTst button is being
pressed, then the system will remain in mode OPER-
ATING 1if the water level rises above or falls below the
limits. But if the SIfTst button is released before the
transition into mode TEST, then the system remains
in the OPERATING mode even though the water level
is not WithinLumits. In addition, the transition from
OPERATING to SHUTDOWN is now disabled, because
the event of the water level crossing the WithinLimits
boundary has already occurred.

These two safety violations only occur under care-
fully timed conditions. As a result, they went unde-

tected even though the system was implemented.

4 Discussion

In both case studies, we used the model checker to
disprove the invariance of required safety properties.
We showed that a safety constraint in the cruise con-
trol specifications had been stated incorrectly; and in
the water-level monitoring system, we found two prop-
erties that were intended to be invariant but were not
enforced by the requirements.

The remainder of this section addresses issues about
our state-based analysis of event-oriented requirements
and discusses related work.

4.1 Observations

The MCB model checker has proven useful for ver-
ifying safety properties in the case studies presented.
There are, however, limitations to this approach.

e The MCB model checker 1s restricted to the study
of finite state machines (FSM). The system being
developed need not be a FSM, but the require-
ments specification that describes the transitional
behavior of the system must be expressible as a

FSM.

e We transformed system requirements consisting of
one mode class into CTL structures. However,
a system’s requirements may consist of multiple
mode classes, and as such would be modeled by
the concurrent execution of several C'TL machines.



One must unite these machines into a single global
CTL machine, in which each state represents the
combined current states of the machine’s compo-
nents. This leads to an exponential increase in the
number of states, but since we start with a rela-
tively small number of states (CTL states repre-
sent system modes rather than system states), the
size of the global machine might still be manage-
able. In addition, [5] describes a symbolic model
checker that will be capable of checking very large
CTL structures.

e For this paper, we constructed the CTL machines
manually. In the future, we intend to investigate
how this task can be automated. It is not clear
at this point how much input will be needed from
the requirements designer to create machines that
accurately model modes with complex transition
conditions.

4.2 Related Work

Model checking is only one technique for analyz-
ing requirements specifications. Other promising ap-
proaches include formal verification, executable speci-
fications, and theorem proving.

One approach is to introduce a specification language
based on temporal logic and provide a proof system for
that logic [20,22,23]. The requirements designer spec-
ifies a system’s behavior as a set of temporal logical
formulas, and then proves system properties using the
logic’s proof rules. Such formal verification ensures a
high degree of confidence in the validated system. It
is a laborious process, however, that entails detailed
mathematical analysis, most of it unautomated. As
a result of the high cost, few real-world systems have
been formally verified.

A more popular approach is to define an executable
specification language, which allows the designer to
run the specification and test that the specified sys-
tem works correctly [7,13,15]. STATEMATE [14], for
example, 1s a programming environment for graphically
specifying reactive systems. In addition to simulation
capabilities, the STATEMATE system offers a set of
dynamic tests that can be performed automatically:
consistency, completeness, reachability, nondetermin-
ism, and deadlock. However, none of these tests can be
used to analyze or verify the functional behavior of the
system being specified.

Modechart [18] is a variant of the STATEMATE lan-
guage that was developed to incorporate timing re-
quirements into a system’s requirements specification.
The primary use of this system 1s to confirm that tim-
ing constraints are being enforced in the system’s re-
quirements. One can also use the verifier to perform

reachability tests but not to verify system properties®.

Hierarchical multi-state (HMS) machines [11,12] is
another specification formalism, in which the system
behavior is expressed as a hierarchical state machine.
One can model check an HMS machine by expanding
the system into a computation tree (thereby explic-
itly representing all execution paths) and verifying a
temporal logical formula with respect to the computa-
tion tree. Alternatively, one can use a variation of the
resolution-based theorem proving technique introduced
in [2]: the property to be verified is negated and added
to the system specification as an extra state; if this ex-
tra state is unreachable, then the system property is
invariant. Unfortunately, neither of these verification
techniques has been automated.

5 Conclusion

We have presented a technique whereby SCR-style
event-oriented requirement specifications can be mod-
eled as state-based structures and analyzed using a
state-based model checker. Using this technique, we
were able to detect errors in both of the requirements
documents we studied. We intend to investigate how
one might automatically map SCR-style specifications
onto CTL machines. We are also investigating how
functional and timing requirements can be combined
in a uniform model of a system’s requirements specifi-
cation, that can subsequently be analyzed and verified
automatically.
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