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Abstract—Modern automotive software systems are large, com-
plex, and feature rich; they can contain over 100 million lines of
code, comprising hundreds of features distributed across multiple
electronic control units (ECUs), all operating in parallel and
communicating over a CAN bus. Because they are safety-critical
systems, the problem of possible Feature Interactions (FIs) must
be addressed seriously; however, traditional detection approaches
using dynamic analyses are unlikely to scale to the size of these
systems. We are investigating an approach that detects static
source-code patterns that are symptomatic of FIs. The tools
report Feature-Interaction warnings, which can be investigated
further by engineers to determine if they represent true FIs and
if those FIs are problematic.

In this paper, we present our preliminary toolchain for FI
detection. First, we extract a collection of static “facts” from the
source code, such as function calls, variable assignments, and
messages between features. Next, we perform relational algebra
transformations on this factbase to infer additional “facts” that
represent more complicated design information about the code,
such as potential information flows and data dependencies; then,
the full collection of “facts” is matched against a curated set
of patterns for FI symptoms. We present a set of five patterns
for FIs in automotive software as well a case study in which
we applied our tools to the Autonomoose autonomous-driving
software, developed at the University of Waterloo. Our approach
identified 1,444 possible FIs in this codebase, of which 10%
were classified as being probable interactions worthy of further
investigation.

Index Terms—static analysis, relational algebra, feature inter-
actions.

I. INTRODUCTION

The complexity of automotive software continues to grow
as functionality that used to be realized in electro-mechanical
systems is increasingly implemented in software, and as new
features are introduced to improve safety, fuel economy, driver
experience, and semi-autonomous capabilities. The software in
a modern-day automobile comprises more than 100 million
lines of code distributed across as many as 120 electronic
control units (ECUs), which communicate over a CAN bus [1].
To mitigate complexity, the software is decomposed into sub-
systems and features, each of which is a unit of functionality
that can be considered, developed, and evolved independently.
The downside of feature-based decomposition are unexpected
Feature Interactions (FIs), where the actions of one feature
interfere with those of one or more others, leading to con-
flicts, emergent functional behaviours, and possible artificial

contagion to other features and systems [2] [3]. To illustrate,
consider a vehicle that has two features: Adaptive Cruise
Control (ACC), which manipulates the car’s acceleration and
brake actuators in order to maintain a set cruising speed, and
Lane Centering (LC), which manipulates the car’s steering to
keep the vehicle in the centre of its lane. In isolation, these
two features operate as expected. However, if they operate
simultaneously without any coordination, ACC’s impact on
the car’s forward speed and the LC’s impact on steering angle
could result in a dangerous lateral acceleration that causes the
vehicle to roll over.

Feature Interactions present a real and significant safety risk
to consumers and bystanders; automotive companies expend
considerable effort in detecting and mitigating the risk of FIs.
However, many traditional approaches for FI detection — such
as code reviews and safety analyses — scale poorly as the
number of features climbs into the hundreds and the number
of feature combinations to analyze grows exponentially. Much
previous research has focused on approaches that require
models of feature behaviours [4] [5] or specifications of correct
feature behaviour [6] [7]; typically, they employ dynamic
analyses that have high precision and recall, but do not scale
to large numbers of features.

We are exploring a static-analysis approach that extracts a
lightweight model of a software system from its source code
and looks for symptoms of FIs within this model. Reported
instances of FI symptoms, which we call FI warnings, must be
investigated further by engineers to determine if they represent
true interactions, and if so, whether they are unintended or
undesired. The ultimate goal of this work is to make a feasible,
lightweight analysis that is effective in detecting potential FIs
at the scale of tens-to-hundreds of features.

This paper presents our first steps in this work, in which we
investigate the practicality of detecting non-trivial interactions
between features, implemented as distinct C++ components
that communicate via publish/subscribe primitives in the Robot
Operating System (ROS) [8]. We have developed tools for
exacting from C/C++ source code a collection of static “facts”
about software components, such as function calls, variable
assignments, and ROS messages between features. The facts
are represented as tuples, and the collection of extracted
facts, called a factbase, forms an initial model of the soft-



ware. We then perform relational-algebra transformations on
the factbase to infer additional “facts” that represent more
complicated design information about the software, such as
potential information flows and data dependencies which we
add to the factbase. Next, we match this augmented model
against a curated set of patterns that are symptomatic of FIs;
this results in a set of FI warnings. The warnings must be
investigated further by domain experts, who can determine
whether a warning reflects a real undesired interaction that
must be fixed, a real but benign interaction that can be ignored,
or a false positive. Note that our initial tools are specific
to the programming languages, communication primitives,
and FI types that apply to automotive software; however,
we hypothesize that our approach to fact extraction and FI
warnings can be adapted to other application domains, and
we will assess this in future works.

In this paper, we present our source-code fact-extraction
tool called Rex; we present a set of five patterns for FIs for
automotive software; and we present the results of a case study
in which we assess the utility of our static-analysis approach to
FI detection by applying it to the software for the Autonomoose
autonomous driving project at the University of Waterloo [9].
Our relational queries on these facts found a total 1,444 FI
warnings within the example software system; of these, 10%
were classified by a developer of the system as being probable
interactions worthy of further investigation.

The rest of this paper is organized as follows: Section II
provides an overview of our approach to detect symptoms of
FIs using static-analysis technologies. Section III introduces
the Rex fact extraction tool. Section IV describes relational-
algebraic definitions of symptoms for five different patterns of
FIs. Section V presents the results of applying our tools to an
automotive software system, and we discuss limitations of our
approach in Section VI. Section VII reviews related work, and
Section VIII concludes with plans for future work.

II. OVERVIEW

Figure 1 shows our static-analysis toolchain for detecting
symptoms of Feature Interactions (FIs) in a software system. In
the figure, green boxes represent files or data stores, pink boxes
represent tools, and the single purple box represents the human
ingenuity needed to devise the queries. Inputs to the toolchain
are one or more files of C/C++ source code, which are fed to
the fact extractor; the extractor distills important “facts” about
the program entities and their relationships, creating a tuple-
based model using the Tuple-Attribute (TA) language [10].
The Grok relational-algebra query engine [11] is used to infer
additional “facts” through algebraic operations on this model,
and also to pose queries. In our work, the queries, created by
a human engineer, express likely symptoms of FIs in the code.
Finally, the output is a collection of FI warnings that warrant
further investigation using other methods such as code reviews
or more sophisticated static or dynamic analyses.

Elements of this toolchain have been used in previous re-
search projects for several tasks, including reverse engineering
software architecture models [12] [13] and source-code clone
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Fig. 1. Toolchain to detect symptoms of Feature Interactions.

detection [14]. Our research is novel in that the software
under analysis is a collection of concurrent message-passing
software components, rather than a single-threaded software
system; this requires that the fact extractor is able to create a
richer system model than in previous uses. Also, to the best of
our knowledge, our application of these technologies to detect
predefined FI patterns in source code is novel. The remainder
of this section describes the two major tools of our toolchain,
as well as the FI symptoms our work aims to detect.

A. Fact Extractor(s)

The first major step in our approach is to create a program
model of the software system from the source code. A model
is a collection of “facts” about the software entities and their
relationships, and the model itself is called a factbase. We
note that here, our facts are derived from static analysis,
which is often imprecise and conservative; some facts that are
statically “true” (e.g., F calls G) may not be possible at run-
time (e.g., if the call is protected by a guard condition that
is always false). Facts are encoded as three-tuples (triples)
in the Tuple-Attribute (TA) language where the tuples define
sets, relations between entities in the sets, and attributes that
describe characteristics of entries in sets or relations.

A fact extractor is a custom tool, often built using compiler-
like components such as scanners, parsers, and abstract syntax
trees (ASTs); the reverse engineering research community has
a long history of building fact extractors for various technical
needs. Typically, an extractor processes the source code to
generate facts of interest about the program’s entities and their
relationships; some extractors require full, compilable sources
and access to deployment libraries and execution environments
to do their job, while others are able to generate rich models
from source code or object files. For large systems, extractors
often mimic the design of compilers, supporting an initial per-
file extraction phase akin to separate compilation followed by
a merging phase similar to linking. Extractors may generate
much more detailed information than is needed for typical
uses; command-line options, filters, and post-processing trans-
formations can limit the amount of detail generated, which in
turn greatly reduces the amount of time needed to perform the
merging/linking.

Our extractor, called Rex (ROS Extractor), processes C++
programs that run on the Robot Operating System (ROS) [8];
it is built using Clang++ infrastructure [15]. Rex produces a



TABLE I
A SUBSET OF Grok RELATIONAL OPERATORS

Operator Name Operator Description
Union 〈ITEM〉 + 〈ITEM〉 Returns a set (relation) comprising the elements from the two operands, omitting duplicates
Intersection 〈ITEM〉 ˆ 〈ITEM〉 Returns a set (relation) comprising the elements that are members of both operands
Difference 〈ITEM1〉 - 〈ITEM2〉 Returns a set (relation) comprising the elements that are in 〈ITEM1〉 but not in 〈ITEM2〉
Transitive closure 〈RELATION〉+ Returns the transitive closure of the operand 〈RELATION〉
Composition 〈RELATION1〉 o 〈RELATION2〉 Returns a relation {(x, z)| ∃y . (x,y)∈〈RELATION1〉 and (y,z)∈〈RELATION2〉}
Domain restriction 〈SET〉 o 〈RELATION〉 Returns the subset of 〈RELATION〉 whose domain elements are in 〈SET〉
Range restriction 〈RELATION〉 o 〈SET〉 Returns the subset of 〈RELATION〉 whose range elements are in 〈SET〉
Projection 〈SET〉 . 〈RELATION〉 Projects a set through a relation; returns set {y| ∃x . x∈〈SET〉 and (x,y)∈〈RELATION〉}
Projection 〈RELATION〉 . 〈SET〉 Projects a relation through a set; returns set {x| ∃y . (x,y)∈〈RELATION〉 and y∈〈SET〉}
Identity id 〈SET〉 Returns a relation comprising an element (x,x) for each element x in 〈SET〉
Domain dom 〈RELATION〉 Returns a set comprising the domain values of all elements in 〈RELATION〉
Range rng 〈RELATION〉 Returns a set comprising the range values of all elements in 〈RELATION〉
Selection 〈RELATION〉[ 〈COND〉 ] Returns the subset of 〈RELATION〉 whose elements satisfy 〈COND〉

model of the target program in TA that include both “generic”
C++ facts (e.g., declarations, variable uses, function calls, mes-
sage passes) as well as facts about ROS primitives (e.g., pub-
lishers/subscribers, features, topics, and their dependencies).
The special-purpose analyses for possible FIs is performed on
this TA model using Grok scripts; we describe Grok in the
next section, and we discuss the special purpose Grok scripts
for FI detection in more detail in Section IV.

B. Grok

Given a TA model (factbase) of a software system, one can
infer additional “facts” about its design by performing appro-
priate relational-algebra operations using the Grok relational
query engine [11]. The Grok environment supports basic set
and relational operations (e.g., union, intersection, difference,
and projection), relational composition, and transitive closure;
transitive closure is particularly powerful as it allows us to
infer indirect relationships from direct relationships (e.g., we
can infer which functions are indirectly called by some main
function by computing the transitive closure of the relation of
direct function calls). Table I shows a subset of operations that
Grok supports1. The results of an algebraic operation are new
facts that can be added to the factbase and used in subsequent
operations and queries.

C. Feature Interactions

A Feature Interaction (FI) occurs whenever one feature
affects the behaviour of another [2]. How a Feature Interaction
manifests itself depends on how features are represented [5].
For example, if features are expressed in logic, then interac-
tions manifest as logical inconsistencies or unsatisfiability.

When features are expressed in code, FIs manifest in a wide
variety of ways [5]:

1) nondeterminism among features’ actions
2) inconsistent post-conditions of features
3) deadlock of features’ executions
4) livelock of a feature’s execution
5) control modification (e.g., some action by one feature

causes a change in the control flow of another feature)

1Additional Grok operators and functions can be found here [16].

6) data modification (e.g., some variable assignment made
by one feature causes a change to a variable assignment
made by another feature)

7) resource contention, where features compete for scarce
resources

8) loops in communication among features
As will be seen, this paper investigates symptoms that corre-
spond to FI manifestations 1, 4, 5, and 8.

III. FACT EXTRACTION

In this section, we present our fact extractor Rex (ROS
Extractor) for programs that are written in C/C++ and that use
the Robot Operating System (ROS) framework [8] to enable
communications between software components. In addition to
extracting typical facts about top-level C++ entities, such as
classes, functions, and function calls, Rex also extracts
facts about ROS communication primitives, such as instances
of publish and subscribe, so that we can analyze
possible data flows between components. One complication
in analyzing a ROS-based system is that it uses a unique build
system, called catkin, which determines the set of source-
code files that make up a build as well as the compiler flags
associated with each file; the fact extractor needs these details
to extract a faithful model (of a specific build) of the software.
To explicate this information, the system-build scripts need to
be modified to generate a compilation database comprised
of the pathnames of all the source-code files that make up
the build along with their respective compiler flags; this
compilation data is part of the input to the fact extractor. The
remainder of this section provides a brief description of our
fact extractor2.

Rex is an adaptation of the Clang++ open-source com-
piler [15], which parses C++ source-code files and gener-
ates corresponding abstract syntax trees (ASTs). Whenever
Clang++ generates an AST node that matches information
Rex deems to be important, Rex records information about
that node in an in-memory hierarchical graph. Graph nodes
correspond to entities and graph edges correspond to relations
in the resultant TA factbase; both nodes and edges can have

2Detailed information about the Rex fact extractor can be found in [17].
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    int getArea() {
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size    { inDecisionCond = false }
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Fig. 2. An example (non-ROS-based) C++ program being converted into a TA factbase.

associated attributes. Figure 2 shows an example (non-ROS-
based) C++ program, the in-memory hierarchical graph that
Rex would produce, and the resultant TA factbase outputted
by Rex. In this example, as Clang++ creates AST nodes for
class Square, function getArea(), and variables area
and size3, Rex creates corresponding graph nodes. For each
declaration in the AST, Rex generates a contain edge from
the graph node of declaring function, class, or file to the graph
node of the declared entity. When Rex sees the initialization
of variable area, it creates a write edge between function
getArea() and variable area. Other edges are created in
the same manner.

Once the construction of the in-memory hierarchical graph
is completed, information about feature entities and their
associated relationships are added. The concept of a feature
has many definitions in the literature; we define a feature to be
“a coherent and identifiable bundle of system functionality that
helps characterize the system from a user perspective” [18].
In ROS, projects are divided into packages that modularize
code into divisible units that are comparable to features; thus,
Rex adds a feature node to the in-memory graph for each ROS
package in the project4. Then, to maintain the hierarchy of
items, every other node is nested — by adding a contain
edge — under its associated feature. To do this for each
recorded entity, during the construction of the in-memory
hierarchical graph, Rex creates a list of source files that refer
to that entity. If an entity is used in multiple files, all files
that refer to that entity are recorded. In the feature resolution
phase, the compilation database is scanned to determine which
files are included in the build; and the in-memory hierarchical
graph is augmented with edges from the features (files) that
are included in the build to their entities.

Exporting a completed hierarchical graph to a TA model

3The names in the example are simplified to ease exposition. In practice,
Rex creates long identifier names that capture the entity’s context (i.e.,
enclosing function, class, etc., up to and including filename).

4A feature can be added to the factbase manually with relatively little effort,
should a domain expert wish to do so.

is straightforward because a TA model can be viewed as a
textual representation of a graph. In a TA factbase, identifiers
(IDs) need to be declared before they are used. Thus, a
hierarchical graph is converted to a TA model as follows: first
all graph nodes are outputted as entities, then all graph edges
are outputted as relations, and finally all attributes of nodes
and edges are outputted. The tuple representations of nodes,
edges, and attributes, respectively are:
$INSTANCE 〈NODE_ID〉 〈NODE_TYPE〉
〈EDGE_TYPE〉 〈EDGE_SOURCE〉 〈EDGE_DESTINATION〉
〈ID〉 { 〈KEY〉 = 〈VALUE〉 . . . }

Fig. 3. Entities, relations, and attributes contained in Rex models.

IV. FEATURE-INTERACTION SYMPTOMS

In this section, we present analyses for five Feature-
Interaction (FI) symptoms. They cover four of the eight
types of FIs described in Section II-C, and in particular they
cover FIs due to data-value manipulation (where one feature’s
data affects the computations of another feature), control-flow
manipulation (where one feature’s actions affect the control
flow in another feature), and multiple-input interactions (where
a feature reacts to near-simultaneous requests from other
features). While these scripts depend on the output from Rex,
they are independent of each other; additional scripts that look
for other FI symptoms can be added easily. The factbase can
also be extended with additional information as needed; for



TABLE II
RELATIONSHIP AND ATTRIBUTE INFORMATION ABOUT ROS PROGRAMS PRODUCED BY THE Rex EXTRACTOR.

Relation/Attribute Meaning
publish 〈publisher〉 〈topic〉 〈publisher〉 publishes data to some ROS 〈topic〉
subscribe 〈topic〉 〈subscriber〉 〈subscriber〉 subscribes to some ROS 〈topic〉 and receives data from it
mesg 〈function1〉 〈function2〉 〈function1〉 in some feature sends a message to 〈function2〉 in another feature
call 〈function1〉 〈function2〉 〈function1〉 calls 〈function2〉
contain 〈entity1〉 〈entity2〉 〈entity1〉 transitively contains 〈entity2〉; for instance, a class contains a function
write 〈function〉 〈variable〉 〈function〉 assigns data to 〈variable〉
varAssign 〈variable1〉 〈variable2〉 〈variable1〉 assigns its data to 〈variable2〉
inDecisionCondPub 〈variable〉 〈publisher〉 〈variable〉 is used in a control-flow statement that affects whether 〈publisher〉 publishes data
inDecisionCondFunc 〈variable〉 〈function〉 〈variable〉 is used in a control-flow statement that affects whether 〈function〉 is called
〈variable〉 { inDecisionCond = 〈true/false〉 } Denotes whether 〈variable〉 is used in the decision condition of a control-flow statement

example, information about resources can be added to detect
resource contention.

Figure 3 shows a UML class diagram of the entities,
relationships, and attributes that must be present in a ROS-
based automotive TA factbase to detect each of these symp-
toms. UML-classes5 are entities in our TA model, associations
between classes are relationships, and fields in the classes are
attributes. Red classes are ROS-based entities. Table II pro-
vides a detailed description of the relationships and attributes
collected by Rex; these relations and attributes are used in the
remainder of this section. Essentially, the TA model produced
by Rex serves as input to the Grok analysis scripts that look
for possible FIs. The remainder of this section presents and
explains these scripts6.

A. Inter-Feature Communication Loops

A communication loop occurs when a feature sends a
message that eventually causes that same feature to receive a
message, and can be a symptom of features that repeatedly
respond to each others’ messages in an infinite loop. This
symptom corresponds to interaction type 8 (communication
loops among features) described in Section II-C. In a direct
loop, a feature sends a message directly to itself. In an indirect
loop, a feature sends a message to another feature, which
eventually results in the origin feature receiving a message
from some feature.

Figure 4 shows the Grok script used to detect the com-
munication loop symptom. In this script sendFunc is a
function that sends a message to another component and
receiveFunc is a function that receives a message from
another component:

1) Compute the identity relation of the feature set. Store
this in a relation called loopTest (line 1).

2) Take the mesg relation and lift it from the function to
the feature level by joining it to the contain relation
(line 3).

3) Compute direct loops by taking the intersection of the
directFeat relation (all direct communications) and
loopTest. Print the direct loops (lines 4–5).

4) For indirect loops, compute the union of the mesg
relation and the function call relation and store the

5One of the boxes represents C++ classes from the target system.
6Detailed information about each of these scripts can be found in [17].

result in a relation called fullCall. Get the transitive
closure of this relation (lines 7–8).

5) Restrict the resultant relation to only those tuples that start
with a sendFunc in the initial feature and end with a
receiveFunc in the recipient feature. Then, similar to
step 2, take the indirectLoop relation and lift it from
the function to feature level. Finally, take the intersection
of the results with loopTest to get all indirect loops.
Print the results (lines 10–13).

1 l o o p T e s t = i d f e a t u r e ;
2

3 d i r e c t F e a t = c o n t a i n o mesg o i n v c o n t a i n ;
4 d i r e c t L o o p = d i r e c t F e a t ˆ l o o p T e s t ;
5 d i r e c t L o o p ;
6

7 f u l l C a l l = mesg + c a l l ;
8 f u l l C a l l = f u l l C a l l + ;
9

10 i n d i r e c t L o o p = sendFunc o f u l l C a l l o r e c e i v e F u n c ;
11 i n d i r e c t L o o p = c o n t a i n o i n d i r e c t L o o p o i n v c o n t a i n ;
12 i n d i r e c t L o o p = i n d i r e c t L o o p ˆ l o o p T e s t ;
13 i n d i r e c t L o o p ;

Fig. 4. Grok script for detecting communication loops.

B. Control-Flow Interactions

A control-flow interaction occurs when the behaviour
of one feature is altered as a result of messages received
from other features. This class of FIs is the most critical
to detect, as they can lead to emergent behaviours that are
surprising and undesirable. This class consists of two subtypes
— behaviour alteration and publish alteration — which are
highly specialized, and require information about function
calls, variable assignments, and control-flow statements.

A behaviour alteration occurs when a message from some
initial feature alters the behaviour of a recipient feature. This
definition is vague about what it means for a feature to “change
behaviour”. We define it to be a change in control-flow: that
is, a change to a variable value that is subsequently used in the
decision condition of some control structure (i.e., a if, for,
while, or switch statement). Thus, the pattern looks for a
message to a recipient feature that leads to a direct or indirect
variable assignment, where that variable is used in a control



structure. This symptom is a type of control-modification
interaction (interaction 5 described in Section II-C).

Figure 5 shows the Grok script to detect symptoms of
behaviour alterations:

1) In a set collect all variables that are used in the decision
condition of some control structure. Store the results in
controlVars (line 1).

2) Union together the varAssign, call, write, and
inDecisionCondFunc relations to form a mas-
ter relation of information flows. Store the results in
masterCalls (line 3). Compute the transitive closure
of this master relation (line 4).

3) Restrict the resultant relation to those tuples that start
with some receiveFunc and end with some control
variable. Print the results (lines 6–7).

1 c o n t r o l V a r s = i n D e c i s i o n C o n d . {1} ;
2

3 m a s t e r C a l l s = v a r A s s i g n + c a l l + w r i t e +
inDec i s ionCondFunc ;

4 m a s t e r C a l l s = m a s t e r C a l l s + ;
5

6 b e h A l t e r = r e c e i v e F u n c o m a s t e r C a l l s o c o n t r o l V a r s ;
7 b e h A l t e r ;

Fig. 5. Grok script for detecting symptoms of behaviour alterations.

A publish alteration occurs when a message received by
some origin feature causes a recipient feature to alter its
message-sending behaviour. Thus, this symptom is also a
type of control-modification interaction (interaction 5). Similar
to the behaviour-alteration symptom, a feature’s message-
sending behaviour is changed due to a change in control flow.
However, detecting this symptom is more complex since a
trace needs to be established from the initial received message
to a publish call contained within a control flow statement; the
inDecisionCondPub and inDecisionCondFunc rela-
tions are required for this symptom because the query needs to
determine which “control-flow” variables are responsible for
affecting whether a publish call or function call is made.

Figure 6 shows the Grok script to detect symptoms of
publish alterations:

1) Union together the varAssign, write, call,
inDecisionCondFunc, and inDecisionCondPub
relations to form a master relation of function calls,
variable assignments, and influence relations. Store the
results in masterCalls (line 1). Compute the transitive
closure of this master relation (line 2).

2) Restrict the resultant relation to those tuples that start
with some receiveFunc and end with a message to
another feature. Print the results (lines 4–5).

C. Multiple-Input Interactions

A multiple-input interaction occurs when a feature re-
ceives messages from two or more features, resulting in a
possible race condition. There are two interaction types in this
class: multiple-publisher and race condition.

1 m a s t e r C a l l s = v a r A s s i g n + inDec i s ionCondFunc +
inDec i s ionCondPub + c a l l + w r i t e ;

2 m a s t e r C a l l s = m a s t e r C a l l s + ;
3

4 p u b A l t e r = r e c e i v e F u n c o m a s t e r C a l l s o mesg ;
5 p u b A l t e r ;

Fig. 6. Grok script for detecting symptoms of publish alterations.

Multiple publishers to the same topic, or publishers to
different topics that are subscribed to by the same feature,
can be a problem because one publisher may send messages
at a higher frequency, drowning out data sent from other
publishers. This symptom corresponds to a type of livelock
interaction (i.e., interaction type 4 from Section II-C. Figure
7 shows the Grok script to detect the multiple-publisher
symptom:

1) A helper function indegree(. . .) counts the number of
instances that each range element appears in a relation,
and generates a new relation of the form 〈RANGE_ID〉
〈COUNT〉. Apply indegree(. . .) to the mesg relation
(line 1).

2) Filter out any entries where the indegree of a feature
receiving messages is less than or equal to 1 (line 2).

3) Restrict the mesg relation to only those tuples whose
range values are the features that receive messages from
more than one publisher (line 4). Print the results.

1 c a r d D i r e c t = i n d e g r e e ( mesg ) ;
2 c a r d D i r e c t = c a r d D i r e c t [ &1 > 1 ] ;
3

4 mult iMesg = mesg o dom c a r d D i r e c t ;
5 mult iMesg ;

Fig. 7. Grok script for detecting the multiple-publisher symptom.

A race condition occurs when two or more features mes-
sage some recipient feature and multiple callback functions
update the same variable inside that recipient. Unlike the
multiple-publisher interaction, a race condition includes cases
where each communicating feature has its own communication
channel, as long as their messages cause updates to the
same variable contained inside the recipient feature. Thus,
this symptom corresponds to a type of nondeterminism (i.e.,
interaction type 1 from Section II-C.

Figure 8 shows the Grok script to detect symptoms of race
conditions:

1) Restrict the relation write to just those tuples
whose domain values are receiveFuncs that re-
ceive messages from other features. Store the results in
callbackWrite (line 1).

2) Apply indegree(. . .) to the callbackWrite rela-
tion (line 3) and filter out any entries where the number
of functions writing to a variable is less than or equal to
1 (line 4). Store the results in cardVars.

3) Restrict the relation callbackWrite to only those
tuples whose range values are the variables being written



to by more than one callback function (line 6). Print the
results.

1 c a l l b a c k W r i t e = r e c e i v e F u n c o w r i t e ;
2

3 c a r d V a r s = i n d e g r e e ( c a l l b a c k W r i t e ) ;
4 c a r d V a r s = c a r d V a r s [ &1 > 1 ] ;
5

6 c a l l b a c k W r i t e = c a l l b a c k W r i t e o dom c a r d V a r s ;
7 c a l l b a c k W r i t e ;

Fig. 8. Grok script for detecting the race-condition symptom.

V. CASE STUDY

To evaluate the effectiveness of our methodology, the FI pat-
terns we defined, and the Rex extractor, we tested our toolchain
on automotive software called Autonomoose developed by
the University of Waterloo Intelligent Systems Engineering
(WISE) Lab. The Autonomoose software runs on a modified
Lincoln MKZ that aims to eventually operate at level 4 of the
SAE autonomous driving standard [19]. This software system
consists of features, implemented as components, that each
receive data from sensors and other features, perform some
task, and then pass data to other features or vehicle actuators.
To facilitate communication between features, Autonomoose
uses the Robot Operating System (ROS) architecture. Table
III shows some statistics about the Autonomoose codebase.

TABLE III
SOURCE CODE STATISTICS FOR THE Autonomoose PROJECT AS OF

OCTOBER 2017.

Autonomoose source code statistics
# of source code lines in C/C++ (SLOC) 74,215
# of features 14
# of functions 1,298
# of variables 5,321
# of communication channels 14

The goal of this case study is to evaluate the effectiveness
and accuracy of detecting FI symptoms using our relational-
algebra toolchain. We investigate three research questions:
RQ1 What is the precision/recall of entities, relationships,

and attributes generated by the Rex fact extractor before
relational manipulation?

RQ2 What FI symptoms appear in Autonomoose?
RQ3 How effective is each symptom for indicating potential

Feature Interactions?

A. Setup
To detect potential FIs in Autonomoose, we incorporated

Rex into Autonomoose’s build chain to generate a TA factbase
of Autonomoose’s entities, relationships, and attributes. Specif-
ically, we generated compilation databases that contained the
required compile flags for the project so that the Rex extractor
could successfully generate an AST for each file. Factbases for
each file were extracted and linked to form a single factbase
that represents all of Autonomoose’s features. The model was
then loaded into Grok where each symptom script was run to
look for possible FIs.

B. RQ1: Fact Extractor Validation

Because the accuracy of our approach depends on the
quality of the extraction tools — i.e., both Rex and the
compilation database — we performed a manual validation of
the Local Planner module, the largest module in Autonomoose.
Two members of the research team independently performed
a manual fact extraction from the source code of the mod-
ule, and used scripts to randomly select entities to compare
against the Rex-generated factbase. Table IV summarizes the
results; it shows the number of facts selected randomly for
comparison from the manually extracted factbases, along with
the corresponding precision and recall. Elements marked with
an asterisk denote cases where all entities of that type were
counted in the entire software project. Overall, twelve of the
sixteen fact types presented in the table have a precision of
100%, and ten of the sixteen have a recall of 90% or higher;
we note that because we aim to discover all potential FIs, we
value high recall over high precision.

AST-based C++ entities, such as features, classes,
functions, and variables, are collected directly from
the Clang++ AST or compilation databases; they all have
a precision and recall of 100% because Rex simply adds
information about the associated AST nodes directly to the
factbase. The exception to this is enum classes, which are
not detected by Rex and comprise the two classes Rex did
not detect. For ROS-based entities, such as publish and
subscribe objects and ROS topics, the precision and
recall was 100% except for topics, which had a recall of
95.9%. This is because ROS topics are created and named
using strings and automatically determining the contents of
these strings statically is impossible; Rex is able to correctly
create topic entities only if topics are created using string
literals.

For relations recorded in the factbase, with the excep-
tion of call and contain, Rex must statically interpret
C++ expressions to generate information for that relation.
Although all of these relations have a precision over 85%,
the varWrite relation has a recall of only 66.3%. This is
because C++ variable aliasing makes it impossible to statically
determine whether a variable has actually been assigned a
value. As future work, it would be beneficial to improve
this relation to emphasize false positives over negatives so
that there is little risk of missing important variable assign-
ments. Relationships involving functions such as call and
indDecisionCondFunc have seemingly very low recall,
less than 30% for both. This is primarily due to the fact that
both system libraries and core ROS libraries were purposely
excluded from extraction. Symbols in the abstract syntax tree
generated from included system header files and ROS libraries
were not included in this analysis because execution paths that
traverse into system header files are not likely to re-emerge
back in the target source file.

For the sole attribute, inDecisionCond, Rex had a pre-
cision of 88.5% and recall of 84.9%. The precision and recall
of this attribute are not perfect because Rex must extrapolate



TABLE IV
PRECISION AND RECALL OF ENTITIES, RELATIONS, AND ATTRIBUTES IN THE Autonomoose MODEL.

Element Type Source Code TA Model Precision Recall
Feature Entities* 14 14 100.0% 100.0%
Class Entities 54 52 100.0% 96.3%
Function Entities 109 109 100.0% 100.0%
Variable Entities 193 193 100.0% 100.0%
Publisher Entities* 52 52 100.0% 100.0%
Subscriber Entities* 46 46 100.0% 100.0%
Topic Entities* 74 71 100.0% 95.9%
Publish Relation* 60 57 100.0% 95.0%
Subscribe Relation* 46 43 100.0% 93.5%
Call Relation 106 30 100.0% 28.3%
Contain Relation 260 258 100.0% 99.2%
Write Relation 92 81 100.0% 88.0%
VarWrite Relation 101 67 94.2% 66.3%
InDecisionCondPub Relation 13 9 96.2% 69.2%
InDecisionCondFunc Relation 80 21 86.9% 26.3%
InDecisionCond Attribute 152 129 88.5% 84.9%

meaning from the AST to generate this relation. In complex
control-flow statements, Rex is unable to determine whether
a variable affects the decision condition or is simply part of
the condition. As an example, in the statement if (var =
func(. . .)), although var is part of the statement, it does
not affect whether the if branch is taken.

C. RQ2: FI Symptoms in Autonomous

Table V shows the number of warnings generated for the
Autonomoose project for all symptoms. For each symptom
type in the table, the number of warnings are shown along
with the number of features that directly and indirectly cause
this symptom to occur. Overall, with exception to the multiple-
publishers symptom, there is at least one warning of each
symptom detected.

For communication loop symptoms, there is one direct com-
munication warning. The lack of indirect communication loops
is expected because the Autonomoose project is organized to
pass data downstream where inputs from sensors eventually
flow to vehicle actuators. It is interesting that there is a direct
communication loop in one feature; this self-loop is likely used
as a heartbeat message for timing or debugging purposes.

For multiple-communication symptoms, there are no warn-
ings of the multiple-publisher symptom and eleven race
condition warnings. The lack of warnings for the multiple-
publisher symptom is encouraging because it shows that the
developers of Autonomoose felt that having different features
communicating on the same channel could result in errors or
add unnecessary complexity.

Finally, for the control-flow symptoms, there are 1,368
warnings of behaviour-alteration and 64 warnings of publish-
alteration. The number of warnings for both symptoms is high
because Autonomoose features change their behaviour when
they receive a message causing them to change state or pass
data to other features. The number of reported warnings for
this symptom is problematic because it is likely that many of
these warnings are false positives. To combat this, future work
should explore developing a method to filter warnings based

on predefined patterns or should allow developers to triage
warnings in order of severity.

D. RQ3: FI Symptom Validation

We validated the results by having one of the authors
manually classify each reported warning into one of three
categories: impossible, unlikely, and probable. Impossible
warnings are those that are reported as being part of that
symptom but are not; their existence could be due to errors in
the TA model (as highlighted in Table IV) or are cases that are
false positives. Unlikely warnings are those that might cause
an unintended interaction but are unlikely to do so. Finally,
probable warnings are those that are most likely to result
in potential interactions, and are deemed worthy of further
inspection. To provide external validation of the symptoms
generated, Dr. Michal Antkiewicz, a research engineer of the
Autonomoose project, independently classified ten randomly
selected warnings from each symptom into the same three
categories.

Table V shows the number of warnings classified as
impossible, unlikely, and probable for the race condition,
behaviour-alteration, and publish-alteration symptoms. For the
race condition symptom, of the eleven warnings reported,
eight are classified as impossible, one is classified as unlikely,
and two are classified as probable. The impossible warnings
are classified as such because the features participating in
the race condition all write the same value to the variable
in question; thus, there is no conflict about the variable’s
eventual value. The single unlikely warning is classified as
such it involves multiple features that update a variable with
the current time. This variable is incrementally updated and
the value assigned never depends on the variable’s previous
value, thus assignments are unlikely to result in an unintended
interaction. Finally, the two probable warnings are classified
as such because the variables that are part of the race condition
end up altering the state that the feature is in. In other words,
each initial feature that sends a message to this recipient
feature eventually affects the state the recipient feature is in.



TABLE V
REPORTED SYMPTOM WARNINGS AND THEIR ASSOCIATED SEVERITY IN THE Autonomoose PROJECT.

Symptom Type Total Results Direct Results Indirect Results Impossible Unlikely Probable
Communication Loop 1 1 0 0.0% 0.0% 100%
Multiple-Publishers 0 0 0 — — —
Race Condition 11 3 1 72.7% 9.1% 18.2%
Behaviour-Alteration 1,368 11 16 74.6% 18.6% 8.9%
Publish-Alteration 64 7 15 18.7% 42.2% 39.1%

When all eleven warnings were presented to the Autonomoose
developer, their classifications were the same as ours.

Of the 1,368 behaviour-alteration warnings detected, 1,021
are classified as impossible, 225 are classified as unlikely,
and 122 are classified as probable. Of the 1,021 impossible
warnings, 17% result from the use of ROS-based logging
functions for debugging purposes and do not impact the feature
itself. The other impossible warnings occur from variable
assignments to local variables that simply change the local
function’s behaviour. For the 255 unlikely warnings, the ma-
jority are classified as such because they cause a local variable
to change its value which goes on to eventually cause a global
variable to change its value. For the 122 probable warnings,
these cases involve a global variable changing its value which
then affects how the entire feature operates. Although many
of these warnings are intended interactions, their presence
warrants a further look at the source code.

When ten random warnings were shown to the Autonomoose
developer, they were all deemed to be uninteresting because it
is expected that a feature sending a message to another feature
will affect the variable assignments inside the recipient feature.
Although the developer was shown only a tiny fraction of
the warnings, their feedback suggests that it could be useful
to rank reported warnings according to the “length” of the
communication path. Such a ranking would highlight warnings
where a feature action has an effect in another feature with
which it does not directly communicate.

With 1,368 reported warnings but only 10 random instances
shown to developers, this conclusion reinforces the need to
further refine this symptom or introduce a filtering mechanism
to attempt to reduce the number of reported results. As future
work, this can be done by implementing a triage system for
developers where warnings are sorted by “severity” by using
the length of the information flow path in the warning. The
motivation behind this is that warnings with shorter paths are
likely to be known to developers and would not be as useful as
warnings with long, complex paths through multiple variables
and functions.

Of the 65 publish-alteration warnings, 12 are classified as
impossible, 27 as unlikely, and 25 as probable. Similar to
the behaviour-alteration warnings, the 12 impossible publish-
alteration warnings are classified as such because they in-
volve cases where debug information is published to the
Autonomoose developers when certain messages are received.
Because these do not alter how the feature behaves, they can
be ignored. The 27 unlikely warnings have no invoking feature.
In other words, although the recipient feature publishes to

another feature when it receives a message, there is no
feature that sends the initial message to that recipient feature.
Instead, the recipient feature receives messages from vehicle
sensors rather than other features. Future work could improve
the publish-alteration symptom to filter out these warnings.
Finally, probable warnings represent publish calls that result
when a recipient feature receives a message from another
feature and sends important data to other features. This could
include route information or processed sensor data.

When ten random warnings were shown to Autonomoose
developers, they expressed the most interest in warnings con-
sisting of a long trace from start to finish. This meant that if a
recipient feature received a message from some origin feature,
interesting cases would involve a long chain of function
calls and variable assignments that would eventually cause a
message to be sent to a third feature. In these cases, it would
be likely for a developer to miss these Feature Interactions.
Although our classifications of the ten warnings differed, of the
ten shown to Autonomoose developers, six were categorized
as probable and four as unlikely. Four of the six warnings they
classified as probable were classified as unlikely by us; since
each of these four instances involved a long, complex trace,
the developers deemed this useful to investigate further.

VI. LIMITATIONS

The primary limitation of this work comes from the use of
static analysis to analyze software artifacts. Although static
analysis is effective at detecting built-in language constructs,
such as functions or classes, it has difficulty determining
non-AST-based relationships between entities such as variable
assignments, which results in imperfect precision and recall
of the extracted entities and relations. Because this approach
aims to detect potential Feature Interactions (FIs), developed
extractors should aim to generate models with high recall. This
emphasis sometimes impacts the precision of the extraction or
analysis, such as with behaviour-alteration symptoms. In future
work, we plan to study the causes of imprecision and devise
ways to mitigate these causes.

A limitation that is specific to statically analyzing ROS code
is the linking of features’ names for shared communication
channels. When a publisher or subscriber object is created
in a ROS package, the constructor for that object requires
a programmer to specify the name of the communication
channel as a string. The problem is that topic names can
be passed to this constructor as string variables or literals.
Statically determining the contents of a variable is generally
impossible; in such cases, Rex simply takes the variable name



or string-literal value and uses that as the communication
channel name. Therefore, if two features that communicate
via the same channel use different variable names for the
respective publisher/subscriber constructor, Rex will be unable
to link these features’ communications.

A. Threats to Validity

There are several threats to the validity of our results.
One internal threat comes from the subjectivity of manually
calculating the precision and recall of the Rex-generated TA
models and from classifying symptom instances. As these
tasks were manually done by individuals on our team, bias
might be introduced into the results. We aimed to mitigate this
bias by having domain experts for the Autonomoose project
examine the symptoms that were deemed the most severe and
classify them.

Second, the results we present are not necessarily appli-
cable to other software systems or non-ROS-based automo-
tive systems. In particular, the extraction of facts related to
inter-component communications may be more complex for
automotive software built on the AUTOSAR framework. Future
work will aim to generalize our research to AUTOSAR-based
software, other message-passing communication APIs, and
other application domains.

A related threat to generality is that features themselves
are not generally statically identifiable in source code. In our
current work, we assume that features are implemented as
distinct components, which are identifiable. In other systems,
we may need other means to identify features (e.g., code that is
guarded by feature-specific conditional-compilation directives,
or an input mapping of features to functions).

VII. RELATED WORK

There is a rich body of literature on detecting potential
Feature Interactions among features, services, or components,
that is summarized elsewhere [5] [3] [20] [21]. Approaches to
detecting FIs depend heavily on how features or components
are represented [5], and many approaches require some spec-
ification of feature properties or expected feature behaviour,
against which to compare actual system behavior. Moreover,
approaches based on dynamic analyses and verification are
computationally expensive and do not scale to programs with
lots of features. [21].

The works closest to ours are those that extract information
from software artifacts to detect interactions amongst compo-
nents. JITANA [22] analyzes Android applications to deter-
mine whether inter-component calls (ICC) exist between sep-
arate applications. Although legitimate communications exist,
these results can be investigated by other means to identify ma-
licious or invalid communications between programs. Puran-
dare et al. [23] present an approach to extract information from
ROS projects to detect dependencies amongst components, and
to determine how specific changes to code segments affect
different components. DEvA [24] uses static analysis to detect
event anomalies in event-based systems; these anomalies are
defined as two events that access the same fields where at least

one event performs a write. VarXplorer [25] analyzes config-
urable software, looking for discrepancies in data flows and
control flows among features in different configurations. Some
of these works (e.g., [23]) have created extraction technologies
comparable to ours. However, their approaches each detect
a single type of interaction symptom (e.g., inter-component
communications [22] [23], potential write conflicts [24]) and
are hard-coded, whereas our approach to expressing symptoms
of interactions is programmable, making it easier to express
multiple types of interaction symptoms.

There has been other work that has used a form of relational
algebra to verify software. Kozen [26] use a type of algebra
called Kleene Algebra with Tests (KAT) to automatically
verify the correctness of programs. Although the author proves
that KAT is effective in verifying safety policies, it is very
labour intensive. Generating a KAT encoding of a code
fragment needs to be done manually and assertions need
to be injected into the representative KAT encoding to test
correctness properties. As such, applying KAT to a large-scale
automotive system would be difficult.

VIII. CONCLUSION AND FUTURE WORK

The aim of our work is to develop techniques that com-
plement current approaches to detecting Feature Interactions
(FIs), and that we intend to be scalable to large software
systems. We have presented a static-analysis toolchain that
can detect potential FIs in a message-passing, automotive
software system. Specifically, (1) we presented a tool called
Rex that is capable of generating queryable models of ROS-
based projects, (2) we identified five symptoms of potential
FIs that could be expressed as relational-algebra queries on
these models; and (3) we conducted a case study on the
Autonomoose project to test the effectiveness of Rex and the
symptom definitions.

We see two major areas of future work. First, symptom
definitions need to be refined and expanded to detect more
types of FIs, and to filter extraneous results to reduce the
number of reported false positives. Based on our analysis of
false positives from our case study, we have initial ideas about
how to mitigate against some instances; and in other cases, we
might be able to rank warnings in order of usefulness to the
engineer.

Second, we need to expand our extractors to operate on
other types of software, such as automotive software that
uses the AUTOSAR platform [27] and controller area network
(CAN) bus [28] communications. We also plan to evaluate the
tools on large open-source software systems, in order to assess
the generality of this work to other application domains and
to assess its scalability to large systems.
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