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Abstract With the popularity of model-driven methodologies, and theabundance of mod-
elling languages, a major question for a requirements engineer is: which language is suitable
for modelling a system under study? We address this questionfrom a semantic point-of-view
for big-step modelling languages (BSMLs). BSMLs are a class of popular behavioural mod-
elling languages in which a model can respond to an input by executing multiple transitions,
possibly concurrently. We deconstruct the operational semantics of a large class of BSMLs
into eight high-level, mostly orthogonal semantic aspects, and their common semantic op-
tions. We analyze the characteristics of each semantic option. We use feature diagrams to
present the design space of BSML semantics that arises from our deconstruction, as well as
to taxonomize the syntactic features of BSMLs that exhibit semantic variations. We enumer-
ate the dependencies between syntactic and semantic features. We also discuss the effects of
certain combinations of semantic options used together in aBSML semantics. Our goal is
to empower a requirements engineer to compare and choose an appropriate BSML from the
plethora of existing BSMLs, or to articulate the semantic features of a new desired BSML
when such a BSML does not exist.

1 Introduction

With the popularity of model-driven methodologies and the abundance of modelling lan-
guages (and domain-specific languages), a major question for a requirements engineer is:
which language is suitable for modelling a system under study (SUS)? We introduce the term
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big-step modelling languages (BSMLs)to characterize a class of popular behavioural mod-
elling languages in which a model can respond to an environmental input by executing abig
step, which consists of a sequence ofsmall steps, each of which may contain multiple, pos-
sibly concurrent, transitions. Numerous BSMLs have been introduced (e.g., statecharts [17]
and its variants [49], synchronous languages [16], and UML StateMachines [38]), many of
which have similar syntaxes but subtly different and complicated semantics.

The choice of a BSML for an SUS depends on many factors, including the domain
of the SUS, the expertise of the requirements engineer in a class of notations, etc. In this
paper, we present the semantic criteria that a requirementsengineer should consider when
choosing a BSML for modelling an SUS. One can write equivalent behaviours in different
semantics by modifying a model (all BSMLs can be reduced to their meaning in primitive
modelling languages such as Kripke structures, Büchi automata, labelled transition systems,
etc.). However, it can be significantly more convenient (e.g., more succinct, more under-
standable) to model some behaviours in one semantics than inanother. We envision a world
where the choice of the features of a language, including itssemantic features, are made on
a model-by-model basis.

Our first contribution is a novel deconstruction of the operational semantics of a large
class of BSMLs into eight high-level, mostly orthogonal,semantic aspects, and an enumer-
ation of the commonsemantic optionsfound in existing BSMLs for each of these aspects.
While it is impossible to claim that our options are complete, they cover a wide range of
existing BSMLs, as well as new semantics that arise through the enumeration of semantic
options. Our second contribution is the identification of the characteristics of each semantic
option to provide rationale for a requirements engineer to choose one option over another.
Our third contribution is a set of carefully constructed examples that succinctly illustrate
many of the differences between the semantic options.

Our deconstruction arises from surveying existing BSMLs viewed from the perspective
of the big step as a whole. We separate the operation of a big step into orthogonal aspects
where existing languages have shown variations. We believethese eight aspects capture the
essential semantic differences in most existing BSMLs, andthereby empower requirements
engineers to compare and choose the most suitable BSML for anSUS. Choosing a set of
semantic options involves making trade-offs among considerations such as simplicity, de-
terminism, causality, orderedness, modularity, etc. We envision our work to be used in three
ways: (i) as a semantic catalog, to compare the semantics of existing BSMLs and choose an
appropriate BSML, (ii) as a semantic scale, to assess the semantic properties of a BSML,
and (iii) as a semantic menu, to help design a BSML from scratch.

Our deconstruction is more concise and systematic than previous comparative studies
of different subsets of BSMLs (e.g., [7,16,26,46,47,49]) because it recognizes a big step
as a whole rather than only considering its constituent transitions operationally. In our pre-
vious work on template semantics [37], we created a formal framework for comparing the
semantics of many BSMLs by instantiating a template of 22 parameters and choosing a set
of composition operators that together define a small step. The eight semantic aspects we
present here capture cross-cutting dependencies found in the template parameters, creating
a deconstruction that defines a big step directly. This higher level of abstraction isolates the
semantic differences between languages more clearly.

Compared to our previous work presenting this deconstruction [14], here, (i) we address
several additional semantic concerns, namely, external events and variables, interface events
and variables, and combo-step maximality; (ii) we present amore systematic treatment of
the notion of a combo step; (iii) we provide a taxonomy for thesyntactic features of BSMLs
that exhibit semantic variations; (iv) we use two feature diagrams to present our semantic
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deconstruction and the taxonomy of the syntax of BSMLs; (v) we present the dependencies
between the features of the two feature diagrams; (vi) we accompany our presentation of
the semantic aspects with more examples; and lastly, (vii) we extend our discussion of the
dependencies between semantic options when used together in a BSML.

The remainder of the paper is organized as follows. In Section 2, we describe the com-
mon syntax and common basic semantics that we use throughoutthe paper. In Section3,
we present the deconstruction of the semantics of BSMLs intoeight semantic aspects and
their options, together with their syntactic requirements. We describe separately each se-
mantic option and its characteristics, accompanied by modelling examples that exhibit the
differences between the semantic options. In Section4, we describe a few subtle side effects
that result when certain semantic options are used togetherin a BSML. Section5 compares
our work with the related work, including our previous work on template semantics [37].
Finally, in Section6, we conclude our paper and discuss future work.

2 Normal-Form Syntax and Basic Semantics

In this section, we present the terminology that we use throughout the paper. In Section2.1,
we present our normal-form syntax and the possible syntactic features that can be chosen
when designing a BSML. In Section2.2, we describe the common basic semantics, which
can be refined by semantic options. In Section2.3, we describe how the syntax of BSMLs
can be represented in our normal-form syntax. We adopt a few syntactic definitions from
Pnueli and Shalev’s work [42].

2.1 Syntax

There is a plethora of BSMLs, including those with graphicalsyntax (e.g., statecharts vari-
ants [49], Argos [33]), those with textual syntax (e.g., reactive modules [3], Esterel [6]),
and those with tabular/equational syntax (e.g., SCR [22,23]). As is usual when studying a
class of related notations, we use a syntactic “normal form”that is sufficiently expressive
to represent the syntax of other notations [25]. Our normal-form syntax is thecomposed hi-
erarchical transition system (CHTS)syntax [37]. A modelis a CHTS, and consists of: (i) a
composition treewhose nodes are distinctcontrol states, and (ii) a set oftransitionsbetween
the control states.

Control States: A control state (e.g.,DialDigits in Figure1) is a named artifact that a
modeller uses to represent a noteworthy moment in the execution of a model. Such a moment
is an abstraction that groups together the past behaviours (consisting of inputs received by
the model and the model’s past reactions to these inputs) that have a common set of future
behaviours. By using a control state, a modeller can describe future behaviour in terms of
the current control state and the current environmental inputs.

A control state has atype, which is eitherBasic, Or, orAnd. A leaf node of a composition
tree is aBasiccontrol state. AnOr or anAndcontrol state ishierarchicaland haschildren,
each of which can be of any type. For example, in Figure1, control stateDialing is an
Andcontrol state and has twoOr control states,Dialer andRedialer. We use the relations
parent, ancestor, child, anddescendantwith their usual meanings. In Figure1, control state
DialDigits is a child ofDialer and a descendant ofDialing. Two control statesoverlap
if they are the same or one is an ancestor of the other. In Figure 1, control statesDialer

andRedialler are not overlapping. Theleast common ancestorof two control states is the
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Dialing

Redial
Digits

WaitFor
Redial

t1: (dial(d) ∧ ¬redial)[c<10]

t3: dial(d)[c<10]

/c++; lp := lp×10+ d; ôut(d)

/lp := lp×10+d;
c++; ôut(d)

t6: [c< |p|]
d̂ial(digit(p, (c+1))

X t7: [c = |p|]

t4: [c = 10] DialDigits

t2: (dial(d) ∧ redial)[c = 0]/lp :=d; c :=1; ôut(d)

t5: redial[c = 0]/p := lp; d̂ial(digit(lp, 1))

Fig. 1 Dialer/Redialer model.

lowest control state (closest to the leaves of the composition tree) in the hierarchy of the
composition tree that is an ancestor of both. In Figure1, the least common ancestor of
DialDigits andRedialDigits is Dialing. Two control states areorthogonal if neither is
an ancestor of the other and their least common ancestor is anAndcontrol state. In Figure1,
DialDigits andRedialDigits are orthogonal. AnOr control state has adefault control
state, which is its child and is identified by an incoming arrow that has no source control
state. In Figure1, WaitForDial is the default control state ofDialer. The arena of a
transitiont is the lowestOr control state in the hierarchy of the composition tree that is
the ancestor of both the source and destination control states of the transition. In Figure1,
the arena of transitiont1 is theOr control stateDialer. A model may have noAndcontrol
states. The root of the composition tree must be anOr control state so that the arena of every
transition is guaranteed to exist, but otherwise may consist of only Basiccontrol states.

Transitions: A transition (e.g.,t1 in Figure1) has both asourceanddestinationcontrol
state, and consists of four optional parts: (i) anevent trigger, which is a conjunction of event
literals, some of which may be negated (a negated event beingprefixed by a “¬”); (ii) a
guard condition (GC)(enclosed by “[ ]”), which is a boolean expression over the set of
variables of the model; (iii) a sequence ofassignments(prefixed by a “/”); and (iv) a set of
generated events(prefixed by a “̂ ”).

A generated event may have a parameter that can be modelled byassociating a variable
with it. An assignment consists of a left-hand side variable(LHS), and a right-hand side ex-
pression (RHS). The types of variables are not relevant. We assume all variable expressions
and assignments of models are well-typed. Variables and events are global; local variables
and scoped events can be modelled by a renaming that makes them globally unique.

Figure 2 is a feature diagram [28] that represents the combination of syntactic con-
structs of BSMLs that are of interest for our semantic aspects. Each feature in the diagram is
labelled with the sections that describe its role and semantics. A leaf node of the feature di-
agram represents a primitive syntactic feature of BSMLs. For example, theNegated Events
node is the syntactic feature that allows the negation of an internal event to be used in the
event trigger of a transition. A non-leaf node represents a syntactic feature that has addi-
tional syntactic sub-features in its children nodes. For example, theEvent Triggers node
is the syntactic feature that has syntactic sub-featuresEnvironmental Input Events, Inter-
face Events, andNegated Events. In the feature diagram in Figure2, we use only “and”
branches for sub-features of a feature: if a feature is chosen, then all of its child sub-features
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are also chosen, except for the sub-features that are connected to a small circle, which are
“optional” sub-features. An optional feature, as opposed to a “mandatory” feature, need not
be chosen if its parent feature is chosen. All of the featuresin the diagram in Figure2 are
optional features. For example, theEvent Triggers syntactic feature has three sub-features,
all of which are optional sub-features.

The syntax of a BSML must have a notion of transition to specify the behaviour of a
system, but all other syntactic features in the feature diagram of Figure2 are optional. In
practice, the syntax of most useful BSMLs support at least events or variables.

2.2 Common Basic Semantics

Initially, a model resides in the default control state of each of itsOr control states, no events
are present, and its variables have their initial values. The operational semantics of a BSML
describes how a model reacts to anenvironmental inputvia a big step. An environmental
input is a set of events and variable assignments that are received from the environment.
Figure3 depicts a big stepT , which is a reaction of a model to environmental inputI. A
big step is an alternating sequence ofsmall stepsandsnapshots, where a small step is the
execution of a set of transitions (ti’s), and a snapshot is a tuple that stores information.1 The
Ti’s (1 ≤ i ≤ n) are small steps ofT , andsp, sp′, andspi’s (1 ≤ i < n) are its snapshots.
Throughout the paper, we often represent a big step as the sequence of its small steps; e.g.,T

is represented as〈T1, T2, · · · , Tn〉. Some BSMLs, such as RSML [30] and Statemate [19],
introduce an intermediate grouping of a sequence of small steps, which we call acombo
step. The small steps of a combo step hide some of their effects, e.g., the effect of their
assignments, from one another. Sections3.3, 3.4, and3.8, describe when combo steps are
useful.

Snapshots:A snapshot is a tuple that consists of at least: (i) aconfiguration, which is a
set of control states; (ii) avariable evaluation, which is a set of〈variable name, value〉 pairs;
and (iii) a set ofevents. Each of a big step, a small step, or a combo step has asourceand
destinationsnapshot (e.g.,sp andsp′ are the source and destination snapshots ofT ).

Enabledness:In each small step, a set ofenabledtransitions is chosen to be executed.
A transition is enabled if its event trigger and guard condition are satisfied, and its source

1 Big steps and small steps are often called macro steps and micro steps, respectively. We adopt new terms
to avoid association with the fixed semantics of the languages that use those terms. The big-step/small-step
terminology has been used in the study of the operational semantics of programming languages in a similar
spirit as we use them here [40].
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control state is in the source configuration of the small step. Different semantic options use
different snapshots of a big step to define enabledness.

Execution: The effects of the execution of the transitions of a small step create its des-
tination snapshot. When a transition is executed, it leavesits source control state (and its
descendants), and enters a destination control state (and its descendants). When entering
an Or control state, a transition enters its default control state, and when entering anAnd
control state, it enters all of its children. Thus, if the source (destination) control state of a
transition is anAnd control state, the execution of the transition includes exiting (entering)
the children of the source (destination) control state.

In a few, non-common cases, transition execution can be moreinvolved; e.g., when the
least common ancestor of the source and destination controlstates of a transition is anAnd
control state. A discussion of these cases is included in Section 3.2.

The semantics of event generation and variable assignment differ between BSMLs. The
execution of a small step isatomic: the variable assignments and event generation of one
transition cannot be seen by another transition (except forthe “PRESENT IN SAME” event
lifeline option [cf., Section3.3]). Because of atomicity, a sequence of assignments on a
transition can be converted to a set of assignments [29,31].

Environmental inputs: When choosing a BSML for modelling an SUS, the domain of
the SUS must satisfy the assumptions of the BSML regarding the model’s ability to take
multiple transitions in response to an environmental inputand not miss other inputs. There
are three types of assumptions:

– Fast computation: This assumption, which is usually referred to as the “synchrony hy-
pothesis” or the “zero-time assumption” [6,16], postulates that the system is fast enough,
and thus never misses an input. The domain of systems that aremodelled using this
paradigm is called “reactive systems” [6,16,20]. A reactive system is usually a mission-
critical system that is meant to react to environmental inputs in a timely manner, at the
rate produced by the environment; e.g., the controller system of a nuclear reactor. No
environmental inputs are missed.

– Helpful environment:2 This assumption postulates that the environment is helpfulby
issuing an input only when the system is ready [16]. The domain of systems that are
modelled using this paradigm is called “interactive systems” [16]. An interactive system
is different from a reactive system in that the rate of environmental inputs is dictated by
the system, rather than by the environment. An example of an interactive system is an
automated banking machine, which interacts with its environment (i.e., a customer) at
its own rate when it is ready, rather than at the rate the customer would like to provide
inputs for it. An environmental input might be missed by the system when the system is
busy processing a previous environmental input.

– Asynchronous communication: This assumption postulates that the system has a buffer-
ing mechanism to store the environmental inputs, and thus never misses an environmen-
tal input.

In this paper, we consider only the BSMLs with the first two assumptions, which are
mutually exclusive with the third one. The BSMLs that adhereto the first two assumptions
share many semantic options. As such, sometimes it is difficult and unnecessary to label a
BSML conclusively as following one or the other assumption.

2 We have adopted the term “helpful environment” from a similar notion in Interface Automata[11].
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2.3 Representing BSMLs in the Normal-Form Syntax

It is straightforward to represent the syntax of many BSMLs in our normal-form syntax. In
our previous work [37], we described the mapping of the syntax of many BSMLs to the
CHTS syntax. In this section, we describe a few, less obvious, syntactic representations in
our normal-form syntax.

Control states: A BSML may not include the notion of control states. If a model’s
reaction to an environmental input is always independent ofits past behaviours, then the
notion of control state is not useful for the model. One way torepresent the syntax of a
BSML that does not have control states in our normal-form syntax is to create a single
control state that serves as the source and destination control states of all transitions. The
notion of the hierarchy of control states might still be useful in such a BSML for specifying
priority between transitions (cf., Section3.7 for priority semantics).

A BSML with a textual syntax without explicit control states, such as Esterel [6], realizes
a line of a program as a control state. For example, in Esterel[6], anexit statement within
a parallel command of a model moves the flow of control from within the parallel command
to the next command outside the scope of the parallel command. The parallel command
and the command after it can be conceptually considered as control states with the parallel
command being anAndcontrol state. Theexit statement can be considered as a transition
that connects the two control states.

SCR [22,23] is a BSML that uses a tabular format. The notions of “modes” and “tran-
sitions between modes” in its syntax can be represented by the notions of control states and
transitions between control states, respectively.

Transitions: In our syntax for transitions, we do not include event triggers with dis-
junctions, because an event trigger that has disjuncts can be split into multiple transitions,
each with only one of the disjuncts of the original event trigger and exactly the same other
elements as the original; such a transformation yields a model that is semantically the same
as the original model [42].

Transitions with multiple-source and/or multiple-destination can be split into multiple
single-source, single-destination transitions. However, we would need to extend the seman-
tic options for the concurrency and consistency aspect (in Section3.2) and the hierarchical-
priority aspect (in Section3.7) to accommodate the execution semantics of a group of transi-
tions that represent a single multiple-source and/or multiple-destination transition. We defer
the treatment of the semantics of multiple-source and/or multiple-destination transitions to
our future work.

3 Semantic Aspects

We deconstruct the operation of a big step into the stages described in Figure4. This sys-
tematic deconstruction is based on: (i) conceptual sequentiality in the process of creating a
small step (partly based on the syntactic elements of the model), (ii) orthogonal concerns
in the operation of a big step, and (iii) semantic variation points in existing BSMLs. Each
stage of the diagram is associated with one of oursemantic aspectsand is labelled with the
corresponding section of the paper that describes it. A semantic aspect may be decomposed
into some semantic sub-aspects. A semantic aspect or sub-aspect may have a number of
semantic options, each of which is a semantic choice for carrying out a stage.

There are eight semantic aspects, as shown by the feature diagram in Figure5. Semantic
aspects are represented by shaded boxes and theSans Serif font, and semantic options
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Fig. 4 Operation of a big step.

are represented by clear boxes and the SMALL CAP font. An arced branch in the diagram
represents an “exclusive or”: if a feature is chosen, then exactly one of its sub-features is
chosen. For example, if theBig-Step Maximality semantic aspect is chosen, then exactly
one of its options, SYNTACTIC, TAKE ONE, or TAKE MANY should be chosen. For the
sake of brevity, we group a set of recurring semantic optionsfor event-related semantic
sub-aspects as “Event Options”, and reference them via thislabel in the diagram.

Next, we briefly describe the role of each semantic aspect. The Big-Step Maximality
semantic aspect specifies when a big step ends, at which pointa new big step starts by
sensing new environmental inputs. TheCombo-Step Maximality semantic aspect specifies
when a combo step ends. The source snapshot at the beginning of a combo step reflects the
effects of the execution of the small steps of the previous combo step. TheEvent Lifeline
semantic aspect specifies how far within a big step a generated event can be sensed to trigger
a transition. We consider separate sub-aspects for the semantics ofinternal events, which are
not meant to be observed by the environment of a model,external events, which are used
to communicate with the environment, andinterface events, which are used by a model
to specify communications among its differentcomponents. The Enabledness Memory
Protocol semantic aspect specifies the snapshot from which the valuesof variables are read
to enable the guard condition of a transition. TheOrder of Small Steps semantic aspect
describes options for the order of transitions that executewithin a big step. From the set
of transitions enabled by events, variables, and ordering constraints, theConcurrency and
Consistency semantic aspect determines the set of potential small steps: first, it specifies
whether more than one transition can be taken in a small step;and second, if more than one
transition can be taken, it specifies the consistency criteria for including multiple transitions
in a small step. ThePriority semantic aspect chooses a small step from the set of potential
small steps. TheAssignment Memory Protocol semantic aspect specifies the snapshot
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1. Events⇔ Event Lifeline
2. (Interface Events⇔ Generated Interface Events) ∧

((Interface Events∧ Generated Interface Events) ⇔ Interface Events)
3. Environmental Input Events ⇔ SYNTACTIC INPUT EVENTS

4. Environmental Output Events ⇔ SYNTACTIC OUTPUT EVENTS

5. (Negated Events∨ Negated Interface Events∨ Negated External Events) ⇔
NEGATION OF TRIGGERS

6. Variable Conditions ⇔ Enabledness Memory Protocol
7. Variable Assignments⇔ Assignment Memory Protocol
8. Interface Variables in GC ⇔ Interface Variables in GC
9. new⇔ DATAFLOW

10. new⇒ (GC BIG STEP∨ GC SMALL STEP∨ RHS BIG STEP∨ RHS SMALL STEP)
11. new small ⇒ (GC SMALL STEP∨ RHS SMALL STEP)
12. cur ⇒ (GC BIG STEP∨ RHS BIG STEP)
13. pre ⇒ (GC SMALL STEP∨ RHS SMALL STEP)
14. Interface Variables in RHS⇔ Interface Variables in RHS
15. HIERARCHICAL ⇒ Hierarchical
16. And ⇔ Concurrency and Consistency
17. Stable⇔ SYNTACTIC

18. Combo Stable⇔ COMBO SYNTACTIC

19. Combo-Step Maximality ⇔
(PRESENT INNEXT COMBO STEP∨ GC COMBO STEP∨ RHS COMBO STEP)

20. COMBO TAKE MANY ⇒ (SYNTACTIC ∨ TAKE MANY )
21. PRESENT INSAME ⇒ MANY

Fig. 6 Dependencies between syntactic and semantic features. (Bold: syntactic features,Sans Sarif: se-
mantic aspects, and SMALL CAP: semantic options.)

from which the value of a variable in the right-hand side of anassignment is read. Similar to
events, we distinguish between the semantics ofinternal variables, external variables, and
interface variables.

A BSML semantics must subscribe to aBig-step Maximality semantics, as shown by
the corresponding mandatory feature in the diagram in Figure 5. The other aspects are op-
tional and depend on the syntactic features included in the BSML. A BSML semantics might
have more than one priority semantic option, which togetherconstitute its priority seman-
tics (cf., Section3.7).

Dependencies between Features:A semantic aspect or a semantic option might be relevant
for the semantics of a BSML only if a certain syntactic construct is allowed in the BSML.
Figure6 enumerates the dependencies between the syntactic and semantic features. To de-
scribe these dependencies, we use the names of syntactic features in Figure2 and the names
of semantic aspects and options in Figure5 as propositions, which indicate the choice of the
feature in its corresponding feature diagram. We use standard logical operators to describe
the dependencies. The “p ⇒ q” operator is logical implication: ifp is true thenq must be
true. The “p ⇔ q” operator is logical equivalence: eitherp andq are both true, or both are
false. The “p ∨ q” operator is logical or: eitherp, q, or both are true. The “p ∧ q” operator is
logical and: bothp andq are true.

The last three dependencies in Figure6 are between semantic features, as opposed to be-
tween syntactic and semantic features. These dependencieswill be explained in the sections
on the semantic aspects.

In the feature diagram in Figure5, a semantic (sub-)aspect, or its parent, is labelled with
the section in which it is described. We have chosen to order these sections in a manner that
minimizes the required forward referencing to other semantics aspects (although some for-
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ward referencing cannot be avoided). In each section, we summarize the semantic options
for each aspect in a table that includes: a brief descriptionof each semantic option, a list
of its characteristics, and a list of representative BSMLs for each option. We identify each
characteristic as a relative advantage or disadvantage, signified by a “+” or “-”, respectively,
based on our understanding of the conventional wisdom on this characteristic. Such wisdom
may not always be appropriate for a model depending on the domain of the SUS, the prefer-
ence of the modeller, etc. These options cover the variations found in most existing BSMLs.
As in Figure5, we use the SMALL CAP font to express the names of semantic options.
Throughout the section, we present many examples that are meant to demonstrate the differ-
ences between semantic options (but not to endorse one over another). The model snippets
in our examples are not complete. Finally in Section3.9, we present a table summarizing
the semantic options chosen by a number of BSMLs.

3.1 Big-Step Maximality

The big-step maximality semantics of a BSML specifies when the sequence of small steps
of a big step concludes. Table1 lists the three possible semantic options. In the SYNTACTIC

option, a BSML allows a modeller to designate syntacticallya basic control state of a model
as astablecontrol state. During a big step, once a transitiont that enters a stable control state
is executed, no other transition whose arena overlaps with the arena oft can be executed. In
the TAKE ONE option, once a transitiont is executed during a big step, no other transition
whose arena overlaps with the arena oft can be executed. As such, eachOr control state
can contribute a maximum of one transition to a big step. Lastly, the TAKE MANY option
allows a sequence of small steps to continue until there are no more enabled transitions to
be executed.

Scope of a big step:In the TAKE ONE and the TAKE MANY options, the destination
snapshot of a big step is not obvious, which can be complicated for a modeller. In the SYN -
TACTIC option, the end of a big step can be traced syntactically, which can be helpful for
constructing and understanding a model.

Sequential transitions vs. non-terminating big steps:In the SYNTACTIC and TAKE

MANY options, it is possible to specify a computation as a big stepthat consists of multiple
sequential transitions within anOr control state. But, in these two semantics, it is also pos-
sible for a big step to never terminate because the executionof the big step never reaches a
snapshot in which there are no more transitions to be executed. In the SYNTACTIC maximal-
ity semantics, additionally, a big step may never terminatebecause the model never reaches
a syntactically designated stable control state. Some BSMLs with the SYNTACTIC seman-
tics require the non-stable control states of a model to have“else” transitions so that a big
step can always reach a stable configuration (e.g., [18,38]). In the TAKE ONE semantics, a
sequence of transitions in anOr control state cannot be included in a big step, but a big step
always terminates.

Stable control states can be used to model the semantics of the pause command in
Esterel [6,47]. During a big step, once all non-overlapping control states of the model’s
configuration have executed thepause command, the big step ends. As such, if thepause
command is executed outside of a parallel command, then the big step terminates. But if
thepause command is executed inside a branch of a parallel command, then the big step
terminates when every branch of the parallel command has executed thepause command.
Stable control states can also be used to model the semanticsof “compound transitions” in
Rhapsody [18] and UML StateMachines [38]: the “pseudo states” of a model are modelled
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Table 1 Big-step maximality semantic options.

Options Definition Characteristics Examples

SYNTACTIC No two transitions
with overlapping
arenas that enter
designated “stable”
control states can be
taken in the same big
step.

(+) Syntactical scope
for big steps
(+) Sequential Or
transitions
(-) Non-terminating
big steps

Esterel [6] (pause com-
mand), Rhapsody [18] and
UML StateMachines [38] “run
to completion”

TAKE ONE No two transitions
with overlapping
arenas can be taken in
the same big step.

(+) Terminating big
steps
(-) Unclear, non-
syntactical scope for
big steps

statecharts [17,21,42], reactive
modules [3], and Argos [33]

TAKE MANY Small steps continue
until there are no more
enabled transitions.

(+) Sequential Or
transitions
(-) Unclear, non-
syntactical scope for
big steps
(-) Non-terminating
big steps

Statemate [19] and RSML [30]

D t1: dial(d)[c < 10]

/c++; ôut(d)

Fig. 7 Dialer system.

as non-stable control states, and “states” are modelled as stable control states. Some of the
BSMLs that support the TAKE ONE semantics, such as reactive modules [3] and Argos [33],
are influenced by the principles of synchronous hardware, which assumes that, during a
big step, a non-concurrent part of a model can take only one transition (equivalently, each
hardware component reacts once during a clock tick). The TAKE MANY semantic option
is usually used by the BSMLs that support the notion of combo step (e.g., Statemate [19]
and RSML [30]). The Statemate tool suite can be configured to use either the TAKE ONE

semantic option, whose big steps are referred to as “steps”,or the TAKE MANY semantic
option together with combo steps, whose big steps are referred to as “super steps” [19].

Example 1 The model in Figure7 collects a dialed digit of a phone device (environmental
input eventdial(d)) and transmits the dialed digitd to the IP network via generated event
out(d). Variablec allows a maximum of 10 digits to be collected, at which point the central
IP system would connect the caller to the dialed callee (we donot model the connection
functionality of the system). The “++” operator denotes increment by one.

Consider a semantics that if eventdial(d) is received from the environment, it persists
until the end of the big step. Also, consider the snapshot where c is zero anddial(d) is
received from the environment. If theTAKE MANY big-step semantics is chosen, then tran-
sition t1 is executed 10 times in succession, sending the same digit 10times. If theTAKE
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Counter

Bit1

Bit11

Bit12

t2: tk0 t̂k1

t1: tk0

Bit2

Bit21

Bit22

t4:tk1 d̂one

t3:tk1

Fig. 8 A two-bit counter.

ONE big-step maximality semantics is chosen, or theSYNTACTIC semantics is chosen and
control stateD is designated as stable, then the model behaves correctly.

Example 2 The model in Figure8 is for a two-bit counter.3 Control statesBit1 andBit2
model the least and most significant bits of the counter, respectively. Each time the environ-
mental input eventtk0, which represents a clock tick, is received, the counter increments by
one. Consider a semantics where environmental inputs persist throughout the big step. After
an even number of ticks,Bit1 sends eventtk1, thereby instructsBit2 to toggle its status. Af-
ter counting four clock ticks, theCounter generates thedone event. Consider the snapshot
where the model resides in control statesBit11 andBit21 and a semantics where each small
step comprises the execution of exactly one transition. If theTAKE ONE big-step semantics
is chosen, then the model behaves correctly. The firsttk0 input event produces the big step
〈{t1}〉, the secondtk0 input event produces the big step〈{t2}, {t3}〉, the third tk0 input
event again produces the big step〈{t1}〉, and lastly, the fourthtk0 input event produces the
big step〈{t2}, {t4}〉, which generates eventdone. If the TAKE MANY big-step semantics
is chosen, then the model behaves incorrectly by creating non-terminating big steps; for
example, upon receiving the firsttk0 input event, the model can engage in the following
non-terminating big step:〈{t1}, {t2}, {t1}, {t2}, · · · 〉.

3.2 Concurrency and Consistency

BSMLs vary in how the enabled transitions of a model execute together in a small step.
Table2 lists the three concurrency and consistency semantic sub-aspects that specify: (i)
concurrency: whether more than one transition can be taken in a small step, and if so, (ii)
small-step consistency: which transitions can be taken together, considering the composition
tree of a model, and (iii) preemption: whether the executionof one transition in a small step
canpreemptthe execution of another transition or not.

3.2.1 Concurrency

3 This example is adopted from [33], where a more elaborate version of it is used as the running example
of the paper.
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Table 2 Concurrency and consistency semantic options.

Options Definition Characteristics Examples

Concurrency
SINGLE A small step consists of

the execution of exactly
one transition.

(+) Simplicity
(-) Non-determinism

statecharts [17,21,
42], Stateflow [9],
and reactive mod-
ules [3]

MANY A small step may consist
of the execution of more
than one transition.

(+) Low chance for
non-determinism
(-) Race conditions

Argos [33] and Es-
terel [6]

Small-Step Consistency
ARENA ORTHOGONAL The arenas of two dis-

tinct transitions of a
small step are orthogo-
nal.

(+) Simplicity
(-) High chance for
non-determinism

Argos [33] and Es-
terel [6]

SOURCE/DESTINATION

ORTHOGONAL

The source control
states and destination
control states of two
distinct transitions of a
small step are pairwise
orthogonal.

(+) Low chance for
non-determinism
(-) Complex

N/A

Preemption
NON-PREEMPTIVE Two transitions that one

is an “interrupt for” an-
other can be taken in a
small step.

(+) Support for “last
wishes”
(-) Counterintuitive
flow of control

Argos [33], and se-
mantics ofexit and
trap statements in
Esterel [6]

PREEMPTIVE Two transitions that one
is an “interrupt for” an-
other cannot be taken in
a small step.

(+) Simple flow of
control
(-) No support for
“last wishes”

N/A

There is a dichotomy in hardware and software about how to model the execution of a
system:single-transitionvs.many-transition[35,43,45,48]. Similarly, in BSMLs, there are
two options: (i) a small step can execute only one transitionin a small step (the SINGLE op-
tion), and (ii) all enabled transitions that can be taken together are taken in a small step (the
MANY option). The SINGLE option is simple because it does not have to deal with the com-
plexities of executing multiple transitions (e.g., race conditions), but it can cause undesired
non-determinism because two enabled transitions can execute in different orders.

Race conditions:A model has arace conditionwhen more than one transition in a
small step assign values to a variable. Typically, one of theassignments is chosen non-
deterministically [37], but there are other options [13].

Example 3 Figure 9 shows the model for describing the behaviour of a simple traffic light
system at an intersection.4 The model consists of And control stateTrafficLight, which
itself consists of two Or control states: theNS control state controls the traffic in the
north-south direction and theEW control state controls the traffic in the east-west direc-

4 This example is adopted from [27].
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TrafficLight

t4: change

t5: endt6: change

EW Red EW Green

EW Y ellow

t1: end

t2: changet3: change

NS Green NS Y ellow

NS Red

East−West

North−South

Fig. 9 Traffic light system.

tion. We assume that the environment provides the sequence of environmental input events:
end, change, end, change, · · ·, in a timely manner according to the schedule of the traffic
light. Environmental input eventend designates the end of green light for a direction by
changing its green lights to yellow. Environmental input eventchange changes the direction
of traffic by switching the red lights to green lights, and theyellow lights to red lights. The
system is initialized so that the lights for north-south direction are green, and the lights
for east-west direction are red. Consider the snapshot where the model resides in control
statesEW Red andNS Yellow, and environmental input eventchange is received. If we
choose theTAKE ONE big-step maximality semantics and theSINGLE concurrency se-
mantics, then the model can choose to execute the big step consisting of the sequence of
transitions〈{t2}, {t4}〉, or the sequence of transitions〈{t4}, {t2}〉, non-deterministically.
However, executing the latter sequence of transitions permits the model to arrive at snap-
shotEW Green andNS Yellow, which is not a desirable behaviour. If theMANY concur-
rency semantics is chosen, then model executes big step〈{t2, t4}〉, arriving at control states
EW Green andNS Red.

Next, we consider two semantic sub-aspects that specify theset of transitions that can
be taken together in a small step when the MANY semantics is chosen. Thesmall-step con-
sistencysub-aspect deals with transitions that do not preempt each other. Thepreemption
sub-aspect deals with transitions that do preempt each other. The two sub-aspects deal with
disjoint sets of transitions of a model.

3.2.2 Small-Step Consistency

In the SOURCE/DESTINATION ORTHOGONAL semantic option, transitions whose source
control states and destination control states are pairwiseorthogonal can be taken together in
a small step. The ARENA ORTHOGONAL option is more restrictive in that two transitions
can be included in the same small step only if their arenas areorthogonal (where the arena
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Counter

Bit1

Bit11

Bit12

t2: tk0 t̂k1

t1: tk0

Bit2

Bit21

Bit22

t3:tk1

Status

Counting

Max

t5:reset

t4:tk1 d̂one

Fig. 10 The revised two-bit counter.

of a transition is the lowestOr control state in the hierarchy of the composition tree that is
the ancestor of the source and destination control states ofthe transition). In comparison,
the ARENA ORTHOGONAL option is simpler than the SOURCE/DESTINATION ORTHOGO-
NAL option, but it can introduce undesired non-determinism by not taking all of the enabled
transitions that the SOURCE/DESTINATION ORTHOGONAL option takes. The ARENA OR-
THOGONAL semantic option and the TAKE ONE big-step maximality semantics are concep-
tually analogous: the former semantic option disallows twotransitions whose arenas are the
same or ancestrally related to be included in a small step, while the latter disallows the two
transitions to be included in a big step.

Example 4 The model in Figure10 is similar to the model in Example2, but has an extra
Or control state that specifies whether the counter is in the process of counting, or it has
already counted four ticks and should be reset. Consider thesnapshot where the model
resides in control states,Bit12, Bit22, andCounting, and the fourthtk0 event is received.
We choose theMANY concurrency semantics. Also, we choose thePRESENT INSAME event
communication mechanism (explained in Section3.3), in which a generated event can enable
a transition in the same small step. If we choose theARENA ORTHOGONALsemantics, then
only {t2} can be taken, but not{t4}, because the arena oft4 is a parent of the arena oft2.
If we choose theSOURCE/DESTINATION ORTHOGONAL semantics, then〈{t2, t4}〉 can be
taken, and the model behaves correctly. (The execution oft4 involves exiting the Or control
stateBit2 and reentering its default control stateBit21. The destination configuration of the
small step isBit11, Bit21, andMax.)

3.2.3 Preemption

The notion ofpreemption[5] is relevant for a pair of transitions when one is aninterrupt for
the other. A transitiont is an interrupt for transitiont′ when the sources of the transitions are
orthogonal and one of the following conditions holds: (i) the destination oft′ is orthogonal
with the source oft, and the destination oft is not orthogonal with the sources of either
transitions (Figure11(a)); or (ii) the destination of neither transition is orthogonal with the
sources of the two transitions, but the destination oft is a descendant of the destination
of t′ (Figure11(b)). The NON-PREEMPTIVE option allows such at andt′ to be executed
together in the same small step, whereas the PREEMPTIVE option does not. In the NON-
PREEMPTIVE option, the effect of executing such a small step{t, t′} includes the variable
assignments and event generations of both transitions, butthe destination configuration of
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Fig. 11 Interrupting transitions.

the small step is determined as if onlyt has been executed (i.e., the destination oft′ is not
relevant). As such, executing{t, t′} in Figure 11(a) moves the model to control stateS′,
and executing{t, t′} in Figure11(b) moves the model to control statesS′

11 andS′
21. While

complex, due to its counterintuitive flow of control, the NON-PREEMPTIVEoption satisfies
the “last wishes” of the children of anAndcontrol state that is interrupted.

The NON-PREEMPTIVEsemantics can be used to model the “weak preemption” seman-
tics ofexit andtrap statements in Esterel [6,16]. The concurrent execution of anexit
command with a non-exit command complies with the condition (i) above of the interrupt
for relation. The concurrent execution of twoexit commands complies with the condition
(ii) above of the interrupt for relation. In Argos [33], a different notion of hierarchical control
state than ours is used. A transition with a source of a non-Basiccontrol stateS is an interrupt
for a transition whose arena isS or a descendent ofS. We can translate this notion of control
state and interrupt to our framework by turningS into anAndcontrol state with two children:
one representingS without the interrupt transition, and another having only one transition
that models the interrupt transition. In Esterel [6,16], in addition to the NON-PREEMPTIVE

semantics, there is a syntax to specify PREEMPTIVEbehaviour through the “strong preemp-
tion” semantics ofwatching statements. In a “do <statements> watching(e)”
statement, the execution of “<statements>” is immediately aborted when evente occurs,
without satisfying the “last wish” of “<statements>”. Such awatching statement can
be translated into our normal-form syntax by creating a transition whose source is anAndor
Or control state that represents the “<statements>”, and it is triggered with evente. The
additional transition in the aforementioned translation is not an interrupt for any transition.

Example 5 The model in Figure12 is an extension of the model in Figure1. A control state
that is labelled with a “X” represents a stable control state. This model is a model of a
dialer system that receives the dialed digits of a phone, through eventdial(d), and transmits
these digits via output eventsout(d), to establish the connection with a destination phone
number. Compared to the model in Figure1, the model in Figure12additionally controls the
total number of calls that can be established at each point oftime. If the maximum number
of concurrent calls is reached, which is determined by the boolean environmental input
variable limit, the dialing process is aborted via transitiont. Consider the snapshot where
environmental input variablelimit is true, the model resides in control statesWaitforDial

and WaitforRedial, the value of variablec, which is the number of dialed digits so far,
is nine, and the environmental inputdial(d) is received, i.e., the caller dials the last digit
of a phone number. We choose theSYNTACTIC concurrency and theMANY concurrency
semantics. If we choose thePREEMPTIVEoption, the system may abort the dialing process
by executing〈{t}〉, and not〈{t1}〉. But if we choose theNON-PREEMPTIVEoption, then the
call would go through by executing〈{t1, t}〉. (The execution of small step〈{t1, t}〉 involves
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Redialer
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Dialing
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Digits
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t1: (dial(d) ∧ ¬redial)[c<10]

t3: dial(d)[c<10]

/c++; lp := lp×10+ d; ôut(d)

/lp := lp×10+d;
c++; ôut(d)

t6: [c< |p|]
d̂ial(digit(p, (c+1))

X t7: [c = |p|]

t4: [c = 10] DialDigits

t2: (dial(d) ∧ redial)[c = 0]/lp :=d; c :=1; ôut(d)

t5: redial[c = 0]/p := lp; d̂ial(digit(lp, 1))

Max

t: [limit= true] t′: [limit=false]

X

Fig. 12 Interrupting transitions.

exiting the And control stateDialing and reentering the default control state of its children
Dialer andRedialer. The destination configuration of the small step isMax.)

3.3 Event Lifeline

A generated event of a transition is broadcast to all parts ofa model. An event’sstatus,
which is eitherpresentor absent, can be sensed by the event trigger of a transition. Theevent
lifeline semantics of a BSML specifies the snapshots of a big step in which a generated event
can be sensed as present. Table3 shows the five event lifeline semantics: (i) in the PRESENT

IN WHOLE option, a generated event is present throughout its big step, from the beginning of
its big step; (ii) in the PRESENT IN REMAINDER option, a generated event is present in the
snapshot after it is generated and persists until the end of its big step; (iii) in the PRESENT

IN NEXT COMBO STEP option, a generated event is present only during the next combo
step; (iv) in the PRESENT IN NEXT SMALL STEP option, a generated event is present only
in the next snapshot; and (v) in the PRESENT IN SAME option, a generated event is present
only during the small step in which it is generated (instantaneous communication). Figure13
depicts the event lifeline of the evente generated in small stepT2, according to the different
event lifeline semantics. Each name of an event lifeline semantics is followed by a line that
depicts the extent of the big step in whiche is present, according to that semantics.

The PRESENT IN WHOLE semantic option supports the “perfect synchrony hypothe-
sis” [4,33]. If we consider a big step as the reaction of a synchronous circuit during a “tick”
of the clock, the semantics of the perfect synchrony hypothesis is similar to the signal rules
of synchronous hardware. In synchronous hardware, a signalis either present or absent dur-
ing a tick of a clock, but not both. The PRESENT IN SAME semantic option is different
from the other semantic options in that the generated eventsof a small step cannot affect
the enabledness of another small step, making the small steps of a big step independent
of one another. The PRESENT IN SAME semantic option is inspired by the semantics of
synchronization and rendezvous in process algebras [15,24,36].
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Table 3 Event lifeline semantics.

Options Definition Characteristics Examples

PRESENT INWHOLE A generated event in a
big step is assumed to be
present throughout the
big step.

(+) Modularity
(+) Global consistency
(-) Non-causality
(-) Counterintuitive behaviour

Argos [33] and
Esterel [6]

PRESENT

IN REMAINDER

A generated event in a
big step is sensed as
present after it is gener-
ated.

(+) Causality
(-) Unorderedness
(-) Global inconsistency

statecharts [21,
42]

PRESENT IN NEXT

COMBO STEP

A generated event can
be sensed as present
only in the next combo
step after it is generated.

(+) Causality
(+) Partial orderedness
(-) Multiple-instance events

Statemate [19]
and RSML [30]

PRESENT IN NEXT

SMALL STEP

A generated event can
be sensed as present
only in the next small
step after it is generated.

(+) Causality
(+) Orderedness
(-) Multiple-instance events

statecharts[10]

PRESENT INSAME A generated event can
be sensed as present
only in the same small
step it is generated in.

(+) Instantaneous communica-
tion
(-) Non-causality
(-) Multiple-instance events

Used in [37]

...

Small Steps
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Big Step

.........sp sp′sp3 sp4

T4T3T1 T5T2
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PRESENT INNEXT SMALL STEP

PRESENT INSAME

Fig. 13 The event lifeline of the generated evente according to different event lifeline semantic options.
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Implicit events: Some BSMLs useimplicit eventsin their syntax, which represent
events that are generated in response to a certain property of the computation of a model. For
example, the implicit evententered(s) [41] is generated when control states is entered,
and implicit event@T(cond) [22,23] is generated when the value of boolean expression
cond changes from false to true. Implicit events may or may not have the same semantics as
the event lifeline semantics of named events.

Causality: A big step iscausalif its small steps can be sequenced as:T1, T2, · · · , Tn,
such that any event that triggers a transition in small stepTi (1 ≤ i ≤ n) must be gen-
erated by some earlier small step inT1, T2, · · · , Ti−1. To a modeller, the transitions of a
non-causal big step may seem counterintuitive, and executeout of the blue. The PRESENT

IN WHOLE and the PRESENT IN SAME semantic options can create non-causal big steps.
To avoid non-causal big steps, some BSMLs that use the WHOLE event lifeline semantics
introduce a notion of a “correct” model, which never createsa non-causal big step [6,7,47].
Analysis tools can be used to detect “incorrect” models, conservatively, and reject them at
compile time [7,16]. But if a BSML supports variables, the detection of incorrect models is
undecidable [16].

Orderedness:The PRESENT INREMAINDER semantics lacks a “rigorous causal order-
ing” [30]: if event e1 is generated earlier than evente2, it need not be the case that tran-
sitions triggered bye1 are executed earlier than transitions triggered bye2. The PRESENT

IN NEXT COMBO STEP semantics was devised to alleviate this problem by having a “rig-
orous causal ordering” between combo steps, while being insensitive to the order of event
generation within a combo step [19,30]. A disadvantage of the PRESENT INNEXT COMBO

STEP semantics is that a modeller needs to keep track of the scope of a combo step in or-
der to consider its generated events all at once in the next combo step. The PRESENT IN

NEXT SMALL STEP semantics is ordered: a transition triggered by an internalevente can
be executed only ife is generated by a transition in the previous small step.

Modularity: The PRESENT INWHOLE option is “modular” [26] with respect to events:
an event generated during a big step can be conceptually considered the same as an environ-
mental input event because it is present from the beginning of the big step. All other event
lifeline semantics are non-modular. In a non-modular eventlifeline semantics, concurrent
parts of a model cannot play the role of the environment for each other, because extensions
of the model may change the behaviour in different ways than the environment does. As a
result, a model cannot be constructed incrementally.

Multiple-instance events:An instanceof an event in a big step is a contiguous segment
of the snapshots of a big step where the event is present. In the PRESENT INNEXT COMBO

STEP, PRESENT IN NEXT SMALL STEP, and PRESENT IN SAME event lifeline semantics,
multiple instances of the same event, generated by different small steps, may exist in the
same big step. Thus, the status of an event can change multiple times in a big step, making
it complicated for a modeller to determine whether an event is present in a certain snapshot
of a big step, or not.

Global inconsistency: When negated events are included in the BSML syntax, the
PRESENT INREMAINDER semantic option can produce “globally inconsistent” big steps [41,
42]. A big step is globally inconsistent if it includes a transition that generates an event and a
transition triggered by the absence of that event. A globally inconsistent big step is undesired
because an event is sensed both as absent and present in the same big step. The PRESENT

IN REMAINDER semantic option can achieve a variation of the original global consistency
semantics [41,42], by not taking a transition that generates an event that wassensed as ab-
sent earlier in the big step [32]. The global inconsistency problem is not relevant for other
semantic options because the PRESENT INREMAINDER semantic option is the only seman-
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Fig. 14 Global consistency vs. causality.

tic option that allows maximum one instance of an event in a big step and yet permits the
aforementioned inconsistency. The other lifeline semantics that permit multiple instances of
an event in the same big step are globally inconsistent, but by design.

Global consistency vs. causality:Figure 14 shows the relationship between the big
steps of the PRESENT IN REMAINDER semantics and the PRESENT IN WHOLE semantics.
A big stepT that is included according to a globally consistent PRESENT IN REMAINDER

semantics can also be included by a PRESENT INWHOLE semantics becauseT ’s generated
events, by the definition of global consistency, can be assumed to be present from the be-
ginning of the big step. Conversely, a big stepT ′ that is included by a causal PRESENT IN

WHOLE semantics can also be included by a PRESENT INREMAINDER semantics because,
by the definition of causality, an event is sensed as present by a transition ofT ′ only if it
is already generated in the big step. Therefore, if global consistency is guaranteed syntacti-
cally (e.g., there are no negated event triggers), then the set of big steps in the PRESENT IN

REMAINDER semantics is a subset of the big steps of the PRESENT INWHOLE semantics.
Events with parameters:An event can have a value parameter, as in Esterel [6].5 For

an event with a value parameter, the value of its parameter isdetermined per instance of
the event. When an event instance is generated by more than one transition, the value of its
parameter is determined by a “combine function” [6]. A combine function is a commutative,
associative function, such as addition, that “combines” the different values of the parame-
ter of an event that are generated by a set of transitions. In the PRESENT IN REMAINDER,
PRESENT IN NEXT COMBO STEP, PRESENT IN NEXT SMALL STEP, and PRESENT IN

SAME semantics, a combine function combines the values of the parameter of an event gen-
erated by transitions in the previous and current small steps, previous combo step, previous
small step, and current small step, respectively. In the PRESENT IN WHOLE option, the
value of the parameter of an event instance is fixed during a big step, and is determined by
combining all of the values of the parameter of the event generated during the big step.

Example 6 In Example2, when considering theTAKE ONE big-step maximality semantics,
the semantics that subscribes to thePRESENT IN WHOLE, PRESENT IN REMAINDER, or
PRESENT IN NEXT SMALL STEP event lifeline semantics all yield the expected behaviour.
If the TAKE ONE big-step maximality semantics, theMANY concurrency semantics, the
ARENA ORTHOGONAL small-step consistency semantics, thePREEMPTIVEpreemption se-
mantics (or theNON-PREEMPTIVE preemption semantics) are chosen, then thePRESENT

IN SAME semantics also yields the expected behaviour.

5 In Esterel [1], the value parameter of an event can be of type array, which means that, in effect, an event
can have more than one value parameter, each of which being anelement of a single array.
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Fig. 15 Speed control system for a car.

Example 7 The model in Figure1 is an extension of the model in Figure7 to support a
“redial” functionality. Variable lp stores the last dialed phone number. Upon receiving the
redial environmental input event,Redialer instructsDialer, by generating the correspond-
ing dial events, to dial the digits oflp. (We denote the size of an integerx as |x| and its
nth digit asdigit(x,n).) Variablep is necessary because once redialling startslp is over-
written. Consider the snapshot where the environmental input eventredial is received,c is
zero, and|lp| is 10. The environmental input eventredial persists throughout the big step. A
semantics that follows theSYNTACTIC big-step maximality semantics (annotating a stable
control state with a “X”), the MANY concurrency semantics, theARENA ORTHOGONAL

small-step consistency semantics, thePREEMPTIVEpreemption semantics, thePRESENT IN

NEXT SMALL STEP event lifeline semantics, and uses the up-to-date values ofvariables,
can produce the big step〈t5, {t2, t6}, {t3, t6}, · · ·, {t3, t6}, {t4, t7}〉, which transmits the
first digit twice and does not transmit the last digit. If we choose thePRESENT IN SAME

event lifeline semantics, the model produces the correct big step〈{t5, t2}, {t3, t6}, · · ·,
{t4, t7}〉. In both cases, if the size of the redialled number is less than 10, the model cannot
stabilize, and remains inDialDigits control state.

Example 8 The model in Figure15 is a simple model of a cruise control system of a car.
The system regulates the amount of power transmitted to the wheels of the car by adjusting
the amount of gas that is provided to the engine, in order to maintain the speed specified
by the cruise control system. If the cruise control system ison, de-acceleration does not
have any effect on the amount of gas that is provided to the engine. But if the cruise control
system is on and the acceleration event is received, then thecruise control system is turned
off, and acceleration is processed as usual. The two Or control states of the And control
stateFuelControl process the cruise control and acceleration/de-acceleration functionali-
ties, respectively. The environmental input eventscruise on and cruise off turn the cruise
control system on and off, respectively. The environmentalinput eventsaccel and deaccel

specify whether the accelerator is being pressed or de-pressed, respectively. The boolean
environmental input variablesover speed andunder speed specify whether the vehicle is
moving faster or slower, respectively, than the target speed set by the cruise control system.
Eventsincrease gas anddecrease gas slightly increase and decrease the amount of fuel into
the engine, respectively.
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Consider the moment when the cruise control system is on, thesystem is slightly over
speed, and the accelerator is pressed; i.e., when the systemresides in control stateOn,
over speed = true, andaccel is received from the environment. We choose theTAKE ONE

big-step maximality semantics and theSINGLE concurrency semantics. If we choose the
PRESENT IN WHOLE semantic option, then the only possible big step consists of{t6} and
{t2}, which results in the desired behaviour for the system. If wechoose thePRESENT IN

REMAINDER semantic option, then additionally〈{t5}, {t6}〉 is a valid big step, which both
decreases and increases the amount of gas to the engine. The latter big step is globally
inconsistent, becauseincrease gas is sensed as absent byt5 and is generated byt6. If the
variation of global consistency semantics in [32] is chosen, then〈{t5}〉 is a valid big step;
t6 cannot be taken during the big step since it generatesincrease gas.

3.3.1 External Events

The model in Figure1 uses eventdial in two different ways: (i) as an environmental input
event initiated by a human caller, and (ii) as an internal event generated by theRedialer.
To avoid modelling flaws, many have advocated that the interface of a system with its envi-
ronment should be clearly and explicitly specified [39,50]. A celebrated way to achieve this
interface, as shown in Figure16, is to distinguish between the events that the environment
can control,environmental input events, and the events that are generated by the model,
controlled events. A controlled event may be observable by the environment (i.e., anenvi-
ronmental output event), or not (i.e., aninternal event). The environmental input and output
events of a model together constitute theexternal eventsof the model.

A BSML may choose distinct event lifeline options for environmental input events, en-
vironmental output events, and internal events, as shown inthe feature diagram of Figure5.
Often, the event lifeline semantics of the environmental input events is the PRESENT IN

WHOLE semantics, and the event lifeline semantics of the environmental output events is
the same as the event lifeline semantics of the internal events.

A BSML may syntactically distinguish environmental input events and environmental
output events from each other, and from internal events. Alternatively, we call a BSMLnon-
distinguishingif it does not distinguish syntactically between the external events and the
internal events of a model. In these BSMLs, it is still possible to consider inputs received
at the beginning of the big step as environmental inputs, andoutputs generated in the last
small step or last combo step of a big step as environmental outputs, each with distinct event
lifeline choices. Table4 lists the possible semantic options for differentiating environmental
input events and internal events. In the SYNTACTIC INPUT EVENTSoption, an environmen-
tal input event is syntactically distinguished. Thus a BSMLthat subscribes to this option
is a “distinguishing” BSML. In the RECEIVED EVENTS AS ENVIRONMENTAL option, an
event that is received at the beginning of a big step is considered an environmental input
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Table 4 Differentiating environmental input events from internalevents.

Options Definition Characteristics Examples

SYNTACTIC INPUT

EVENTS

Only syntactically distin-
guished events are treated
as environmental inputs.

(+) Separates system
from environment
(-) Usually different
semantics for different
event types

Esterel [6]

RECEIVED EVENTS AS

ENVIRONMENTAL

Any event that is received
from the environment at
the beginning of a big step
is treated as an environ-
mental input.

(+) Treats input and inter-
nal events uniformly
(-) No boundary between
system and environment

statecharts [42]
and
RSML [30]

HYBRID INPUT EVENTS Only genuine inputs that
are received from the en-
vironment at the beginning
of a big step are treated as
environmental inputs.

(+) Distinguishes be-
tween internal and
genuine input events
(-) Complex

N/A

event. In the HYBRID INPUT EVENTS option, an event that is received at the beginning of a
big step is considered an environmental input event only if it is agenuine inputof a model,
meaning it is not generated by any transitions in the model. As shown in Figure5, an event
lifeline semantics for the environmental input events can be chosen, regardless of the choice
of the semantic option for distinguishing the input events.For example, if the semantics for
environmental inputs is the RECEIVED EVENTS AS ENVIRONMENTAL semantic option to-
gether with the PRESENT IN NEXT SMALL STEP semantic option, then an input event that
is received at the beginning of a big step persists only for the first small step of the big step.
Environmental output events have similar options; events generated in either the last small
step or last combo step of a big step could be considered as environmental output events.

Example 9 In Example7, we assumed the non-distinguishing semantics for the modelin
Figure 1 because eventdial can be both received from the environment and generated, pos-
sibly in the same big step. Eventredial is a genuine input. Both theRECEIVED EVENTS

AS ENVIRONMENTAL and HYBRID INPUT EVENTS semantic options, together with the
PRESENT INWHOLE event lifeline semantics, yield a behaviour that matches the behaviour
specified in Example7.

If we use the single-input assumption [22,23], which requires thatdial and redial are
not both received from the environment in the same big step, thendial cannot be received
from the environment at the beginning of a big step and generated in the same big step.

3.3.2 Interface Events

Some BSMLs structure a model as a set ofcomponents, each of which is a CHTS. The
components of a model communicate with each other through their interface eventsaccord-
ing to aninter-component communication mechanism. Figure17 refines the taxonomy of
Figure16 by including interface events as a subset of the controlled events of a model. We
require an interface event to be generated by one component,which we call itssending com-
ponent. A component that accesses an interface event is itsreceiving component. As such,
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the interface events of a model are partitioned into sets, shown by dashed lines in Figure17,
each of which is generated by one component.

Table5 lists the three possible inter-component communication semantic options for in-
terface events. In the STRONG SYNCHRONOUSEVENT option, a generated interface event
is sensed as present throughout the big step in which it is generated, from the beginning
of the big step (similar to the PRESENT IN WHOLE semantic option for internal events).
In the WEAK SYNCHRONOUSEVENT option, a generated interface event is present in the
big step in which it is generated, but only after it is generated (similar to the PRESENT IN

REMAINDER semantic option for internal events). In the ASYNCHRONOUSEVENT option,
a generated interface event is present in the next big step, from the beginning of the big
step. The STRONG SYNCHRONOUS EVENT and the WEAK SYNCHRONOUS EVENT se-
mantic options have similar advantages and disadvantages as the PRESENT INWHOLE and
PRESENT IN REMAINDER semantic options, respectively. The ASYNCHRONOUSEVENT

semantic option is unique in that a generated event in a big step can influence the behaviour
of the model in the next big step. This semantics for interface events can potentially be a
source of complication for a modeller because it is at odds with the semantics of other kinds
of events in a semantics, i.e., internal events and environmental input/output events, whose
statuses cannot persist beyond a current big step. In the ASYNCHRONOUSEVENT seman-
tics, a generated interface event in a big step acts similar to an environmental input event in
the next big step. As such, the ASYNCHRONOUSEVENT semantics is modular with respect
to interface events, because an interface event, similar toan environmental input event, is
either present from the beginning of a big step or is not present at all.

There are several BSMLs that support the notion of inter-component event communi-
cation. The “hybrid semantics” of Huizing and Gerth [26], which distinguishes between
“local” and “global” events, treats the “global” events of amodel according to the STRONG

SYNCHRONOUSEVENT semantic option. The semantics of “output” events in RSML [30]
follows the ASYNCHRONOUSEVENT semantics; an “output” event is generated by a com-
ponent via a “SEND” command, and can be received by a component via a “RECEIVE”
event in the next big step. Similarly, the semantics of “registered” events in Esterel [1]
follows the ASYNCHRONOUSEVENT semantics. In “globally asynchronous locally syn-
chronous (GALS)” languages [8,44], the communication of events within “local” com-
ponents of a system follows the semantics of the PRESENT IN WHOLE option, and the
“global” communication of events between components follows the semantics of the ASYN-
CHRONOUSEVENT option.

Example 10 The model in Figure18 shows a door controller system, which is responsible
for unlocking the door to an industrial area only if the temperature inside the area is not
above 40°C. The system has two components,Lock andThermometer, separated by the
thick dashed line. The two components communicate via two interface events,check temp

andheat. There are three environmental input events,lock, open, andreset. Eventunlock
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Table 5 Semantic options for interface events.

Options Definition Characteristics Examples

STRONG SYNCHRONOUS

EVENT

A generated interface
event of a big step is
sensed as present from
the beginning of the big
step.

(+) Modularity
(+) Unique status for an
interface event during a
big step
(-) Non-causality

“Hybrid Seman-
tics” [26]

WEAK SYNCHRONOUS

EVENT

A generated interface
event of a big step is
sensed as present in
the snapshot after it is
generated.

(+) Causality
(-) Unclear status of an
interface event during a
big step

N/A

ASYNCHRONOUSEVENT A generated interface
event of a big step is
sensed as present in the
next big step after it is
generated.

(+) Modularity
(-) Previous big step af-
fects current big step

“Output” events
in RSML [30]
and “GALS”
[44]

is the environmental output event of the model. Consider thesnapshot in which the model
resides in itsIdle andMeasure control states,temp = 99, and eventopen is received from
the environment. If we choose theTAKE MANY big-step maximality semantics, theSINGLE

concurrency semantics, and theSTRONGSYNCHRONOUSEVENT semantic option, then the
big step〈{t1}, {t6}, {t3}〉 is the only possible big step, which, correctly, does not open the
door. If we choose theWEAK SYNCHRONOUSEVENT semantic option, then additionally,
〈{t1}, {t2}, {t6}〉 is a valid big step, which opens the door although the temperature is
99°C. If we choose theASYNCHRONOUSEVENT semantic option, the only possible big
step is〈{t1}, {t2}, {t6}〉, in which eventheat is sensed in the next big step, after the door
has already been opened.

3.4 Enabledness Memory Protocol

The enabledness memory protocolof a BSML determines the values of variables that a
transition reads for its guard condition (GC). Table6 shows the three possible memory
protocols: (i) in the GC BIG STEP option, a read of a variable returns its value from the
beginning of the big step; (ii) in the GC SMALL STEP option, a read of a variable returns
its value from the beginning of the small step; and (iii) in the GC COMBO STEP option, a
read of a variable returns its value from the beginning of thecurrent combo step.6 As such,
in the GC BIG STEP, the GC SMALL STEP, and the GC COMBO STEPsemantics, thewrite
of a value to a variable, via an assignment, becomes the valuereturned by a read of that
variable in the next big step, next small step, and next combostep, respectively. (Unless the
write is overwritten by other writes through race conditionor the assignments of subsequent
transitions).

Traceability: In the GC BIG STEP semantics, the value of a variable at a snapshot in a
big step is obtained from the beginning of the big step, but the assignments to the variable

6 As shown in Table6, in SCR [22,23], both the GC BIG STEPand GC SMALL STEPmemory protocols
are used, but in different syntactic constructs of the language, namely in the “event tables” and “condition
tables”, respectively.
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Table 6 Enabledness memory protocols.

Options Definition Characteristics Examples

GC BIG STEP The value of a variable
during a big step is ob-
tained from the beginning
of the big step.

(+) Non-interference
(+) Modularity
(-) Non-sequentiality in
small steps

statecharts [21,
42], SCR [22,
23], and reactive
modules [3]

GC SMALL STEP The value of a variable
is its up-to-date value, ob-
tained from the beginning
of the small step.

(+) Sequentiality in small
steps
(+) Straightforward trace-
ability
(-) Interference

Esterel [6] and
SCR [22,23]

GC COMBO STEP The value of a variable
during a combo step is ob-
tained from the beginning
of the combo step.

(+) Some non-interference
(+) Some sequentiality in
small steps
(-) Complicated traceability

Statemate [19]

need to be traced so that its value is updated for the next big step. In the GC SMALL STEP

semantics, the value of a variable at a snapshot in a big step is determined by tracing all
of the assignments to the variable since the beginning of thebig step. In the GC COMBO

STEP semantics, the value of a variable at a snapshot in a big step is determined by tracing
all of the assignments from the beginning of the current combo step. But a big step may
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Table 7 Variable operators.

Operator Obtains Value From Memory Protocols Total

pre (e.g., [30]) big-step source snapshot GC SMALL STEP !
cur (e.g., [21]) small-step source snapshot GC BIG STEP !
new (e.g., [3]) small-step source snapshot GC BIG STEPand GC SMALL STEP %
new small small-step destination snapshot GC SMALL STEP !
(e.g., [41])

have several combo steps, which, compared to the other memory protocols, could make the
tracing of the value of a variable complicated.

Modularity with respect to variables: In general, a semantics is “modular” if it treats
the behaviour of a new concurrent part of the model the same asthe behaviour of the envi-
ronment [26]. Originally, “modularity” was defined with respect to events [26], but, in the
same spirit, we extend it for variables. The GC BIG STEP is modular with respect to vari-
ables because even if a new concurrent part of a model assignsnew values to variables, the
new values are visible only at the beginning of the next big step, just like new environmental
values. The other semantic options are not modular because the behaviour of an addition to
an existing model, unlike the environment, affects the intermediate snapshots of a big step.

Non-interference vs. sequentiality in small steps:The GC BIG STEP option isnon-
interfering: an earlier small step of a big step does not affect the read value of a later small
step. The GC SMALL STEP option, which is an “interfering” semantics, is useful for speci-
fying a sequence of computations where each small step readsthe values from the previous
small step. The GC COMBO STEP option enjoys non-interference inside a combo step and
sequentiality of combo steps. In the GC COMBO STEP option, a big step could consist of
multiple combo steps, which a modeller needs to keep track ofeach of their scopes.

Variable operators: A BSML may provide avariable operatorthat obtains a value of a
variable that is different from its value according to its memory protocol. Table7 lists some
common operators and specifies whether they aretotal or not. As specified in the table, each
variable operator is relevant for certain enabledness memory protocols. A non-total operator
mayblockuntil it can be evaluated.

Operatornew is different fromcur in that it can be evaluated only if its operand has
already been assigned a value during the big step, which means it requires a “dataflow” order
for the execution of small steps within a big step (cf., Section 3.6).

Operatornew small returns the value of its operand at the end of the current small
step. A variable in the GC of a transition that is prefixed withthe new small operator
requires anevaluation orderbetween the transitions of the small step, in order to obtainthe
newly assigned value of the variable at the end of the small step. If a variable is not assigned
a value during a small step, then its value when prefixed with the new small operator
returns the value of the variable at the source snapshot of the small step.7

Two transitions can createcyclic evaluation orderby using thenew small operator
over variables that are assigned values by one another.

7 It is possible to define a non-totalnew small operator that returns a value for a variable, only if it is
assigned a value in the current small step. Such an operator would be in the spirit of the “next” operator in
SMV language [34], which is an input language for a family of model checkers with the same name. However
in the semantics of SMV, unlike in BSMLs, even if a variable isnot assigned a value during a small step, it is
assigned a non-deterministic value, which, in effect, makes the “next” operator a total operator.
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Example 11 In Example7, we used theGC SMALL STEP enabledness memory proto-
col. If we use the semantic options that led to an incorrect behaviour in that example,
but modify the guard condition oft6 to “ [new small(c) < |p|]” and its event generation
to “ dial(digit(new small(c) + 1,p))”, then the model behaves correctly:〈{t5}, {t2, t6},
{t3, t6}, · · ·, {t3}, {t4, t7}〉.

The operators in Table7 are not relevant for the GC COMBO STEP memory protocol,
but they can be extended to be used in the context of GC COMBO STEP memory protocol.
For example, a version ofcur operator for the GC COMBO STEP semantic option would
return the current value of a variable considering all of theassignments to the variable since
the beginning of the current combo step. Similarly, anew small operator can be defined
for the GC BIG STEPmemory protocol.

3.4.1 External Variables

As with events, it is useful to distinguish syntactically between the variables of the model
that can be modified by the environment and the variables of the model that can be modified
by the system [39,50]. Figure16, which depicts a taxonomy of events, also represents the
taxonomy for distinguishing environmental variables. Theenvironmental output variables
andenvironmental input variablesof a model are the sets of the variables of the model that
can be read from and written to by the environment, respectively. The internal variables
of a model are those variables that are not communicated withenvironment.8 The union of
the set of environmental input variables and the set of environmental output variables of a
model is its set ofexternal variables. The union of the set of environmental output variables
and the set of internal variables of a model is its set ofcontrolled variables, which is the
set of variables that can be written to by the system. Many modelling languages, including
some BSMLs, provide syntax to distinguish between different types of variables [3,22,23,
39]. Unlike for events, the notion of “non-distinguishing BSMLs” (cf., Section3.3.1) is
not relevant with respect to variables, because most BSMLs either syntactically distinguish
between environmental input variables and controlled variables, or they do not support the
notion of environmental input variables at all (i.e., variables are not assigned values by the
environment).

When external variables are distinct from the internal variables, the memory protocol se-
mantic aspects described in Sections3.4and3.5specify the semantics of internal variables.
The notion of memory protocol for environmental input variables is not relevant because
they are never assigned a value by a transition; they keep thesame value throughout the big-
step. Normally, an output variable is not read by the model, therefore we have not included
options for it in our feature diagram. If it is, the semanticsof environmental output variables
can be any of the memory protocols, but it would not likely be the BIG STEPsemantics.

3.4.2 Interface Variables in GC

Some BSMLs allow a component of a model, which is usually a physically distinct part of
the model, to communicate with another component of the model via interface variables.
Figure17, which depicts the taxonomy of events including interface events, also illustrates
the taxonomy of variables including interface variables. As for interface events, we require

8 Internal variables are often called “private variables”. We use the term “internal variables” to keep the
terminology of variables consistent with that for events.
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the well-formedness constraint that an interface variablecan be written to by only one com-
ponent (thesending component), but can be ready by multiple components (thereceiving
components). The semantics of interface variables, similar to memory protocols for internal
variables, specifies when a change to an interface-variablevalue becomes the value returned
by a read of that variable.

Table8 lists the possible inter-component communication semantic options. In the GC
STRONG SYNCHRONOUSVARIABLE option, a write to an interface variable during a big
step can be read by the GC of a transition right from the beginning of the same big step; i.e.,
if an interface variable is assigned a value, only this new value is read during the big step. In
the GC WEAK SYNCHRONOUSVARIABLE option, a write to an interface variable can be
read after the variable is written to, but the variable can also be read before it is written to,
in which case it returns its value from the previous big step (similar to the GC SMALL STEP

semantic option). In the GC ASYNCHRONOUSVARIABLE option, a write to an interface
variable can be read by the GC of any transition in the next bigstep (similar to the GC BIG
STEPsemantic option).

Blocking read vs. communication delay:The GC STRONG SYNCHRONOUSVARI-
ABLE semantics is compatible with the “zero-time computation” principle of the synchrony
hypothesis [4,6]: that is, the value of an interface variable is exchanged between two com-
ponents in “zero-time”. However, there should exist a “dataflow order” (cf., Section3.6)
between the small steps of a big step so that the value of an interface variable is read only
after it has been assigned. A component that is waiting for the new value of an interface
variable is said to beblocking. It is possible for two transitions to block cyclically on each
other. In the GC WEAK SYNCHRONOUSVARIABLE semantic option, a read operation on
a variable never blocks, but it may return astale valueof the variable from the previous
big step or a newly assigned value from the current big step. In the GC ASYNCHRONOUS

VARIABLE semantic option, a read operation on a variable never blocks, but there is a delay
of one big step between writing a new value to a variable and reading the new value.

Modularity with respect to interface variables: The GC STRONG SYNCHRONOUS

VARIABLE and GC ASYNCHRONOUSVARIABLE semantic options are modular with re-
spect to interface variables because the value of an interface variable in these semantic is
the same throughout the big step, similar to an environmental input variable. In these two
semantics, the behaviour of a component that is added to an existing model is perceived as
that of environment, when it comes to the interface variables in the GC of transitions of the
existing model. The GC WEAK SYNCHRONOUSVARIABLE semantic option is not modu-
lar with respect to interface variables because the value ofan interface variable may change
during a big step, unlike the value of an environmental inputvariable.

Example 12 The model in Figure19 is similar to the model in Example10, but has been
modified: (i) to use the interface variableheat, instead of interface eventheat; and (ii) the
functionality ofLocking the door is separated from the functionalities of theController of
the lock and theThermometer, to allow for the lock to work with different controllers.

Consider the snapshot where the model resides in itsIdle, Ready, andMeasure con-
trol states, the door is closed,temp = 99, heat = false, and eventopen is received from the
environment. We choose theSYNTACTIC big-step maximality semantics, theSINGLE con-
currency semantics, thePRESENT IN REMAINDER event lifeline semantics, theGC (and
RHS) SMALL STEP enabledness (assignment) memory protocols, and theGC STRONG

SYNCHRONOUS EVENT interface event semantics. If we choose theGC STRONG SYN -
CHRONOUSVARIABLE semantic option, then the big step〈{t1}, {t6}, {t9}, {t8}, {t3}〉
is the only possible big step, which correctly does not open the door. If we choose theGC

31



Table 8 Semantic options for interface variables.

Options Definition Characteristics Examples

GC STRONG SYNCHRONOUS

VARIABLE

Either an interface vari-
able is not written to dur-
ing a big step, or all of its
reads happen after it has
been written to and it re-
turns the newly assigned
value.

(+) Modularity
(-) Blocking read and
cyclic dataflow order

Composition
in reactive
modules [3]

GC WEAK SYNCHRONOUS

VARIABLE

An interface variable can
be read before or after it
is written to; in the latter
case it returns the newly
assigned value.

(+) Non-blocking read
(-) Stale values for in-
terface variables

N/A

GC ASYNCHRONOUS

VARIABLE

The value written to an in-
terface variable during a
big step can be read in the
next big step.

(+) Non-blocking read
(+) Modularity
(-) Delayed read

“Output”
variables in
RSML [30]

WEAK SYNCHRONOUS VARIABLE semantic option, then the big step〈{t1}, {t6}, {t7},
{t9}, {t2}〉 is also possible, which opens the door although the temperature is 99°C. Re-
versing the order of{t9} and{t2} yields another big step that opens the door. If we choose
the GC ASYNCHRONOUSVARIABLE semantic option, then thetrue value ofheat is only
sensed in the next big step, and thus the door is opened.

3.5 Assignment Memory Protocol

Theassignment memory protocolof a BSML determines the values of variables that a transi-
tion reads when evaluating the righthand side (RHS) of its assignment expressions. Exactly
the same semantic options as those of the enabledness memoryprotocol are identified: RHS
BIG STEP, RHS SMALL STEP, and RHS COMBO STEP. (Their names are prefixed with
“RHS” instead of “GC”.) The enabledness and assignment memory protocols of a BSML
need not be the same (e.g., SCR [22,23]).9 The same advantages and disadvantages as the
semantic options of the “enabledness memory protocol”, in Table6, apply to the correspond-
ing semantic options of the “assignment memory protocol” semantic aspect.

Variable operators: The same four variable operators listed in Table7 can be used in
the RHS of assignments. However, when using thenew small operator in an assignment
expression, it may be impossible to find an “evaluation order”. For example, for two assign-
ments,a :=new small(b)−1 andb :=new small(a)+2, which have a cyclic evaluation
order, the value ofa andb cannot be evaluated.

Example 13 The model in Figure20, which is adopted from an example in [25], is meant
to specify a computation that maintains the invariant ofa−b remaining the same before
and after the execution of a big step. Consider the snapshot where the model resides in its
control statesS1 andS4, a = 7, andb = 2. We choose theSINGLE concurrency semantics.
If we choose theTAKE MANY big-step maximality semantics together with theRHS BIG

9 In SCR [22,23], the RHS SMALL STEP assignment memory protocol is used together with a combina-
tion of the GC BIG STEPand GC SMALL STEPenabledness memory protocols.
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Fig. 19 Door controller system: using interface variableheat and interface eventcheck temp.

Invar

t2: /b :=(2×a)+b;

t1: /b :=2×b;

S1

S2

S3

S4

S5

S6

t4: /a :=3×a;

t3: /a :=a+b;

I1 I2

Fig. 20 A model for maintaining an invariant betweena andb.

STEP assignment memory protocol, then the end result would bea = 21 andb = 16, which
maintains the value ofa−b the same before and after the big step. If we choose theRHS
SMALL STEP semantic option, then the model can create a big step that does not maintain
the invariant; for example, the execution of the big step〈{t1}, {t2}, {t3}, {t4}〉 results in
a = 75 andb = 18.

33



3.5.1 Interface Variables in RHS

Similar to using interface variables in the GC of transitions, as described in Section3.4.2,
interface variables can be used in the RHS of assignments of the transitions of the dif-
ferent components of a system. Exactly the same semantic options as those for interface
variables in GC of transitions can be used for the semantics of interface variables in the
RHS of assignments, but their names prefixed with “RHS” instead of “GC”: RHS STRONG

SYNCHRONOUSVARIABLE , RHS WEAK SYNCHRONOUSVARIABLE , and RHS ASYN-
CHRONOUSVARIABLE . The interface variables in GC semantics of a BSML need not be
the same as its interface variables in RHS semantics. Similar to the GC STRONG SYN -
CHRONOUSVARIABLE option, a cyclic dataflow order might arise when the RHS STRONG

SYNCHRONOUSVARIABLE semantic option is chosen. The same advantages and disadvan-
tages as the ones for the semantic options of the inter-component variable communication,
in Table8, are relevant for the corresponding semantic options of theinterface variables in
RHS semantic aspect.

3.6 Order of Small Steps

At a snapshot, when it is possible to execute more than one small step based on the en-
abledness of transitions with respect to guard conditions and event triggers, some BSMLs
non-deterministically execute one (the NONE option), while others order their executions
either by syntactic means (the EXPLICIT ORDERING option) or bydatafloworders (the
DATAFLOW option), as shown in Table9. Stateflow is an example of the EXPLICIT OR-
DERING option because the transitions of a model are executed according to the graphical,
clockwise order of their arenas [9]. A dataflow order allows only those sequences of the
execution of small-steps where a transition that writes to avariable is executed before tran-
sitions that read the variable. The dataflow order of a model can be specified by an explicit
partial order between its variables (e.g., SCR [22,23]), or via variable operatornew, as de-
scribed in Section3.4, to determine data dependencies (e.g., reactive modules [3]). In the
statecharts semantics of Pnueli and Shalev [42], the boolean operatorassigned is used
in the event trigger of a transition to determine whether a variable is assigned a value dur-
ing a big step or not, which in effect induces dataflow order between small steps of the big
step.10 The EXPLICIT ORDERING and DATAFLOW options can be used to avert undesired
non-determinism by disallowing the execution of the small steps that do not satisfy the or-
dering constraints. In the DATAFLOW semantic option, each big step of a model might have
a different dataflow order. The EXPLICIT ORDERING option can be difficult to use because
a modeller may introduce an unintended order of transitions. The DATAFLOW semantics can
be difficult to use because a modeller might create a cyclic dataflow order, either directly
or by transitivity. The DATAFLOW semantics is compatible with the domain of some syn-
chronous hardware systems where there is an inherent distinction between the value of a
variable at the beginning of a big step, i.e., when the clock ticks, and during a big step when
a value might be assigned to a variable.

Example 14 Consider the semantic options in Example7 that lead to an incorrect be-
haviour. One way to fix the incorrect behaviour is to modify the model by moving the

10 The GC STRONGSYNCHRONOUSVARIABLE and RHS STRONGSYNCHRONOUSVARIABLE semantic
options for interface variables, described in Section3.4.2and Section3.5.1, respectively, can also introduce
dataflow orders.
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Table 9 Order of small steps semantic options.

Options Definition Characteristics Examples

NONE Small steps are not ordered.
(+) Simplicity
(-) Non-determinism

statecharts [17,
21]

EXPLICIT

ORDERING

Execution of small steps is or-
dered syntactically. (+) Control over ordering

(+) Control over non-determinism
(-) Possible unintended ordering

Stateflow [9]

DATAFLOW Small steps are ordered so that
an assignment to a variable
happens before it is being read.

(+) Natural for some domains
(-) Control over non-determinism
(-) Possible cyclic orders

SCR [22,
23], reactive
modules [3],
and state-
charts [42]

“ p := lp” assignment fromt5 to t2, changing the GC oft6 to “ c < |new(p)| − 1”, and
its event generation to “dial(digit(new small(c) + 1, p))”. Such a model then behaves cor-
rectly: 〈{t5}, {t2}, {t6}, {t3, t6}, · · ·, {t3}, {t4, t7}〉, because the dataflow order does not
allow t2 andt6 to be executed together.

Example 15 In Example7, we chose theMANY concurrency semantics and thePRESENT

IN NEXT SMALL STEP event lifeline semantics, which lead to an incorrect behaviour. If
we choose theSINGLE concurrency semantics, then the model can create both a correct
big step, and an incorrect, non-terminating big step (e.g.,〈{t5}, {t2}, {t6}, {t6}, · · ·〉),
non-deterministically. However, if we use theEXPLICIT ORDERING order of small-steps
semantics according to the graphical, clockwise order of the arena of transitions, then the
model always behaves correctly:〈{t5}, {t2}, {t6},{t3}, {t6}, {t3}, · · ·, {t7}, {t4}〉.

3.7 Priority

At a snapshot of a model, there could exist multiple sets of transitions that can be chosen
non-deterministically to be executed as its small step. Table 10 shows three common ways
for assigning a priority to a transition to avert non-determinism. A set of transitionsT1 has a
higher priority than a set of transitionsT2, if for each pair of transitionst1 ∈ T1 andt2 ∈ T2,
eithert1 has a higher priority thant2 or they are not comparable priority wise.

The HIERARCHICAL option is a set of priority semantics that use the hierarchical struc-
ture of the control states of a model to compare the relative priority of two enabled tran-
sitions. A HIERARCHICAL priority semantics is defined by itsbasis, which is one of the
three values, SOURCE, DESTINATION, ARENA, and itsscheme, which is either PARENT or
CHILD . For example, ARENA-PARENT is a priority semantics that gives a higher priority to
a transition whose arena is the highest in the hierarchy of a composition tree. The EXPLICIT

PRIORITY priority option explicitly assigns priority to the transitions of a model (e.g., by
assigning numbers to transitions and giving a greater number a higher priority [37]). The
NEGATION OF TRIGGERSoption is not an independent way to assign priority, but usesthe
notion of “negation” to assign priorities:t1 can be assigned a higher priority thant2 by
conjoining the negation of the event trigger and guard condition of t2 with the ones oft1.

Exhaustiveness vs. simplicity:The HIERARCHICAL option can be easily understood
by a modeller, but may render many transitions as priority incomparable. The EXPLICIT
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Table 10 Priority semantic options.

Options Definition Characteristics Examples

HIERARCHICAL The source and destination control
states of transitions determine pri-
ority.

(+) Simplicity
(-) Incomplete
prioritization

ARENA-PARENT in
Statemate [19] and
SOURCE-CHILD in
Rhapsody [18]

EXPLICIT

PRIORITY

Each transition is given an explicit,
relative priority. (+) Exhaustive

prioritization
(-) Tedious to use

Used in [37]

NEGATION OF

TRIGGERS

A transition is given higher priority
than another by strengthening the
event trigger and GC of the second
transition such that is not enabled
when the first transition is enabled.

(+) Exhaustive
prioritization
(+) No additional
syntax
(-) Tedious to use

statecharts [42], Esterel
[6], and Argos [33]

PRIORITY option provides great control over specifying the relativepriority of a set of
transitions, but can be tedious to use (e.g., a wrong relative priority for a pair of transitions
can be deduced transitively). In the NEGATION OF TRIGGERSand EXPLICIT PRIORITY

options, it can be difficult to identify the pair of transitions where it is necessary to assign
a relative priority because whether two transitions are both enabled or not in a small step
depends on the source snapshot. But in principle, it is possible to specify a priority scheme
for a model exhaustively.

Combination of priority semantics: It is possible to use more than one priority seman-
tics in the semantics of a BSML, as shown in the feature diagram in Figure5. In such a
BSML, if a pair of transitions are not comparable according to the first priority semantics,
then they are compared according to the second semantics, and so on. By the definition of
enabledness, if the NEGATION OF TRIGGERSis used in a BSML, its semantics overrides
the other priority semantics.

Example 16 In Example5, if we choose theSINGLE concurrency and theARENA-CHILD

priority semantics, then the model always executes〈{t1}〉 as its big step, allowing the call
to go through.

Example 17 In the model in Figure1, t2 is assigned a higher priority thant1 by conjoin-
ing the original event trigger oft1, dial(d), with the negation of the event trigger oft2,
dial(d) ∧ redial, resulting int1 having the event triggerdial(d) ∧ ¬redial. The effect is that
t2 will be chosen when theredial event occurs instead oft1.

Example 18 In Example10, if transitiont6 is given a higher priority thant2 explicitly, then
the choice of theWEAK SYNCHRONOUSEVENT semantic option always yields a correct
behaviour (i.e., the door is not opened when the temperatureis above 40°C). Similarly, in
Example12, if transition t9 is given a higher priority thant7 explicitly, then the choice of
theWEAK SYNCHRONOUSVARIABLE semantic option always yields a correct behaviour.
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3.8 Combo-Step Maximality

The combo-step maximality semantics specifies the extent ofa contiguous segment of a
big step where computation is carried out based on the statuses of events and/or values
of the variables at the beginning of the segment. As specifiedin Figure6, the combo-step
maximality semantics is relevant for a BSML semantics only if at least one of thecombo-
step semantic options, namely, PRESENT IN NEXT COMBO STEP, GC COMBO STEP, or
RHS COMBO STEP, is chosen in the semantics. These options describe how the statuses of
events and values of variables change (or not) within a combostep. For example, if a BSML
uses the PRESENT IN NEXT COMBO STEP and GC COMBO STEP options, then during a
combo step (other than the first combo step of the big step) thestatuses of events depend
on the generated events of the previous combo step, and the values of variables in GC of
transitions depend on the assignments performed in the previous combo step.

Table 11 shows the three semantic options for the combo-step maximality semantic
aspect. These options are similar to the three semantic options for the big-step maximality
semantics, but specify the scope of a combo step, instead of abig step. In the COMBO

SYNTACTIC option, a BSML allows a modeller to designate a basic controlstate of a model
as acombo stablecontrol state. During a combo step, once a transitiont that enters a combo
stable control state is executed, no other transition whosearena overlaps with the arena of
t can be taken during that combo step. In the COMBO TAKE ONE option, once a transition
t is executed during a combo step, no other transition whose arena overlaps with the arena
of t can be executed during that combo step. As such, eachOr control state can contribute
a maximum of one transition to a combo step. The COMBO TAKE MANY option allows a
sequence of small steps to continue executing until there are no more enabled transitions
to be executed. In practice, we are only aware of BSMLs that use the COMBO TAKE ONE

option for the combo step maximality semantics and the TAKE MANY option for the big-
step maximality semantics (e.g., RSML [30] and Statemate [19]). As specified in Figure6,
the COMBO TAKE MANY combo-step maximality semantics cannot be chosen together
with the TAKE ONE big-step maximality semantics, because a combo step cannotinclude
more small steps than its big step. The same advantages and disadvantages as the ones
for the semantic options of the big-step maximality semantic aspect are relevant for the
corresponding semantic options of the combo-step maximality semantic aspect.

Scope of a combo step:In the COMBO SYNTACTIC semantic option, the end of a combo
step can be traced syntactically, which can be helpful for constructing and understanding a
model. The scope of a combo step when the COMBO TAKE ONE or the COMBO TAKE

MANY is chosen is more difficult to determine. For example, if the COMBO TAKE MANY

combo-step maximality semantics, along with the PRESENT IN NEXT COMBO STEP and
GC COMBO STEP semantic options, are chosen, then a combo step of a big step continues
until there are no more transitions that are enabled with respect to the generated events and
the assignments of the previous combo step. In such a semantics, it is far from clear what
the possible combo steps, and thus big steps, of a model are, based on mere review of the
syntax of the model.

Example 19 The model in Figure21 is meant to swap the values of variablesa and b

twice during a big step, maintaining their original values.We choose theCOMBO TAKE

ONE option for the combo step maximality semantics, theTAKE MANY option for the big-
step maximality semantics, theSINGLE concurrency semantics, and the semantics that the
statuses of events and the values of variables are fixed during a combo step (i.e., theRHS
COMBO STEPand thePRESENT INNEXT COMBO STEPsemantic options). Upon receiving
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Table 11 Combo-step maximality semantic options.

Options Definition Characteristics Examples

COMBO SYNTACTIC No two transitions with
overlapping arenas that
enter designated “combo
stable” control states can
be taken in a same
combo step.

(+) Syntactical scope for combo
steps
(+) SequentialOr transitions in a
combo step
(-) Non-terminating combo steps

N/A

COMBO TAKE ONE No two transitions with
overlapping arenas can
be taken in a same
combo step.

(+) Terminating combo steps
(+) Unclear, non-syntactical
scope for combo steps

RSML [30]
and State-
mate [19]

COMBO TAKE MANY No constraint on transi-
tions that can be taken in
a combo step.

(+) SequentialOr transitions in a
combo step
(-) Unclear, non-syntactical scope
for combo steps
(-) Non-terminating combo steps

N/A

the environmental input eventswap twice, the model executes transitionst1 andt2, at which
point the first combo step concludes. The second combo step starts by first considering the
effects of the transitions of the first combo step, i.e., the effect of swapping the values ofa and
b and the effect of generating eventsswap a andswap b, and then executing transitionst3
andt4. At the end of the second combo step the big step concludes andthe values ofa andb
are the same as their values at the beginning of the big step. If the effect of the assignments of
the transitions are not hidden from one another during a combo step, the correct behaviour
cannot be achieved. For example, depending on whethert1 or t2 is executed first, botha
andb are assigned the initial value ofb or a, respectively.11

Example 20 The model in Figure22shows a simple model of a system that controls the op-
eration of a chemical plant.12 The operation of the plant relies on two chemical substances
A andB. There are two processes, shown as two Or control statesProcess 1 andProcess 2,
which can independently increase the amounts of substancesA andB by one unit or two
units, respectively. The two processes may simultaneouslyrequest for an increase; i.e., envi-
ronmental input eventsinc one andinc two might be received at the same big step. Variables
a and b represent the amount of requested increase for substanceA and substanceB, re-
spectively. Environmental output eventstart process(a, b) instructs a physical component
of the plant to increase the amounts of substanceA andB, by amountsa andb, respectively.
Internal eventprocess is meant to instruct theController to increase the amounts of the
substances. Environmental input eventend process signifies that the requested amounts of

11 As pointed out by one of our reviewers, choosing the TAKE MANY big-step maximality semantics,
the MANY concurrency semantics, the PRESENT IN NEXT COMBO STEP event lifeline semantics (or the
PRESENT IN REMAINDER event lifeline semantics), and the RHS SMALL STEP assignment memory pro-
tocol, also yields the correct behaviour. While such an equivalence of behaviours holds for some models, it
does not always hold. For example, if there is a possibility for race conditions (e.g., in Example20) or if it is
important whether a model can reach certain configuration ofcontrol states or not, then it is not possible to
replace the SINGLE concurrency semantics with the MANY concurrency semantics.

12 This example is inspired by the motivating example in [2], where sequence diagrams are used for mod-
elling an aspect of the operation of a nuclear power plant.
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Fig. 21 Swappinga andb twice, using combo steps.

Plant

Wait 2

Controller

Idle Wait

Idle 2Idle 1 Wait 1

t2: end process

Process 1 Process 2
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/a :=a+1; b :=b+1;

t4: end process

/a :=a+2; b :=b+2;
t3: inc two p̂rocess

Fig. 22 Controlling the operation of a chemical plant.

the substances have been successfully increased by the physical component of the plant, at
which point the system can process new requests.

Consider the snapshot where the model resides in its defaultcontrol states,inc one and
inc two are received, anda andb are zero. The correct behaviour is to increase the amount
of A andB by three units. We choose theCOMBO TAKE ONE option for the combo step
maximality semantics, theTAKE ONE option for the big-step maximality semantics, and
the SINGLE concurrency semantics. The only pair of semantic options that yield a correct
behaviour are, thePRESENT INNEXT COMBO STEP for the event lifeline semantics and the
RHS SMALL STEP semantic option for the assignment memory protocol semantics, which
produce the following two correct big steps:〈{t1}, {t3}, {t5}〉 and〈{t3}, {t1}, {t5}〉. If, for
example, we choose thePRESENT INNEXT COMBO STEPevent lifeline semantics together
with theRHS COMBO STEPassignment memory protocol, the same big steps as before are
produced, but the former big step increases the amounts ofA andB by two units only, where
as the latter big step increases the amounts ofA andB by one unit only. If we choose the
PRESENT IN REMAINDER event lifeline semantics together with theRHS SMALL STEP
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assignment memory protocol, which means that we do not need to choose any semantic
option for the combo-step maximality semantic aspect, the additional big step〈{t1}, {t5},
{t3}〉 is possible, which ignores the increase requested byProcess 2.

Example 21 In Example6, we described some possible semantics to make the counter in
Example2 to behave correctly. Another possible semantics is a semantics that subscribes to
the COMBO TAKE ONE combo-step maximality semantics, theTAKE ONE big-step maxi-
mality semantics, theSINGLE concurrency semantics, and thePRESENT IN NEXT COMBO

STEPevent lifeline semantics.

Example 22 Another way to maintain the invariant in Example13 is to choose theCOMBO

TAKE ONE combo-step maximality semantics, theTAKE MANY big-step maximality se-
mantics, and theRHS COMBO STEP assignment memory protocol. The execution of the
first combo step,{t1}, {t3}, results ina = 9 and b = 4, and the execution of the second
combo step,{t2}, {t4}, results ina = 27 and b = 22. The order of the execution of{t1}
and{t3}, and,{t2} and{t4}, do not affect the end result. If we choose theCOMBO TAKE

MANY combo-step maximality semantics, then the invariant wouldbe maintained, but the
big step concludes witha = 21 andb = 16;

3.9 Summary of Semantics and Notations

In our framework, a BSML is described by, first, describing how its syntax can be translated
to our normal-form syntax, and then, enumerating its choiceof semantic options. The syn-
tactic translation to our normal-form syntax is straightforward for most BSMLs, as briefly
discussed in Section2.3. In the light of our semantic deconstruction, the specification of the
semantics of a BSML is also straightforward. Table12shows the specification of the seman-
tics of some of the BSMLs that we have considered throughout the paper. For the sake of
brevity, we have not included theExternal Output Events semantic aspect. Also, we have
merged some aspects (e.g., theEnabledness Memory Protocol for Internal Variables in
GC merged withInternal Variables in RHS semantic aspects).

4 Semantic Side Effects

In this section, we describe theside effectsthat arise when a group of semantic options are
chosen together, and explain ways to avoid them. The choice of a group of semantic options
has a “side effect” when it causes a semantic complication that is not due to the original
design of any of the semantic options. A side effect can sometimes be tolerated because the
benefit of having a set of semantic options in a BSML outweighstheir caused complication.

Complicated event lifeline semantics:To achieve an uncomplicated semantics when choos-
ing the PRESENT IN WHOLE event lifeline semantics, it is recommended to choose the
TAKE ONE big-step maximality semantics also, as done in Argos [33]. The TAKE ONE

semantic option introduces less complication compared to the other big-step maximality
semantics, because the status of an event in a big step can be identified by considering at
most one transition of each of the non-overlapping arenas ofa model. Similarly, it is rec-
ommended to choose the TAKE ONE semantic option, when choosing the STRONG SYN -
CHRONOUSEVENT semantic option for interface events.
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Table 12 Example BSMLs and their semantic options. ([21]: Harel statecharts, [42]: Pnueli and Shalev
statecharts, [30]: RSML, [19]: Statemate, [6]: Esterel, [33]: Argos, [22]: SCR, and [3]: reactive modules.)

Semantic Aspects Semantic Options [21] [42] [30] [19] [6] [33] [22] [3]

Big-Step Maximality
SYNTACTIC !
TAKE ONE ! ! ! ! !
TAKE MANY ! !

Concurrency SINGLE ! ! ! ! !
MANY ! ! !

Small-Step
Consistency

SOURCE/DESTINATION

ORTHOGONAL

ARENA ORTHOGONAL ! ! !
Preemption

NON-PREEMPTIVE ! !
PREEMPTIVE

(Internal) Event
Lifeline

PRESENT INWHOLE ! !
PRESENT INREMAINDER ! !
PRESENT IN NEXT COMBO

STEP

! !
PRESENT IN NEXT SMALL

STEP

PRESENT INSAME

Environmental Input
Events

SYNTACTIC INPUT EVENTS ! ! !
RECEIVED EVENTS AS

ENVIRONMENTAL

! ! !
HYBRID INPUT EVENT

(Interface) Event
Lifeline

STRONG SYNCHRONOUS

EVENT

WEAK SYNCHRONOUS

EVENT

ASYNCHRONOUSEVENT !
(Internal Variables)
Enabledness
Memory Protocol

GC/RHS BIG STEP ! !
GC/RHS COMBO STEP !
GC/RHS SMALL STEP ! ! ! !

(Interface Variables)
Memory Protocol

GC/RHS STRONG

SYNCHRONOUSVARIABLE

!
GC/RHS WEAK

SYNCHRONOUSVARIABLE

GC/RHS ASYNCHRONOUS

VARIABLE

Combo-Step
Maximality

COMBO SYNTACTIC

COMBO TAKE ONE ! !
COMBO TAKE MANY

Order of Small
Steps

NONE ! ! ! ! !
EXPLICIT ORDERING

DATAFLOW ! ! !
Priority

HIERARCHICAL !
EXPLICIT PRIORITY

NEGATION OF TRIGGERS ! ! ! ! ! ! !
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Cyclic evaluation orders: To avoid a “cyclic evaluation order” when using thenew small
operator, as described in Section3.5, a conservative well-formedness criterion can disal-
low small steps whose assignments create cyclic evaluationorders. Such a well-formedness
criteria depends on the choice of the semantic options for the Small-Step Consistency
andPreemption semantic aspects. For example, consider a BSML that subscribes to the
ARENA ORTHOGONALsmall-step consistency semantics and the PREEMPTIVEpreemption
semantics. For such a semantics, a conservative well-formedness condition to avoid a cyclic
evaluation order is to require that, for a pair of orthogonalcontrol statesS1 andS2, if the
arena oft is S1, or a descendent ofS1, andt usesnew small(u) in the RHS of its as-
signmenta1 and assigns a value to variablev in assignmenta2, then there is not′ whose
arena isS2, or a descendent ofS2, and usesnew small(v) in the RHS of its assignment
a′1, together with assigning a value tou in its assignmenta′2.

Ambiguous dataflow: An ambiguity arises for a dataflow order if a variable is prefixed by
thenewoperator but it is assigned values more than once during a bigstep. A sufficient, but
not necessary, condition for an unambiguous DATAFLOW order of small-steps is to require
the TAKE ONE big-step maximality semantics with each variable assignedvalue only by the
transitions that have the same arena, as is done in SCR [22,23] and reactive modules [3].
Similarly, the TAKE ONE semantic option can be chosen together with the GC STRONG

SYNCHRONOUS VARIABLE or the RHS STRONG SYNCHRONOUS VARIABLE semantic
options for interface variables, to avoid ambiguity in obtaining the value of an interface
variable.

Complicated explicit ordering: In the EXPLICIT ORDERING semantic option, when the
small steps of a big step are ordered according to the order ofthe arenas of the transitions
of the big step, being able to take two transitions with the same arena in the same big step
causes complication in defining the semantics. For example,if the TAKE MANY big-step
maximality semantics is chosen, complication arises because a big step may consist of sev-
eral rounds of small steps, some of the small steps belongingto the same arena. To avoid
a complicated semantics, the TAKE ONE big-step maximality semantics could be required
when the EXPLICIT ORDERINGorder of small steps semantics is chosen.

Partial explicit ordering: Frequently, the SINGLE concurrency semantics is chosen with
the EXPLICIT ORDERING order of small-steps semantics when the EXPLICIT ORDERING

ordering permits only one transition to be taken in each small step. However, if the ordering
is partial, or hierarchically-based, then the MANY concurrency semantics can also be used.

Inconsistent preemption and priority semantics:When the PREEMPTIVEpreemption se-
mantics is chosen, the choice of the priority semantics determines whether the interrupt
transition has higher or lower priority than non-interrupttransitions. For example, giving
the highest priority to a transition whose destination control state is the lowest in the com-
position tree, i.e., the choice of the DESTINATION-CHILD semantics, has the effect of giv-
ing interrupt transitiont in Figure 11(b) a higher priority thant′, which is an intuitive,
desired behaviour. Similarly, the ARENA-PARENT priority semantics gives transitiont in
Figure11(a) a higher priority than transitiont′.

Conflicting maximality: The choice of the SYNTACTIC semantic option for the big-step
maximality semantics together with the choice of the COMBO SYNTACTIC semantic option
for the combo-step maximality semantic aspect means that a small step may move a model
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to a snapshot where the model resides in a pair of orthogonal control states, one being a
Stable control state and the other aCombo Stablecontrol state. In such a snapshot, it is
unclear whether the current combo step has concluded, or not. Alternatively, choosing the
TAKE MANY semantic option for the big-step maximality semantic aspect and the COMBO

SYNTACTIC semantic option for the combo-step maximality semantic aspect avoids this
problem.

5 Related Work

We cover a more comprehensive class of BSMLs and range of BSMLsemantics than found
in related work. Relative to previous comparative studies of different subsets of BSMLs (e.g.,
statecharts variants [49,26], Synchronous languages [16], Esterel variants [7,47], and UML
StateMachines [46]), we isolate the essential semantic aspects in a language-independent
manner and in terms of the big step as a whole. Huizing and Gerth [26] compare simple
BSMLs that have only events, covering most of the event lifeline semantic options and the
observability of events among components. In our deconstruction, we are able to describe
these options more concisely and place them in the context ofother semantics aspects for
BSMLs.

By considering a big step as a whole, we have raised the level of abstraction of the
semantic variations compared to our previous work on template semantics [37]. The com-
position operators of template semantics are modelled via our concurrency and consistency,
and event lifeline semantic aspects. For example, theinterleavingand parallel composi-
tion operators correspond to the SINGLE and MANY semantic options, respectively; and
the rendezvouscomposition operator is represented via the PRESENT IN SAME event life-
line semantics and the MANY concurrency semantics. Theinterrupt composition operator
is modelled via the small-step consistency and preemption semantic options. By relating
parts of the behaviour of composition operators to the step semantic aspects, we provide a
foundation for understanding the range of possible composition operators.

6 Conclusion and Future Work

We have presented a novel deconstruction of the semantics ofbig-step modelling languages
into eight high-level, mostly orthogonal semantic aspects. We analyzed the relative advan-
tages and disadvantages of the characteristics of the semantic options of each aspect. The
design/choice of a language involves making tradeoffs between different options. Using our
aspects, options, as well as the taxonomy of the syntactic constructs of BSMLs, represented
conveniently by two feature diagrams and a set of dependencies between their features, our
framework empowers requirements engineers and language designers to make such trade-
offs in an informed way. For example, if averting non-determinism is desirable, semantics
that permit race conditions, unordered execution of small steps, SINGLE concurrency, non-
prioritized transitions, etc. are less suitable choices. SCR [22,23] is an example of a BSML
with simpler semantics than many others because its lack of hierarchical control states means
it does not require the semantic aspects of small-step consistency, preemption, and priority.

Our analysis of the side effects between semantic options allows a requirements engineer
to identify the difficulties that may arise in certain combinations of semantic features. For
example, the semantics in Example15, which avoids the undesired non-determinism of
the SINGLE concurrency semantics, is not found in an existing BSML. However, a user of
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this semantics is warned about the “complicated explicit ordering” side effect described in
Section4.

We have devised a parametric semantic definition schema thatformalizes a large sub-
set of the BSML semantics that arise from our deconstruction, while preserving its struc-
ture [12]. We believe our work forms a basis for identifying and formally proving seman-
tic properties of a set of semantic options when considered together, as opposed to when
considered in isolation, as we described in this paper. Suchproperties would provide the
requirements engineer with a better sense of what are “good”or “risky” combinations of
semantic choices to produce a simple, elegant model for a system under study.

In the future, we plan to create tool suites based on the formal semantics of BSMLs to
support the analysis of BSML models. We believe that our workcan be used to study how
semantic choices affect the simplicity and performance of analysis tools.
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