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Abstract With the popularity of model-driven methodologies, and dfweindance of mod-
elling languages, a major question for a requirements eegiis: which language is suitable
for modelling a system under study? We address this quefstiona semantic point-of-view
for big-step modelling languages (BSMLBESMLSs are a class of popular behavioural mod-
elling languages in which a model can respond to an input bging multiple transitions,
possibly concurrently. We deconstruct the operationalesgits of a large class of BSMLs
into eight high-level, mostly orthogonal semantic aspeats! their common semantic op-
tions. We analyze the characteristics of each semantioropii/e use feature diagrams to
present the design space of BSML semantics that arises foomlezonstruction, as well as
to taxonomize the syntactic features of BSMLs that exhiihantic variations. We enumer-
ate the dependencies between syntactic and semanticgfeadiie also discuss the effects of
certain combinations of semantic options used togetherB8ML semantics. Our goal is
to empower a requirements engineer to compare and choogpepeate BSML from the
plethora of existing BSMLs, or to articulate the semantetdiees of a new desired BSML
when such a BSML does not exist.

1 Introduction

With the popularity of model-driven methodologies and theradance of modelling lan-
guages (and domain-specific languages), a major questican fequirements engineer is:
which language is suitable for modelling a system underys8S)? We introduce the term
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big-step modelling languages (BSMlts)characterize a class of popular behavioural mod-
elling languages in which a model can respond to an envirateh@put by executing hig
step which consists of a sequencesrhall stepseach of which may contain multiple, pos-
sibly concurrent, transitions. Numerous BSMLs have begndiniced (e.g., statecharfs/]

and its variants49], synchronous languages${], and UML StateMachines3[]), many of
which have similar syntaxes but subtly different and coogikd semantics.

The choice of a BSML for an SUS depends on many factors, ifrajuthe domain
of the SUS, the expertise of the requirements engineer iass df notations, etc. In this
paper, we present the semantic criteria that a requirenegigisieer should consider when
choosing a BSML for modelling an SUS. One can write equiviatemaviours in different
semantics by modifying a model (all BSMLs can be reduced éir timeaning in primitive
modelling languages such as Kripke structures, Biichimaata, labelled transition systems,
etc.). However, it can be significantly more convenient.(axpre succinct, more under-
standable) to model some behaviours in one semantics tlarother. We envision a world
where the choice of the features of a language, includinggitsantic features, are made on
a model-by-model basis.

Our first contribution is a novel deconstruction of the ogieral semantics of a large
class of BSMLs into eight high-level, mostly orthogonsgmantic aspectand an enumer-
ation of the commorsemantic option$ound in existing BSMLs for each of these aspects.
While it is impossible to claim that our options are complékey cover a wide range of
existing BSMLs, as well as new semantics that arise throbgtehumeration of semantic
options. Our second contribution is the identification & tharacteristics of each semantic
option to provide rationale for a requirements engineerimose one option over another.
Our third contribution is a set of carefully constructed rexges that succinctly illustrate
many of the differences between the semantic options.

Our deconstruction arises from surveying existing BSMleswad from the perspective
of the big step as a whole. We separate the operation of adygirsio orthogonal aspects
where existing languages have shown variations. We befi@se eight aspects capture the
essential semantic differences in most existing BSMLs,thattby empower requirements
engineers to compare and choose the most suitable BSML f&Ush Choosing a set of
semantic options involves making trade-offs among comatdms such as simplicity, de-
terminism, causality, orderedness, modularity, etc. Wisém our work to be used in three
ways: (i) as a semantic catalog, to compare the semantiossiing BSMLs and choose an
appropriate BSML, (ii) as a semantic scale, to assess thargenproperties of a BSML,
and (iii) as a semantic menu, to help design a BSML from shratc

Our deconstruction is more concise and systematic thangugwcomparative studies
of different subsets of BSMLs (e.g.7,[L6,26,46,47,49)) because it recognizes a big step
as a whole rather than only considering its constituensttems operationally. In our pre-
vious work on template semantics/], we created a formal framework for comparing the
semantics of many BSMLs by instantiating a template of 22paters and choosing a set
of composition operators that together define a small sthp.€ight semantic aspects we
present here capture cross-cutting dependencies fouhe ieimnplate parameters, creating
a deconstruction that defines a big step directly. This higghe! of abstraction isolates the
semantic differences between languages more clearly.

Compared to our previous work presenting this deconstmgti/], here, (i) we address
several additional semantic concerns, namely, extermaite\and variables, interface events
and variables, and combo-step maximality; (ii) we presemibge systematic treatment of
the notion of a combo step; (iii) we provide a taxonomy forsliatactic features of BSMLs
that exhibit semantic variations; (iv) we use two featur@gdams to present our semantic



deconstruction and the taxonomy of the syntax of BSMLs; (&)present the dependencies
between the features of the two feature diagrams; (vi) werapany our presentation of

the semantic aspects with more examples; and lastly, (@ipxtend our discussion of the

dependencies between semantic options when used togeta&SML.

The remainder of the paper is organized as follows. In Se&jeve describe the com-
mon syntax and common basic semantics that we use througi®piaper. In Sectiof,
we present the deconstruction of the semantics of BSMLsdight semantic aspects and
their options, together with their syntactic requiremei& describe separately each se-
mantic option and its characteristics, accompanied by tfingeexamples that exhibit the
differences between the semantic options. In Secjove describe a few subtle side effects
that result when certain semantic options are used togetleeBSML. Sectiorb compares
our work with the related work, including our previous work template semanticST].
Finally, in Sections, we conclude our paper and discuss future work.

2 Normal-Form Syntax and Basic Semantics

In this section, we present the terminology that we use tittout the paper. In Sectichl,

we present our normal-form syntax and the possible syotéetitures that can be chosen
when designing a BSML. In Sectidh2, we describe the common basic semantics, which
can be refined by semantic options. In Sectiod) we describe how the syntax of BSMLs
can be represented in our normal-form syntax. We adopt a yemastic definitions from
Pnueli and Shalev's workip].

2.1 Syntax

There is a plethora of BSMLs, including those with graphmaltax (e.g., statecharts vari-
ants f19], Argos [33]), those with textual syntax (e.g., reactive modulég Esterel []),
and those with tabular/equational syntax (e.g., SERZ3]). As is usual when studying a
class of related notations, we use a syntactic “normal faitmat is sufficiently expressive
to represent the syntax of other notatiofis][ Our normal-form syntax is theomposed hi-
erarchical transition system (CHTSyntax 37]. A modelis a CHTS, and consists of: (i) a
composition treevhose nodes are distinoontrol statesand (ii) a set ofransitionsbetween
the control states.

Control States: A control state (e.g.Dial Digits in Figurel) is a named artifact that a
modeller uses to represent a noteworthy moment in the éreaifta model. Such a moment
is an abstraction that groups together the past behavioarsiéting of inputs received by
the model and the model’s past reactions to these inputshéva a common set of future
behaviours. By using a control state, a modeller can desduture behaviour in terms of
the current control state and the current environmentaltgp

A control state has &pe which is eitheBasic Or, or And A leaf node of a composition
tree is aBasiccontrol state. ArOr or anAnd control state isierarchicaland hashildren,
each of which can be of any type. For example, in Figlureontrol stateDialing is an
And control state and has tw@r control statesDialer and Redialer. We use the relations
parent ancestor child, anddescendantvith their usual meanings. In Figufie control state
DialDigits is a child of Dialer and a descendant @d:aling. Two control statesverlap
if they are the same or one is an ancestor of the other. In &ijucontrol statesDialer
and Redialler are not overlapping. Thieast common ancestaof two control states is the
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Fig. 1 Dialer/Redialer model.

lowest control state (closest to the leaves of the compositiee) in the hierarchy of the
composition tree that is an ancestor of both. In Figlyéhe least common ancestor of
Dial Digits and Redial Digits is Dialing. Two control states arerthogonalif neither is
an ancestor of the other and their least common ancesto®ie@econtrol state. In Figuré,
DialDigits and Redial Digits are orthogonal. ArOr control state has default control
state, which is its child and is identified by an incoming arithat has no source control
state. In Figurel, WaitForDial is the default control state dDialer. The arenaof a
transitiont is the lowestOr control state in the hierarchy of the composition tree thkat i
the ancestor of both the source and destination contra@sstdtthe transition. In Figurg,
the arena of transitiony is theOr control stateDialer. A model may have nénd control
states. The root of the composition tree must b®anontrol state so that the arena of every
transition is guaranteed to exist, but otherwise may conéisnly Basiccontrol states.

Transitions: A transition (e.g.¢; in Figurel) has both sourceanddestinationcontrol
state, and consists of four optional parts: (i)eaent trigger which is a conjunction of event
literals, some of which may be negated (a negated event Ipeafixed by a ="); (i) a
guard condition (GC)enclosed by [']"), which is a boolean expression over the set of
variables of the model; (iii) a sequenceasisignmentgprefixed by a 7”); and (iv) a set of
generated even{prefixed by a “”).

A generated event may have a parameter that can be modelb=stbgiating a variable
with it. An assignment consists of a left-hand side varigbléS), and a right-hand side ex-
pression (RHS). The types of variables are not relevant. 88frae all variable expressions
and assignments of models are well-typed. Variables andtgase global; local variables
and scoped events can be modelled by a renaming that makegtbieally unique.

Figure 2 is a feature diagram2f] that represents the combination of syntactic con-
structs of BSMLs that are of interest for our semantic aspétich feature in the diagram is
labelled with the sections that describe its role and seiggarA leaf node of the feature di-
agram represents a primitive syntactic feature of BSMLs example, théNegated Events
node is the syntactic feature that allows the negation ohternal event to be used in the
event trigger of a transition. A non-leaf node representgraiastic feature that has addi-
tional syntactic sub-features in its children nodes. F@ngxe, theEvent Triggers node
is the syntactic feature that has syntactic sub-featanegonmental Input Events, Inter-
face Events andNegated EventsIn the feature diagram in Figuiz we use only “and”
branches for sub-features of a feature: if a feature is ehaken all of its child sub-features
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are also chosen, except for the sub-features that are dedni@ca small circle, which are
“optional” sub-features. An optional feature, as opposea tmandatory” feature, need not
be chosen if its parent feature is chosen. All of the featuréke diagram in Figur are
optional features. For example, tBgent Triggers syntactic feature has three sub-features,
all of which are optional sub-features.

The syntax of a BSML must have a notion of transition to spetiie behaviour of a
system, but all other syntactic features in the featurerdiagof Figure2 are optional. In
practice, the syntax of most useful BSMLs support at leashesvor variables.

2.2 Common Basic Semantics

Initially, a model resides in the default control state afteaf itsOr control states, no events
are present, and its variables have their initial values. dprerational semantics of a BSML
describes how a model reacts to emvironmental inpuvia abig step An environmental
input is a set of events and variable assignments that aeéveecfrom the environment.
Figure 3 depicts a big stefi’, which is a reaction of a model to environmental inpuiA
big step is an alternating sequencesafall stepsandsnapshotswhere a small step is the
execution of a set of transitions;6), and a snapshot is a tuple that stores informatidhe
Ty's (1 < i < n) are small steps df’, andsp, sp’, andsp;’s (1 < i < n) are its snapshots.
Throughout the paper, we often represent a big step as thersegof its small steps; e.@.,

is represented &g, Ts, - -+ ,Tn). Some BSMLs, such as RSMB(] and Statematelp)],
introduce an intermediate grouping of a sequence of smgplsstwhich we call @ombo
step The small steps of a combo step hide some of their effeds, the effect of their
assignments, from one another. Secti8ris 3.4, and3.8, describe when combo steps are
useful.

Snapshots:A snapshot is a tuple that consists of at least: @pafiguration which is a
set of control states; (ii) @ariable evaluationwhich is a set ofvariable name, valygairs;
and (iii) a set ofevents Each of a big step, a small step, or a combo step t=mieceand
destinationsnapshot (e.gsp andsp’ are the source and destination snapshotg)of

Enablednessin each small step, a set ehabledtransitions is chosen to be executed.
A transition is enabled if its event trigger and guard cdoditare satisfied, and its source

1 Big steps and small steps are often called macro steps amd stéps, respectively. We adopt new terms
to avoid association with the fixed semantics of the langsidigat use those terms. The big-step/small-step
terminology has been used in the study of the operationadsges of programming languages in a similar
spirit as we use them heré(].



control state is in the source configuration of the small.different semantic options use
different snapshots of a big step to define enabledness.

Execution: The effects of the execution of the transitions of a smap steate its des-
tination snapshot. When a transition is executed, it le@gesource control state (and its
descendants), and enters a destination control state {auo@éscendants). When entering
an Or control state, a transition enters its default controlestabhd when entering atnd
control state, it enters all of its children. Thus, if the sxmu(destination) control state of a
transition is anAnd control state, the execution of the transition includesirgi(entering)
the children of the source (destination) control state.

In a few, non-common cases, transition execution can be meoéved; e.g., when the
least common ancestor of the source and destination catéials of a transition is aknd
control state. A discussion of these cases is included itideg.2.

The semantics of event generation and variable assignrifeartltetween BSMLs. The
execution of a small step stomic the variable assignments and event generation of one
transition cannot be seen by another transition (excephf®fPRESENT IN SAME” event
lifeline option [cf., Section3.3]). Because of atomicity, a sequence of assignments on a
transition can be converted to a set of assignmeiisifl].

Environmental inputs: When choosing a BSML for modelling an SUS, the domain of
the SUS must satisfy the assumptions of the BSML regardiagrhdel’s ability to take
multiple transitions in response to an environmental irgnd not miss other inputs. There
are three types of assumptions:

— Fast computationThis assumption, which is usually referred to as the “syoiah hy-
pothesis” or the “zero-time assumptior®, [L6], postulates that the system is fast enough,
and thus never misses an input. The domain of systems thahedelled using this
paradigm is called “reactive systems; L6, 20]. A reactive system is usually a mission-
critical system that is meant to react to environmental igju a timely manner, at the
rate produced by the environment; e.g., the controlleresystf a nuclear reactor. No
environmental inputs are missed.

— Helpful environment This assumption postulates that the environment is helpful
issuing an input only when the system is read§][ The domain of systems that are
modelled using this paradigm is called “interactive systefhe]. An interactive system
is different from a reactive system in that the rate of envinental inputs is dictated by
the system, rather than by the environment. An example ofit@nactive system is an
automated banking machine, which interacts with its emvitent (i.e., a customer) at
its own rate when it is ready, rather than at the rate the oustaovould like to provide
inputs for it. An environmental input might be missed by thistem when the system is
busy processing a previous environmental input.

— Asynchronous communicatiofhis assumption postulates that the system has a buffer-
ing mechanism to store the environmental inputs, and thusrmaisses an environmen-
tal input.

In this paper, we consider only the BSMLs with the first twoussptions, which are
mutually exclusive with the third one. The BSMLs that adhieréhe first two assumptions
share many semantic options. As such, sometimes it is dificil unnecessary to label a
BSML conclusively as following one or the other assumption.

2 We have adopted the term “helpful environment” from a similation in Interface Automatgil1].



2.3 Representing BSMLs in the Normal-Form Syntax

It is straightforward to represent the syntax of many BSMLsur normal-form syntax. In
our previous work §7], we described the mapping of the syntax of many BSMLs to the
CHTS syntax. In this section, we describe a few, less obyisystactic representations in
our normal-form syntax.

Control states: A BSML may not include the notion of control states. If a mdslel
reaction to an environmental input is always independeritsgbast behaviours, then the
notion of control state is not useful for the model. One wayepresent the syntax of a
BSML that does not have control states in our normal-formtasytis to create a single
control state that serves as the source and destinatiorotetdtes of all transitions. The
notion of the hierarchy of control states might still be wsé&f such a BSML for specifying
priority between transitions (cf., Secti@n/ for priority semantics).

A BSML with a textual syntax without explicit control statesich as Esteref], realizes
a line of a program as a control state. For example, in Eqtéiednexi t statement within
a parallel command of a model moves the flow of control fronhimithe parallel command
to the next command outside the scope of the parallel commEma parallel command
and the command after it can be conceptually consideredrasotstates with the parallel
command being aAnd control state. Thexi t statement can be considered as a transition
that connects the two control states.

SCR 2,23 is a BSML that uses a tabular format. The notions of “modes! &ran-
sitions between modes” in its syntax can be representededydtions of control states and
transitions between control states, respectively.

Transitions: In our syntax for transitions, we do not include event triggeith dis-
junctions, because an event trigger that has disjuncts eaplii into multiple transitions,
each with only one of the disjuncts of the original eventgegand exactly the same other
elements as the original; such a transformation yields aefrtbdt is semantically the same
as the original model[”].

Transitions with multiple-source and/or multiple-deation can be split into multiple
single-source, single-destination transitions. Howewerwould need to extend the seman-
tic options for the concurrency and consistency aspectdati®3.2) and the hierarchical-
priority aspect (in Sectiof.7) to accommodate the execution semantics of a group of transi
tions that represent a single multiple-source and/or pleHilestination transition. We defer
the treatment of the semantics of multiple-source and/dtipierdestination transitions to
our future work.

3 Semantic Aspects

We deconstruct the operation of a big step into the stagesided in Figure4. This sys-
tematic deconstruction is based on: (i) conceptual segplignin the process of creating a
small step (partly based on the syntactic elements of theefjodii) orthogonal concerns
in the operation of a big step, and (iii) semantic variati@mfs in existing BSMLs. Each
stage of the diagram is associated with one ofsemantic aspecind is labelled with the
corresponding section of the paper that describes it. A sBonaspect may be decomposed
into some semantic sub-aspects. A semantic aspect or pebtanay have a number of
semantic optionseach of which is a semantic choice for carrying out a stage.

There are eight semantic aspects, as shown by the featgrawlian Figures. Semantic
aspects are represented by shaded boxes an8ahg Serif font, and semantic options
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are represented by clear boxes and tmaS. CAp font. An arced branch in the diagram
represents an “exclusive or”: if a feature is chosen, theatiy one of its sub-features is
chosen. For example, if tHBig-Step Maximality semantic aspect is chosen, then exactly
one of its options, 8NTACTIC, TAKE ONE, or TAKE MANY should be chosen. For the
sake of brevity, we group a set of recurring semantic optimnsevent-related semantic
sub-aspects as “Event Options”, and reference them vidathéd in the diagram.

Next, we briefly describe the role of each semantic asped BitrStep Maximality
semantic aspect specifies when a big step ends, at which @aietv big step starts by
sensing new environmental inputs. TBembo-Step Maximality semantic aspect specifies
when a combo step ends. The source snapshot at the begiriErgpmbo step reflects the
effects of the execution of the small steps of the previoushmstep. Théevent Lifeline
semantic aspect specifies how far within a big step a gembesnt can be sensed to trigger
a transition. We consider separate sub-aspects for thensiesafinternal eventswhich are
not meant to be observed by the environment of a magégrnal eventswhich are used
to communicate with the environment, aimderface eventswhich are used by a model
to specify communications among its differesimponentsThe Enabledness Memory
Protocol semantic aspect specifies the snapshot from which the valwesiables are read
to enable the guard condition of a transition. TOrler of Small Steps semantic aspect
describes options for the order of transitions that exeuwiitiein a big step. From the set
of transitions enabled by events, variables, and ordermgtcaints, th&€Concurrency and
Consistency semantic aspect determines the set of potential small:diegisit specifies
whether more than one transition can be taken in a small atepsecond, if more than one
transition can be taken, it specifies the consistency @iter including multiple transitions
in a small step. Th@riority semantic aspect chooses a small step from the set of pdtentia
small steps. ThéAssignment Memory Protocol semantic aspect specifies the snapshot
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1. Events< Event Lifeline
2. (Interface Events < Generated Interface Event$ A
((Interface Events A Generated Interface Event$ < Interface Events)
3. Environmental Input Events < SYNTACTIC INPUT EVENTS
4. Environmental Output Events < SYNTACTIC OUTPUT EVENTS
5. (Negated Eventsv Negated Interface Eventsv Negated External Event3 <
NEGATION OF TRIGGERS
6. Variable Conditions < Enabledness Memory Protocol
7. Variable Assignments< Assignment Memory Protocol
8. Interface Variables in GC <> Interface Variables in GC
9. new < DATAFLOW
10. new=- (GC BIG STEPV GC SVALL STEPV RHS BIG STEPV RHS SVALL STEP)
11. new.small = (GC SVMALL STEPV RHS SMALL STEP)
12. cur = (GC BIG STEPV RHS BIG STEP)
13. pre = (GC SVALL STEPV RHS SVALL STEP)
14. Interface Variables in RHS < Interface Variables in RHS
15. HIERARCHICAL = Hierarchical
16. And < Concurrency and Consistency
17. Stable< SYNTACTIC
18. Combo Stable< CoMBO SYNTACTIC
19. Combo-Step Maximality <
(PRESENT INNEXT COMBO STEPV GC ComBO STEPV RHS COMBO STEP)
20. ComBO TAKE MANY = (SYNTACTIC V TAKE MANY)
21. PRESENTINSAME = MANY

Fig. 6 Dependencies between syntactic and semantic featBekl: (syntactic featuresSans Sarif: se-
mantic aspects, andvB\LL CAP: semantic options.)

from which the value of a variable in the right-hand side ohasignment is read. Similar to
events, we distinguish between the semantidsitefrnal variables external variablesand
interface variables

A BSML semantics must subscribe tdB#g-step Maximality semantics, as shown by
the corresponding mandatory feature in the diagram in Eigulhe other aspects are op-
tional and depend on the syntactic features included in 8B A BSML semantics might
have more than one priority semantic option, which togeto@stitute its priority seman-
tics (cf., SectiorB.7).

Dependencies between Featuréssemantic aspect or a semantic option might be relevant
for the semantics of a BSML only if a certain syntactic comstiis allowed in the BSML.
Figure6 enumerates the dependencies between the syntactic andteefeatures. To de-
scribe these dependencies, we use the names of syntatticefen Figure2 and the names

of semantic aspects and options in Fighs propositions, which indicate the choice of the
feature in its corresponding feature diagram. We use steridgical operators to describe
the dependencies. The = ¢” operator is logical implication: ip is true theng must be
true. The p < ¢” operator is logical equivalence: eithgrandq are both true, or both are
false. The b v ¢” operator is logical or: eithep, ¢, or both are true. Thep*A ¢” operator is
logical and: bothp andq are true.

The last three dependencies in FigG@re between semantic features, as opposed to be-
tween syntactic and semantic features. These dependevilties explained in the sections
on the semantic aspects.

In the feature diagram in Figufe a semantic (sub-)aspect, or its parent, is labelled with
the section in which it is described. We have chosen to otdeset sections in a manner that
minimizes the required forward referencing to other semardspects (although some for-
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ward referencing cannot be avoided). In each section, werguine the semantic options
for each aspect in a table that includes: a brief descripsfosach semantic option, a list
of its characteristics, and a list of representative BSMirsefach option. We identify each
characteristic as a relative advantage or disadvantagefied by a “+” or “-”, respectively,
based on our understanding of the conventional wisdom srctfaracteristic. Such wisdom
may not always be appropriate for a model depending on theuoofithe SUS, the prefer-
ence of the modeller, etc. These options cover the vargfimmd in most existing BSMLs.
As in Figure5, we use the BALL CAP font to express the names of semantic options.
Throughout the section, we present many examples that aaptritedemonstrate the differ-
ences between semantic options (but not to endorse one mvtrea). The model snippets
in our examples are not complete. Finally in Sect®f, we present a table summarizing
the semantic options chosen by a number of BSMLs.

3.1 Big-Step Maximality

The big-step maximality semantics of a BSML specifies whensiquence of small steps
of a big step concludes. Tabldists the three possible semantic options. In thev8ACTIC
option, a BSML allows a modeller to designate syntacticalbasic control state of a model
as astablecontrol state. During a big step, once a transititimat enters a stable control state
is executed, no other transition whose arena overlaps hétltena of can be executed. In
the TAKE ONE option, once a transitionis executed during a big step, no other transition
whose arena overlaps with the arena a@fin be executed. As such, ed@h control state
can contribute a maximum of one transition to a big step.lj,atste TAKE MANY option
allows a sequence of small steps to continue until there @mare enabled transitions to
be executed.

Scope of a big stepin the TAKE ONE and the RKE MANY options, the destination
snapshot of a big step is not obvious, which can be comptidairea modeller. In the 8N -
TACTIC option, the end of a big step can be traced syntacticallychivban be helpful for
constructing and understanding a model.

Sequential transitions vs. non-terminating big stepsin the SrNTACTIC and TAKE
MANY options, it is possible to specify a computation as a big stapconsists of multiple
sequential transitions within &dr control state. But, in these two semantics, it is also pos-
sible for a big step to never terminate because the execotitire big step never reaches a
snapshot in which there are no more transitions to be exgclmtéhe SYNTACTIC maximal-
ity semantics, additionally, a big step may never termihgieause the model never reaches
a syntactically designated stable control state. Some BSMth the SYNTACTIC seman-
tics require the non-stable control states of a model to helge” transitions so that a big
step can always reach a stable configuration (elg,3f]). In the TAKE ONE semantics, a
sequence of transitions in &r control state cannot be included in a big step, but a big step
always terminates.

Stable control states can be used to model the semantice platise command in
Esterel [,47]. During a big step, once all non-overlapping control staté the model’s
configuration have executed thause command, the big step ends. As such, ifplaeise
command is executed outside of a parallel command, thenighstép terminates. But if
the pause command is executed inside a branch of a parallel commaad,ttie big step
terminates when every branch of the parallel command hasiteéthgpause command.
Stable control states can also be used to model the semahtmsmpound transitions” in
Rhapsody 18] and UML StateMachines3[]: the “pseudo states” of a model are modelled

12



Table 1 Big-step maximality semantic options.

| Options | Definition | Characteristics | Examples |

SYNTACTIC No two transitions ) Esterel ] (pause com-
with overlapping *) S_yntactlcal SCope mand), Rhapsody 1f] and
arenas that ente for big steps_ UML StateMachines 3¢ “run
designated  “stable” *) ‘S_equentlal o to completion”

control states can be ransitions

taken in the same big (-) Non-terminating
step. big steps
TAKE ONE No two transitions 4 Terminati bi statecharts17,21,47], reactive
with overlapping (+) Terminating big modules B], and Argos B3]
arenas can be taken if stepsU |
the same big step. ©) nciear,  non-
syntactical scope for
big steps
TAKE MANY Small steps continug Statemate 9] and RSML [30]

(+) Sequential Or
transitions
() Unclear, non-
syntactical scope for
big steps
(-) Non-terminating
big steps

until there are no moreg
enabled transitions.

t1: dial(d)[c < 10]
/c++; Tout(d)

Fig. 7 Dialer system.

as non-stable control states, and “states” are modellethhe sontrol states. Some of the
BSMLs that support theAKE ONE semantics, such as reactive modulgsahd Argos 33],
are influenced by the principles of synchronous hardwarectwassumes that, during a
big step, a non-concurrent part of a model can take only @mesition (equivalently, each
hardware component reacts once during a clock tick). TReETMANY semantic option
is usually used by the BSMLs that support the notion of contbp ée.g., Statematée. ]
and RSML B0]). The Statemate tool suite can be configured to use eitleeTARKE ONE
semantic option, whose big steps are referred to as “stepshie TAKE MANY semantic
option together with combo steps, whose big steps are eef¢oras “super steps’1{].

Example 1 The model in Figure’ collects a dialed digit of a phone device (environmental
input eventdial(d)) and transmits the dialed digit to the IP network via generated event
out(d). Variablec allows a maximum of 10 digits to be collected, at which pdietdentral

IP system would connect the caller to the dialed callee (waatomodel the connection
functionality of the system). The-t+” operator denotes increment by one.

Consider a semantics that if eveiitl(d) is received from the environment, it persists
until the end of the big step. Also, consider the snapshotevhés zero anddial(d) is
received from the environment. If tiaKe MANY big-step semantics is chosen, then tran-
sition t1 is executed 10 times in succession, sending the same digin&®e. If theTAKE
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Fig. 8 A two-bit counter.

ONE big-step maximality semantics is chosen, or 8YyaiTACTIC semantics is chosen and
control stateD is designated as stable, then the model behaves correctly.

Example 2 The model in Figures is for a two-bit counte?. Control statesBit; and Bito
model the least and most significant bits of the counter.aetdgely. Each time the environ-
mental input eventk,, which represents a clock tick, is received, the countereiments by
one. Consider a semantics where environmental inputsgig¢tsoughout the big step. After
an even number of tickBit; sends eventk, thereby instruct®it, to toggle its status. Af-
ter counting four clock ticks, th€ounter generates théone event. Consider the snapshot
where the model resides in control stai&s;; andBite; and a semantics where each small
step comprises the execution of exactly one transitiohelTake ONE big-step semantics
is chosen, then the model behaves correctly. Thetfigsinput event produces the big step
({t1}), the secondk, input event produces the big stéfxo}, {ts3}), the third tkg input
event again produces the big stép; }), and lastly, the fourthk, input event produces the
big step({t2}, {t4}), which generates evedbne. If the TAKE MANY big-step semantics
is chosen, then the model behaves incorrectly by creatimgt@oninating big steps; for
example, upon receiving the firsty input event, the model can engage in the following
non-terminating big stepi{t1}, {t2}, {t1}, {t2}, - ).

3.2 Concurrency and Consistency

BSMLs vary in how the enabled transitions of a model execogether in a small step.

Table 2 lists the three concurrency and consistency semantic spiets that specify: (i)

concurrency: whether more than one transition can be takensimall step, and if so, (ii)

small-step consistency: which transitions can be takeethay, considering the composition
tree of a model, and (iii) preemption: whether the executibone transition in a small step
canpreemptthe execution of another transition or not.

3.2.1 Concurrency

3 This example is adopted fromJ], where a more elaborate version of it is used as the runniagple
of the paper.

14



Table 2 Concurrency and consistency semantic options.

| Options | Definition | Characteristics | Examples |
Concurrency
SINGLE A small step consists 0 1) Simplicit statecharts 17,21,
the execution of exactly| (+) Simplicity 42], Stateflow P,

(-) Non-determinism and reactive mod-

ules 3]

Argos [33] and Es-
(+) Low chance for ter?el [G]P ]

non-determinism
(-) Race conditions

one transition.

MANY A small step may consis
of the execution of more|
than one transition.

Small-Step Consistency

ARENA ORTHOGONAL | The arenas of two dis ) simplici Argos [33] and Es-
tinct transitions of a ( )H!mhp ICAty . terel [6]
small step are orthogo (-) High c ance for
nal. non-determinism

SOURCEDESTINATION | The source  control oL h ¢ N/A
ORTHOGONAL states and destination (*) dOV;’ chance or
control states of two| NoN-aeterminism

distinct transitions of a| () Complex
small step are pairwise
orthogonal.
Preemption

NON-PREEMPTIVE Two transitions that oneg B Argos [33], and se-
is an “interrupt for” an- (+.) Sueport for last mantics ofexi t and
other can be taken in @ WiS€S" | {1ap statements in
small step. (-) Counterintuitive Esterel ]

flow of control
PREEMPTIVE Two transitions that ong N/A

(+) Simple flow of
control

(-) No support for
“last wishes”

is an “interrupt for” an-
other cannot be taken in
a small step.

There is a dichotomy in hardware and software about how toeirthé execution of a
systemsingle-transitionvs. many-transitior[ 35,43,45,4€]. Similarly, in BSMLSs, there are
two options: (i) a small step can execute only one transitiasmall step (the B8GLE op-
tion), and (ii) all enabled transitions that can be takeretbgr are taken in a small step (the
MANY option). The SNGLE option is simple because it does not have to deal with the com-
plexities of executing multiple transitions (e.g., racaditions), but it can cause undesired
non-determinism because two enabled transitions can exacdifferent orders.

Race conditions: A model has aace conditionwhen more than one transition in a
small step assign values to a variable. Typically, one ofabgignments is chosen non-
deterministically §7], but there are other options .

Example 3 Figure 9 shows the model for describing the behaviour of a simpldi¢raght
system at an intersectidnThe model consists of And control stafeafficLight, which
itself consists of two Or control states: th&S control state controls the traffic in the
north-south direction and thEW control state controls the traffic in the east-west direc-

4 This example is adopted from ].
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Traf ficLight

North—South
™~

t1: end
NS_Green

NS_Yellow

t2: change

FEast—West
™
ta: change
EW_Red EW _Green
te: change ts: end

EW_.Y ellow

Fig. 9 Traffic light system.

tion. We assume that the environment provides the sequéecwimonmental input events:
end, change, end, changg, - - -, in a timely manner according to the schedule of the traffic
light. Environmental input evenind designates the end of green light for a direction by
changing its green lights to yellow. Environmental inpugei¢hange changes the direction
of traffic by switching the red lights to green lights, and stedlow lights to red lights. The
system is initialized so that the lights for north-southediion are green, and the lights
for east-west direction are red. Consider the snapshot a/liee model resides in control
statesEW_Red and NS_Yellow, and environmental input evenliange is received. If we
choose theTAKE ONE big-step maximality semantics and tSeNGLE concurrency se-
mantics, then the model can choose to execute the big stejstog of the sequence of
transitions({t2}, {t4}), or the sequence of transitior{$t4 }, {t2}), non-deterministically.
However, executing the latter sequence of transitions fiertime model to arrive at snap-
shotEW _Green and NS_Yellow, which is not a desirable behaviour. If tiANY concur-
rency semantics is chosen, then model executes big{step, }), arriving at control states
EW _Green andNS_Red.

Next, we consider two semantic sub-aspects that specifgahef transitions that can
be taken together in a small step when theMt semantics is chosen. Tlenall-step con-
sistencysub-aspect deals with transitions that do not preempt et " hepreemption
sub-aspect deals with transitions that do preempt eachh dthe two sub-aspects deal with
disjoint sets of transitions of a model.

3.2.2 Small-Step Consistency

In the SOURCE/DESTINATION ORTHOGONAL semantic option, transitions whose source
control states and destination control states are paimvisegonal can be taken together in
a small step. The ARENA ORTHOGONAL option is more restrictive in that two transitions
can be included in the same small step only if their arenasriinegonal (where the arena
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Fig. 10 The revised two-bit counter.

of a transition is the lowe$Dr control state in the hierarchy of the composition tree that i
the ancestor of the source and destination control statdsedfansition). In comparison,
the ARENA ORTHOGONAL option is simpler than the GQURCE/DESTINATION ORTHOGO-
NAL option, but it can introduce undesired non-determinismdtytaking all of the enabled
transitions that the SURCE/DESTINATION ORTHOGONAL option takes. The RENA OR-
THOGONAL semantic option and theaKe ONE big-step maximality semantics are concep-
tually analogous: the former semantic option disallows traasitions whose arenas are the
same or ancestrally related to be included in a small stejpe wie latter disallows the two
transitions to be included in a big step.

Example 4 The model in FigurelOis similar to the model in Exampl& but has an extra
Or control state that specifies whether the counter is in tteegss of counting, or it has
already counted four ticks and should be reset. Considerstiashot where the model
resides in control state$3ito, Bitoo, and Counting, and the fourthtkg event is received.
We choose th®ANY concurrency semantics. Also, we chooseRRESENT INSAME event
communication mechanism (explained in Secsid), in which a generated event can enable
a transition in the same small step. If we chooseAlRENA ORTHOGONAL semantics, then
only {t2} can be taken, but ndit,}, because the arena of is a parent of the arena akb.

If we choose th&OURCE/ DESTINATION ORTHOGONAL semantics, thef{ts, t4}) can be
taken, and the model behaves correctly. (The executiopiofolves exiting the Or control
stateBito and reentering its default control staBito; . The destination configuration of the
small step isBit;;, Bite;, andMax.)

3.2.3 Preemption

The notion ofpreemptior]5] is relevant for a pair of transitions when one isiaterrupt for
the other. A transition is an interrupt for transitiosf when the sources of the transitions are
orthogonal and one of the following conditions holds: (& tfestination of’ is orthogonal
with the source of, and the destination afis not orthogonal with the sources of either
transitions (FigureL1(a)); or (ii) the destination of neither transition is ortfumal with the
sources of the two transitions, but the destinatiort &f a descendant of the destination
of ¢’ (Figure 11(b)). The NoN-PREEMPTIVE option allows such & andt’ to be executed
together in the same small step, whereas tReEMPTIVE option does not. In the BIN-
PREEMPTIVE option, the effect of executing such a small sfep’} includes the variable
assignments and event generations of both transitionghbudestination configuration of
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Fig. 11 Interrupting transitions.

the small step is determined as if ortljnas been executed (i.e., the destination’ a§ not
relevant). As such, executing, '} in Figure 11(a) moves the model to control staté,
and executing't, ¢’} in Figure 11(b) moves the model to control statg§, and.S5,. While
complex, due to its counterintuitive flow of control, theN-PREEMPTIVE Option satisfies
the “last wishes” of the children of alind control state that is interrupted.

The NoN-PREEMPTIVESemantics can be used to model the “weak preemption” seman-
tics ofexi t andt r ap statements in Estere,[L6]. The concurrent execution of axi t
command with a nomxi t command complies with the condition (i) above of the intptru
for relation. The concurrent execution of te&i t commands complies with the condition
(ii) above of the interrupt for relation. In Argos§§)], a different notion of hierarchical control
state than ours is used. A transition with a source of aBasiccontrol states is an interrupt
for a transition whose arenassor a descendent of. We can translate this notion of control
state and interrupt to our framework by turnifignto anAndcontrol state with two children:
one representing without the interrupt transition, and another having ontg dransition
that models the interrupt transition. In Ester@l1[6], in addition to the NON-PREEMPTIVE
semantics, there is a syntax to speciygMPTIVEbehaviour through the “strong preemp-
tion” semantics ofsvat chi ng statements. Inatio <st at ement s> wat chi ng(e)”
statement, the execution of8t at ement s>" is immediately aborted when evenbccurs,
without satisfying the “last wish” of¢st at enent s>". Such awat chi ng statement can
be translated into our normal-form syntax by creating asitaon whose source is andor
Or control state that represents thest at ement s>", and it is triggered with event. The
additional transition in the aforementioned translat®nat an interrupt for any transition.

Example 5 The model in Figurd 2is an extension of the model in FiguteA control state
that is labelled with a V" represents a stable control state. This model is a model of a
dialer system that receives the dialed digits of a phoneutjin evendlial(d), and transmits
these digits via output evensat(d), to establish the connection with a destination phone
number. Compared to the model in Figureghe model in Figurd.2 additionally controls the
total number of calls that can be established at each poititaé. If the maximum number
of concurrent calls is reached, which is determined by theldsn environmental input
variablelimit, the dialing process is aborted via transitionConsider the snapshot where
environmental input variabl&mit is true, the model resides in control stat@&itforDial
and WaitforRedial, the value of variable, which is the number of dialed digits so far,
is nine, and the environmental inpdtal(d) is received, i.e., the caller dials the last digit
of a phone number. We choose theNTACTIC concurrency and th&1ANY concurrency
semantics. If we choose tIRREEMPTIVE Option, the system may abort the dialing process
by executing{t}), and not{{t; }). But if we choose theON-PREEMPTIVEOption, then the
call would go through by executingt, t}). (The execution of small stépt;, t}) involves
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Redialer ts: redial[c = 0]/p:=lp; “dial(digit(lp, 1))

te: [c<|pl]
“dial(digit(p, (c+1))

t: [limit =true] t’: [limit = false]

Fig. 12 Interrupting transitions.

exiting the And control statBialing and reentering the default control state of its children
Dialer and Redialer. The destination configuration of the small step/lisx.)

3.3 Event Lifeline

A generated event of a transition is broadcast to all parts ofodel. An event'status
which is eithepresentor absentcan be sensed by the event trigger of a transition.eleat
lifeline semantics of a BSML specifies the snapshots of a big step ichvehjenerated event
can be sensed as present. Tabdhows the five event lifeline semantics: (i) in thRESENT
IN WHOLE option, a generated event is present throughout its big &tep the beginning of
its big step; (ii) in the RESENT INREMAINDER option, a generated event is present in the
snapshot after it is generated and persists until the entg bfg step; (iii) in the RESENT
IN NEXT COMBO STEP option, a generated event is present only during the nexboom
step; (iv) in the RESENT INNEXT SMALL STEPoption, a generated event is present only
in the next snapshot; and (v) in th& PSENT IN SAME option, a generated event is present
only during the small step in which itis generated (instaatas communication). Figuie
depicts the event lifeline of the evengenerated in small stefy, according to the different
event lifeline semantics. Each name of an event lifelinesseios is followed by a line that
depicts the extent of the big step in whiels present, according to that semantics.

The PRRESENT IN WHOLE semantic option supports the “perfect synchrony hypothe-
sis” [4,33]. If we consider a big step as the reaction of a synchronagsiciduring a “tick”
of the clock, the semantics of the perfect synchrony hygithis similar to the signal rules
of synchronous hardware. In synchronous hardware, a sigeiher present or absent dur-
ing a tick of a clock, but not both. TheRRSENT IN SAME semantic option is different
from the other semantic options in that the generated ewd#rdassmall step cannot affect
the enabledness of another small step, making the smal step big step independent
of one another. The BESENT IN SAME semantic option is inspired by the semantics of
synchronization and rendezvous in process algelira&4, 34].
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Table 3 Event lifeline semantics.

present after it is gener
ated.

(-) Unorderedness
(-) Global inconsistency

Options | Definition | Characteristics | Examples |
PRESENT INWHOLE | A generated event in g ) Modulari Argos [33] and
big step is assumed to bg (+) Modularity . Esterel ]
present throughout the (*) Global consistency
big step (-) Non-causality
’ (-) Counterintuitive behaviour
PRESENT A generated event in g e i statecharts 41,
IN REMAINDER big step is sensed ap () Causality 47

PRESENT IN NEXT

COMBO STEP

A generated event cal

be sensed as presen

only in the next combo

step after it is generated.

t (+) Causality
(+) Partial orderedness
(-) Multiple-instance events

Statemate 19
and RSML B0

PRESENT IN NEXT

SMALL STEP

A generated event cal

be sensed as presen

only in the next small

step after it is generated.

t (+) Causality
(+) Orderedness
(-) Multiple-instance events

statecharts[0]

PRESENT INSAME

A generated event ca
be sensed as prese
only in the same small
step it is generated in.

Lt (+) Instantaneous communicg

tion
(-) Non-causality
(-) Multiple-instance events

. Used in B7]
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Fig. 13 The event lifeline of the generated everdccording to different event lifeline semantic options.
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Implicit events: Some BSMLs usémplicit eventsin their syntax, which represent
events that are generated in response to a certain prof¢inty @omputation of a model. For
example, the implicit evergnt er ed( s) [41] is generated when control statés entered,
and implicit event@( cond) [22,273] is generated when the value of boolean expression
cond changes from false to true. Implicit events may or may nottithe same semantics as
the event lifeline semantics of named events.

Causality: A big step iscausalif its small steps can be sequencedBsTs, - - , Th,
such that any event that triggers a transition in small §tefi < i < n) must be gen-
erated by some earlier small stepih, T, --- ,T;_1. To a modeller, the transitions of a
non-causal big step may seem counterintuitive, and exeutef the blue. The RESENT
IN WHOLE and the RESENT IN SAME semantic options can create non-causal big steps.
To avoid non-causal big steps, some BSMLs that use theoW¥ event lifeline semantics
introduce a notion of a “correct” model, which never creae®n-causal big step,[7,47].
Analysis tools can be used to detect “incorrect” modelsseovatively, and reject them at
compile time [/, 16]. But if a BSML supports variables, the detection of incatrmodels is
undecidable 6].

Orderedness:The RRESENT INREMAINDER semantics lacks a “rigorous causal order-
ing” [30]: if evente; is generated earlier than eveny, it need not be the case that tran-
sitions triggered by; are executed earlier than transitions triggeredfyThe FRESENT
IN NEXT COMBO STEP semantics was devised to alleviate this problem by havingga “
orous causal ordering” between combo steps, while beirensisve to the order of event
generation within a combo stepd, 30]. A disadvantage of theRESENT INNEXT COMBO
STEP semantics is that a modeller needs to keep track of the sdapeambo step in or-
der to consider its generated events all at once in the nembocstep. The RESENT IN
NEXT SMALL STEPsemantics is ordered: a transition triggered by an intesmahte can
be executed only i¢ is generated by a transition in the previous small step.

Modularity: The PRESENT INWHOLE option is “modular” P6] with respect to events:
an event generated during a big step can be conceptuallideoed the same as an environ-
mental input event because it is present from the beginrfiigeobig step. All other event
lifeline semantics are non-modular. In a non-modular eliégline semantics, concurrent
parts of a model cannot play the role of the environment fohesher, because extensions
of the model may change the behaviour in different ways tharenvironment does. As a
result, a model cannot be constructed incrementally.

Multiple-instance events:An instanceof an event in a big step is a contiguous segment
of the snapshots of a big step where the event is present IPRIBSENT INNEXT COMBO
STEP, PRESENT INNEXT SMALL STEP, and FRESENT IN SAME event lifeline semantics,
multiple instances of the same event, generated by diffeeall steps, may exist in the
same big step. Thus, the status of an event can change mauitigs in a big step, making
it complicated for a modeller to determine whether an eveptésent in a certain snapshot
of a big step, or not.

Global inconsistency: When negated events are included in the BSML syntax, the
PRESENT INREMAINDER semantic option can produce “globally inconsistent” bapstf 1,
47]. A big step is globally inconsistent if it includes a tratitsn that generates an event and a
transition triggered by the absence of that event. A glghationsistent big step is undesired
because an event is sensed both as absent and present imehbigastep. The RESENT
IN REMAINDER semantic option can achieve a variation of the original glaonsistency
semantics41,47], by not taking a transition that generates an event thatseased as ab-
sent earlier in the big ste@f]. The global inconsistency problem is not relevant for othe
semantic options because theESENT INREMAINDER semantic option is the only seman-
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Fig. 14 Global consistency vs. causality.

tic option that allows maximum one instance of an event ingasép and yet permits the
aforementioned inconsistency. The other lifeline sensarttiat permit multiple instances of
an event in the same big step are globally inconsistent,yodebign.

Global consistency vs. causalityFigure 14 shows the relationship between the big
steps of the RESENT INREMAINDER semantics and theRESENT INWHOLE semantics.
A big stepT that is included according to a globally consisteREBENT INREMAINDER
semantics can also be included byRERENT INWHOLE semantics becaugés generated
events, by the definition of global consistency, can be asduim be present from the be-
ginning of the big step. Conversely, a big stEpthat is included by a causaRRSENT IN
WHOLE semantics can also be included byRERENT INREMAINDER semantics because,
by the definition of causality, an event is sensed as preseatttansition of7” only if it
is already generated in the big step. Therefore, if globabkistency is guaranteed syntacti-
cally (e.g., there are no negated event triggers), thenehef big steps in the RESENT IN
REMAINDER semantics is a subset of the big steps of tReSENT INWHOLE semantics.

Events with parameters: An event can have a value parameter, as in Esté}€l For
an event with a value parameter, the value of its paramet@etermined per instance of
the event. When an event instance is generated by more tleainaorsition, the value of its
parameter is determined by a “combine functiof]: A combine function is a commutative,
associative function, such as addition, that “combines”dlfferent values of the parame-
ter of an event that are generated by a set of transitionflelfRESENT IN REMAINDER,
PRESENT INNEXT COMBO STEP, PRESENT IN NEXT SMALL STEP, and FRESENT IN
SAME semantics, a combine function combines the values of trengeter of an event gen-
erated by transitions in the previous and current smallssieqevious combo step, previous
small step, and current small step, respectively. In tReFENT IN WHOLE option, the
value of the parameter of an event instance is fixed during ateip, and is determined by
combining all of the values of the parameter of the event gead during the big step.

Example 6 In Example2, when considering th€AKE ONE big-step maximality semantics,
the semantics that subscribes to tARRESENT IN WHOLE, PRESENT IN REMAINDER, Or
PRESENT INNEXT SMALL STEPevent lifeline semantics all yield the expected behaviour.
If the TAKE ONE big-step maximality semantics, tidANY concurrency semantics, the
ARENA ORTHOGONAL small-step consistency semantics, BREEMPTIVE preemption se-
mantics (or theNON-PREEMPTIVE preemption semantics) are chosen, thenRPRESENT

IN SAME semantics also yields the expected behaviour.

5 In Esterel [], the value parameter of an event can be of type array, whiginsithat, in effect, an event
can have more than one value parameter, each of which beielgaent of a single array.
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Fig. 15 Speed control system for a car.

Example 7 The model in Figurel is an extension of the model in Figureto support a
“redial” functionality. Variable 1p stores the last dialed phone number. Upon receiving the
redial environmental input evenRedialer instructsDialer, by generating the correspond-
ing dial events, to dial the digits db. (We denote the size of an integeas |x| and its
nth digit asdigit(x,n).) Variable p is necessary because once redialling stapt$s over-
written. Consider the snapshot where the environmentaltiepentredial is receivedg is
zero, and|lp| is 10. The environmental input eventlial persists throughout the big step. A
semantics that follows th8YNTACTIC big-step maximality semantics (annotating a stable
control state with a v”), the MANY concurrency semantics, ttleRENA ORTHOGONAL
small-step consistency semantics, BREEMPTIVE preemption semantics, tIRRESENT IN
NEXT SMALL STEP event lifeline semantics, and uses the up-to-date valugarables,
can produce the big stefts, {to, te}, {t3,t6}, - - -, {t3,t6}, {ta, t7}), which transmits the
first digit twice and does not transmit the last digit. If weooke thePRESENT IN SAME
event lifeline semantics, the model produces the corregtstep ({t5,t2}, {ts,ts}, - - -,
{t4,t7}). In both cases, if the size of the redialled number is less ity the model cannot
stabilize, and remains iDialDigits control state.

Example 8 The model in Figurel5is a simple model of a cruise control system of a car.
The system regulates the amount of power transmitted tolieele of the car by adjusting
the amount of gas that is provided to the engine, in order tintam the speed specified
by the cruise control system. If the cruise control systewwnisde-acceleration does not
have any effect on the amount of gas that is provided to thmenBut if the cruise control
system is on and the acceleration event is received, thecrtiige control system is turned
off, and acceleration is processed as usual. The two Or obstates of the And control
stateFuelControl process the cruise control and acceleration/de-accelenatunctionali-
ties, respectively. The environmental input evenisse_on and cruise_off turn the cruise
control system on and off, respectively. The environmenfalt eventsiccel and deaccel
specify whether the accelerator is being pressed or despaisrespectively. The boolean
environmental input variablesver_speed and under_speed specify whether the vehicle is
moving faster or slower, respectively, than the target dse by the cruise control system.
Eventsincrease_gas anddecrease_gas slightly increase and decrease the amount of fuel into
the engine, respectively.
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Consider the moment when the cruise control system is orsytem is slightly over
speed, and the accelerator is pressed; i.e., when the syst®ides in control statén,
over_speed = true, andaccel is received from the environment. We chooseTithee ONE
big-step maximality semantics and tBeNGLE concurrency semantics. If we choose the
PRESENT INWHOLE semantic option, then the only possible big step consisfss¢fand
{t2}, which results in the desired behaviour for the system. Ith@se thdPRESENT IN
REMAINDER semantic option, then additionally{ts }, {t¢}) is a valid big step, which both
decreases and increases the amount of gas to the engineafféebig step is globally
inconsistent, becaud@acrease_gas is sensed as absent by and is generated by. If the
variation of global consistency semantics V] is chosen, ther{{ts}) is a valid big step;
tg cannot be taken during the big step since it generates:ase_gas.

3.3.1 External Events

The model in Figurel uses evendlial in two different ways: (i) as an environmental input
event initiated by a human caller, and (i) as an internahegenerated by th&edialer.
To avoid modelling flaws, many have advocated that the imterbf a system with its envi-
ronment should be clearly and explicitly specified,[50]. A celebrated way to achieve this
interface, as shown in Figurks, is to distinguish between the events that the environment
can control,environmental input eventand the events that are generated by the model,
controlled eventsA controlled event may be observable by the environmeet, @nenvi-
ronmental output eveptor not (i.e., arinternal event. The environmental input and output
events of a model together constitute eéxgernal eventsf the model.

A BSML may choose distinct event lifeline options for envimental input events, en-
vironmental output events, and internal events, as showheifeature diagram of Figute
Often, the event lifeline semantics of the environmentauinevents is the RESENT IN
WHOLE semantics, and the event lifeline semantics of the enviestiah output events is
the same as the event lifeline semantics of the internalteven

A BSML may syntactically distinguish environmental inpweats and environmental
output events from each other, and from internal eventgradttively, we call a BSMInon-
distinguishingif it does not distinguish syntactically between the exéémvents and the
internal events of a model. In these BSMLs, it is still poksito consider inputs received
at the beginning of the big step as environmental inputs,catduts generated in the last
small step or last combo step of a big step as environmentplitsy each with distinct event
lifeline choices. Tabld lists the possible semantic options for differentiatingisonmental
input events and internal events. In theNSACTIC INPUT EVENTS Option, an environmen-
tal input event is syntactically distinguished. Thus a BSMht subscribes to this option
is a “distinguishing” BSML. In the RCEIVED EVENTS AS ENVIRONMENTAL option, an
event that is received at the beginning of a big step is censtlan environmental input
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Table 4 Differentiating environmental input events from intereaents.

[ Options | Definition | Characteristics | Examples |
SYNTACTIC INPUT | Only syntactically distin- Esterel p]
EVENTS guished events are treated (+) Separates system

from environment

(-)  Usually different
semantics for different]
event types

as environmental inputs.

RECEIVED EVENTS AS | Any event that is received
ENVIRONMENTAL from the environment af
the beginning of a big step
is treated as an environt
mental input.

. . statecharts4”
(+) Treats input and inter and 1

nal events uniformly

RSML [30]
(-) No boundary between (=9
system and environment

HYBRID INPUTEVENTS | Only genuine inputs that s N/A
are received from the en () Dlstlpgwshes be-
vironment at the beginning tweerj . internal  and
of a big step are treated ajs 9€NUIN€ input events
environmental inputs. (-) Complex

event. In the BRID INPUT EVENTS Option, an event that is received at the beginning of a
big step is considered an environmental input event onlyisf&@genuine inpubf a model,
meaning it is not generated by any transitions in the modek#own in Figuré, an event
lifeline semantics for the environmental input events caclosen, regardless of the choice
of the semantic option for distinguishing the input eveRts. example, if the semantics for
environmental inputs is the ECEIVED EVENTS AS ENVIRONMENTAL semantic option to-
gether with the RESENT INNEXT SMALL STEP semantic option, then an input event that
is received at the beginning of a big step persists only feffitist small step of the big step.
Environmental output events have similar options; eveatsegated in either the last small
step or last combo step of a big step could be considered asemental output events.

Example 9 In Example7, we assumed the non-distinguishing semantics for the nmodel
Figure 1 because evential can be both received from the environment and generated, pos
sibly in the same big step. Everddial is a genuine input. Both thRECEIVED EVENTS
AS ENVIRONMENTAL and HYBRID INPUT EVENTS semantic options, together with the
PRESENT INWHOLE event lifeline semantics, yield a behaviour that matched#haviour
specified in Examplé.

If we use the single-input assumptiot?[23], which requires thatdial and redial are
not both received from the environment in the same big step,.dial cannot be received
from the environment at the beginning of a big step and geedria the same big step.

3.3.2 Interface Events

Some BSMLs structure a model as a setofmponentseach of which is a CHTS. The
components of a model communicate with each other throwgjhittterface eventaccord-
ing to aninter-component communication mechanigfigure 17 refines the taxonomy of
Figure16 by including interface events as a subset of the controledts of a model. We
require an interface event to be generated by one compamkeict; we call itssending com-
ponent A component that accesses an interface event redsiving componenfis such,
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Fig. 17 A taxonomy of events for inter-component communication.

the interface events of a model are partitioned into setsystoy dashed lines in Figute,
each of which is generated by one component.

Tables5 lists the three possible inter-component communicatiomeseic options for in-
terface events. In theTRONG SYNCHRONOUSEVENT option, a generated interface event
is sensed as present throughout the big step in which it isrgéad, from the beginning
of the big step (similar to the FESENT IN WHOLE semantic option for internal events).
In the WEAK SYNCHRONOUSEVENT option, a generated interface event is present in the
big step in which it is generated, but only after it is genedafsimilar to the RESENT IN
REMAINDER semantic option for internal events). In the&sANCHRONOUSEVENT option,

a generated interface event is present in the next big stem, the beginning of the big
step. The $RONG SYNCHRONOUSEVENT and the WEAK SYNCHRONOUS EVENT se-
mantic options have similar advantages and disadvantagie &#RESENT INWHOLE and
PRESENT IN REMAINDER semantic options, respectively. TheSANCHRONOUSEVENT
semantic option is unique in that a generated event in a bgcsn influence the behaviour
of the model in the next big step. This semantics for interfagents can potentially be a
source of complication for a modeller because it is at oddls thie semantics of other kinds
of events in a semantics, i.e., internal events and envieorah input/output events, whose
statuses cannot persist beyond a current big step. In hHeNBHRONOUSEVENT seman-
tics, a generated interface event in a big step acts sinoilan environmental input event in
the next big step. As such, theskNCHRONOUSEVENT semantics is modular with respect
to interface events, because an interface event, similantenvironmental input event, is
either present from the beginning of a big step or is not prieseall.

There are several BSMLs that support the notion of intergament event communi-
cation. The “hybrid semantics” of Huizing and Gerttc], which distinguishes between
“local” and “global” events, treats the “global” events ofreodel according to the 1T RONG
SYNCHRONOUSEVENT semantic option. The semantics of “output” events in RS [
follows the ASYNCHRONOUSEVENT semantics; an “output” event is generated by a com-
ponent via a SEND’ command, and can be received by a component ViRECEl VE”
event in the next big step. Similarly, the semantics of ‘stgied” events in Esterel]
follows the ASYNCHRONOUSEVENT semantics. In “globally asynchronous locally syn-
chronous (GALS)” languages3[44], the communication of events within “local” com-
ponents of a system follows the semantics of tiRe®ENT IN WHOLE option, and the
“global” communication of events between components fatlthe semantics of the#vN-
CHRONOUSEVENT option.

Example 10 The model in Figurel8 shows a door controller system, which is responsible
for unlocking the door to an industrial area only if the termgueire inside the area is not
above 40°C. The system has two compondniek and Thermometer, separated by the
thick dashed line. The two components communicate via ti@dace eventsheck_temp
andheat. There are three environmental input evemigk, open, andreset. Eventunlock
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Table 5 Semantic options for interface events.

| Options | Definition | Characteristics | Examples |
STRONG SYNCHRONOUS | A generated interface +) Modulari “Hybrid Seman-
EVENT event of a big step ig (*) o ularity tics” [26]
sensed as present from .(+) Unique status fqran
the beginning of the big |n_terface event during g
step. big step _
(-) Non-causality
WEAK SYNCHRONOUS | A generated interfacq c i N/A
EVENT event of a big step ig (*) Causality
sensed as present in.(') Unclear status (.)f an
the snapshot after it is interface event during g
generated. big step
ASYNCHRONOUSEVENT | A generated interface +) Modulari “Output” events
event of a big step ig ()P odu arltg_ " in RSML [3(]
sensed as present in theg') revious tl)g stepaly ang  “GALS”
next big step after it is| '€Cts currentbigstep | 1,4
generated.

is the environmental output event of the model. Considestia@shot in which the model
resides in itddle and Measure control statestemp = 99, and evenbpen is received from
the environment. If we choose tlieke MANY big-step maximality semantics, tBeNGLE
concurrency semantics, and tBERONG SYNCHRONOUSEVENT semantic option, then the
big step({t1}, {ts¢}, {t3}) is the only possible big step, which, correctly, does nohdpe
door. If we choose th&VEAK SYNCHRONOUSEVENT semantic option, then additionally,
({t1}, {t2}, {te}) is a valid big step, which opens the door although the tentpesas
99°C. If we choose thA SYNCHRONOUSEVENT semantic option, the only possible big
step is({t1}, {t=}, {t6}), In which evenheat is sensed in the next big step, after the door
has already been opened.

3.4 Enabledness Memory Protocol

The enabledness memory protooofl a BSML determines the values of variables that a
transitionreadsfor its guard condition (GC). Tablé shows the three possible memory
protocols: (i) in the GC Bs STEP option, a read of a variable returns its value from the
beginning of the big step; (i) in the GCMALL STEP option, a read of a variable returns
its value from the beginning of the small step; and (iii) ie tBC GomBO STEP option, a
read of a variable returns its value from the beginning ofdineent combo stepAs such,
inthe GC BG STEP, the GC $1ALL STEP, and the GC ©MBO STEPsemantics, thevrite
of a value to a variable, via an assignment, becomes the vatumed by a read of that
variable in the next big step, next small step, and next costée, respectively. (Unless the
write is overwritten by other writes through race condit@rthe assignments of subsequent
transitions).

Traceability: In the GC BG STEP semantics, the value of a variable at a snapshot in a
big step is obtained from the beginning of the big step, betassignments to the variable

6 As shown in Tables, in SCR P2,23], both the GC BG STEPand GC SMALL STEPmemory protocols
are used, but in different syntactic constructs of the laggy namely in the “event tables” and “condition
tables”, respectively.
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Fig. 18 Door controller system: using interface evehtsit andcheck_temp.

Table 6 Enabledness memory protocols.

| Options | Definition | Characteristics | Examples |
GC BIG STEP The value of a variable +) Non-interf statecharts 71,
during a big step is ob- (+) Morgj-lrrte_r erence 47, SCR P2,
tained from the beginning () l(\)l ularity ity in| 23 and reactive
of the big step. ©) on-sequentiality In| 54y les Bl
small steps
GC SVALL STEP The value of a variable NS ality i I Esterel p] and
is its up-to-date value, ob (t) equentiality in smalll gop po 27
tained from the beginning steps
of the small step. (+) Straightforward trace-
ability
(-) Interference
GC ComMBO STEP | The value of a variable ) Statemate19]
during a combo step is ob (+) Some non-mterfc_sre_nce_
tained from the beginning gr)lafgggs sequentiality in
f th bo step. X -
ot the combo step (-) Complicated traceability

need to be traced so that its value is updated for the nextiéyy b the GC SIALL STEP
semantics, the value of a variable at a snapshot in a big stéptérmined by tracing all
of the assignments to the variable since the beginning obithetep. In the GC GMBO
STEP semantics, the value of a variable at a snapshot in a big sgtérmined by tracing
all of the assignments from the beginning of the current costiep. But a big step may
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Table 7 Variable operators.

| Operator | Obtains Value From | Memory Protocols | Total |
pre (e.g., B) big-step source snapshot GC SVALL STEP v
cur (e.g., 1) small-step source snapshot GC BIG STEP v
new(e.g., B]) small-step source snapshot| GC BiG STEPand GC $MALL STEP X
new.smal | small-step destination snapshpt GC SVALL STEP v
(e.9., B1])

have several combo steps, which, compared to the other gggrmtocols, could make the
tracing of the value of a variable complicated.

Modularity with respect to variables: In general, a semantics is “modular” if it treats
the behaviour of a new concurrent part of the model the sarntteedsehaviour of the envi-
ronment P6]. Originally, “modularity” was defined with respect to ewsrf26], but, in the
same spirit, we extend it for variables. The GGBSTEP is modular with respect to vari-
ables because even if a new concurrent part of a model assgnsalues to variables, the
new values are visible only at the beginning of the next teg Sust like new environmental
values. The other semantic options are not modular bechadgehaviour of an addition to
an existing model, unlike the environment, affects therintzliate snapshots of a big step.

Non-interference vs. sequentiality in small stepsThe GC BG STEP option isnon-
interfering an earlier small step of a big step does not affect the relae vd a later small
step. The GC BALL STEPoption, which is an “interfering” semantics, is useful fpesi-
fying a sequence of computations where each small step teadslues from the previous
small step. The GC GMBO STEP option enjoys non-interference inside a combo step and
sequentiality of combo steps. In the G@@BO STEP option, a big step could consist of
multiple combo steps, which a modeller needs to keep traeladi of their scopes.

Variable operators: A BSML may provide avariable operatorthat obtains a value of a
variable that is different from its value according to itsm@@y protocol. Table lists some
common operators and specifies whether theyaietor not. As specified in the table, each
variable operator is relevant for certain enabledness meprotocols. A non-total operator
may block until it can be evaluated.

Operatomew is different fromcur in that it can be evaluated only if its operand has
already been assigned a value during the big step, whichsvig@quires a “dataflow” order
for the execution of small steps within a big step (cf., SetH.6).

Operatornew.smal | returns the value of its operand at the end of the currentlsmal
step. A variable in the GC of a transition that is prefixed vifie new.smal | operator
requires arevaluation ordetbetween the transitions of the small step, in order to olitegn
newly assigned value of the variable at the end of the snegil $ta variable is not assigned
a value during a small step, then its value when prefixed viignew_smal | operator
returns the value of the variable at the source snapshoeafrttall step.

Two transitions can creatyclic evaluation ordeiby using thenew.smal | operator
over variables that are assigned values by one another.

7 ltis possible to define a non-totabw_snal | operator that returns a value for a variable, only if it is
assigned a value in the current small step. Such an operatddwe in the spirit of the “next” operator in
SMV language $4], which is an input language for a family of model checkerthie same name. However
in the semantics of SMV, unlike in BSMLs, even if a variablea assigned a value during a small step, itis
assigned a non-deterministic value, which, in effect, rmdke “next” operator a total operator.
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Example 11 In Example7, we used theGC SuALL STEP enabledness memory proto-
col. If we use the semantic options that led to an incorredtab@ur in that example,
but modify the guard condition af; to “ [new_small(c) < |p|]” and its event generation
to “dial(digit(new_small(c) + 1,p))”, then the model behaves correctly{ts}, {t2,ts},

{ta,te}, -+ {ta}, {ta, t7}).

The operators in Tablé are not relevant for the GC@vso STEP memory protocol,
but they can be extended to be used in the context of @@ED STEP memory protocol.
For example, a version afur operator for the GC 6GMBO STEP semantic option would
return the current value of a variable considering all ofaesignments to the variable since
the beginning of the current combo step. Similarlyyean_snal | operator can be defined
for the GC BG STEPmemory protocol.

3.4.1 External Variables

As with events, it is useful to distinguish syntacticallytween the variables of the model
that can be modified by the environment and the variableseafribdel that can be modified
by the systemd9,50]. Figure 16, which depicts a taxonomy of events, also represents the
taxonomy for distinguishing environmental variables. Bmironmental output variables
andenvironmental input variablesf a model are the sets of the variables of the model that
can be read from and written to by the environment, respagtiiheinternal variables

of a model are those variables that are not communicatedemitmonment The union of

the set of environmental input variables and the set of enuiental output variables of a
model is its set oéxternal variablesThe union of the set of environmental output variables
and the set of internal variables of a model is its setaftrolled variableswhich is the

set of variables that can be written to by the system. Manyettiad languages, including
some BSMLs, provide syntax to distinguish between diffetgpes of variablesd, 22,23,

39). Unlike for events, the notion of “non-distinguishing B&BI (cf., Section3.3.]) is

not relevant with respect to variables, because most BSNhsresyntactically distinguish
between environmental input variables and controlledatdeis, or they do not support the
notion of environmental input variables at all (i.e., vates are not assigned values by the
environment).

When external variables are distinct from the internalakalgs, the memory protocol se-
mantic aspects described in Secti@éand3.5specify the semantics of internal variables.
The notion of memory protocol for environmental input vatés is not relevant because
they are never assigned a value by a transition; they keegathe value throughout the big-
step. Normally, an output variable is not read by the motiekefore we have not included
options for it in our feature diagram. Ifitis, the semanti€genvironmental output variables
can be any of the memory protocols, but it would not likely be BIG STEP semantics.

3.4.2 Interface Variables in GC

Some BSMLs allow a component of a model, which is usually ssiajly distinct part of
the model, to communicate with another component of the ingeénterface variables
Figure17, which depicts the taxonomy of events including interfacengs, also illustrates
the taxonomy of variables including interface variables.fér interface events, we require

8 Internal variables are often called “private variables’e We the term “internal variables” to keep the
terminology of variables consistent with that for events.
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the well-formedness constraint that an interface variaatebe written to by only one com-
ponent (thesending componentbut can be ready by multiple components (teeeiving
components The semantics of interface variables, similar to memaogqeols for internal
variables, specifies when a change to an interface-vanahle becomes the value returned
by a read of that variable.

Table8 lists the possible inter-component communication seroapiions. In the GC
STRONG SYNCHRONOUSVARIABLE option, a write to an interface variable during a big
step can be read by the GC of a transition right from the béggnof the same big step; i.e.,
if an interface variable is assigned a value, only this nelweves read during the big step. In
the GC WEAK SYNCHRONOUSVARIABLE option, a write to an interface variable can be
read after the variable is written to, but the variable cao &le read before it is written to,
in which case it returns its value from the previous big sgémilar to the GC $IALL STEP
semantic option). In the GC 2&¥NCHRONOUSVARIABLE option, a write to an interface
variable can be read by the GC of any transition in the nexstag (similar to the GC B
STEPsemantic option).

Blocking read vs. communication delay:The GC SRONG SYNCHRONOUSVARI-
ABLE semantics is compatible with the “zero-time computationiigple of the synchrony
hypothesis 4, 6]: that is, the value of an interface variable is exchangad/®en two com-
ponents in “zero-time”. However, there should exist a “tlava order” (cf., Section3.6)
between the small steps of a big step so that the value of arfane variable is read only
after it has been assigned. A component that is waiting femigaw value of an interface
variable is said to belocking It is possible for two transitions to block cyclically onaka
other. In the GC WVMAK SYNCHRONOUSVARIABLE semantic option, a read operation on
a variable never blocks, but it may returrstale valueof the variable from the previous
big step or a newly assigned value from the current big stethd GC ASYNCHRONOUS
VARIABLE semantic option, a read operation on a variable never bldcishere is a delay
of one big step between writing a new value to a variable aading the new value.

Modularity with respect to interface variables: The GC SRONG SYNCHRONOUS
VARIABLE and GC ASYNCHRONOUSVARIABLE semantic options are modular with re-
spect to interface variables because the value of an interariable in these semantic is
the same throughout the big step, similar to an environnhémpat variable. In these two
semantics, the behaviour of a component that is added toistingxmodel is perceived as
that of environment, when it comes to the interface vargbigehe GC of transitions of the
existing model. The GC WAK SYNCHRONOUSVARIABLE semantic option is not modu-
lar with respect to interface variables because the valam afiterface variable may change
during a big step, unlike the value of an environmental inpuiable.

Example 12 The model in Figurel9 is similar to the model in Exampl&0, but has been
modified: (i) to use the interface variableat, instead of interface eveheat; and (ii) the
functionality ofLocking the door is separated from the functionalities of thentroller of
the lock and thé& hermometer, to allow for the lock to work with different controllers.
Consider the snapshot where the model resides ifdits Ready, and Measure con-
trol states, the door is closetbmp = 99, heat = false, and evenbpen is received from the
environment. We choose tlB¥NTACTIC big-step maximality semantics, tlBB8NGLE con-
currency semantics, thBRESENT IN REMAINDER event lifeline semantics, t®C (and
RHS) SmALL STEP enabledness (assignment) memory protocols, and3i8eSTRONG
SYNCHRONOUS EVENT interface event semantics. If we choose @€ STRONG SYN-
CHRONOUSVARIABLE semantic option, then the big stéft;}, {ts}, {to}, {ts}, {t3})
is the only possible big step, which correctly does not operdoor. If we choose the C
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Table 8 Semantic options for interface variables.

| Options | Definition | Characteristics | Examples |
GC STRONG SYNCHRONOUS | Either an interface vari- . Composition
VARIABLE able is not written to dur- () Modu_larlty in  reactive
ing a big step, or all of its ) Blocklng read and modules §]
reads happen after it has YClic dataflow order
been written to and it re-
turns the newly assigneq
value.
GC WEAK SYNCHRONOUS | An interface variable can . N/A
VARIABLE be read before or after i (+) Non-blocking regd
is written to; in the latter (-) Stale values for in-
case it returns the newly terface variables
assigned value.
GC ASYNCHRONOUS | The value written to an in-| ) “Output”
VARIABLE terface variable during g (*) Non—bloqklng read variables in
big step can be read in the (+) Modularity RSML [30]
next big step. (-) Delayed read

WEAK SYNCHRONOUSVARIABLE semantic option, then the big stéf; }, {t¢}, {t7},
{to}, {t2}) is also possible, which opens the door although the temperas 99°C. Re-
versing the order oftg} and{t.} yields another big step that opens the door. If we choose
the GC ASYNCHRONOUSVARIABLE semantic option, then theue value ofheat is only
sensed in the next big step, and thus the door is opened.

3.5 Assignment Memory Protocol

Theassignment memory protoaaiia BSML determines the values of variables that a transi-
tion reads when evaluating the righthand side (RHS) of gggasnent expressions. Exactly
the same semantic options as those of the enabledness memiagol are identified: RHS
BiG STEP, RHS SvALL STEP, and RHS ©mBO STEP. (Their names are prefixed with
“RHS” instead of “GC”.) The enabledness and assignment mgmmtocols of a BSML
need not be the same (e.g., SCR,P3]).° The same advantages and disadvantages as the
semantic options of the “enabledness memory protocol”allde, apply to the correspond-
ing semantic options of the “assignment memory protocatiaetic aspect.

Variable operators: The same four variable operators listed in Tablean be used in
the RHS of assignments. However, when usingrtee,.smal | operator in an assignment
expression, it may be impossible to find an “evaluation drdesr example, for two assign-
ments,a:=new.smal | (b)—1 andb:=new.snal | (a)+2, which have a cyclic evaluation
order, the value o andb cannot be evaluated.

Example 13 The model in Figur€0, which is adopted from an example a5, is meant
to specify a computation that maintains the invariantaefb remaining the same before
and after the execution of a big step. Consider the snapsheterthe model resides in its
control statess; andSy, a = 7, andb = 2. We choose th8INGLE concurrency semantics.
If we choose th8AKE MANY big-step maximality semantics together with REIS BiG

9 In SCR P2,29, the RHS $ALL STEPassignment memory protocol is used together with a combina-
tion of the GC BG STepand GC $ALL STEPenabledness memory protocols.
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Fig. 19 Door controller system: using interface variableat and interface eventheck_temp.
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(2xa)+b; ta: Ja:=3Xa;

Fig. 20 A model for maintaining an invariant betweerandb.

STEP assignment memory protocol, then the end result would €21 andb = 16, which
maintains the value of—b the same before and after the big step. If we choosértHE
SMALL STEPsemantic option, then the model can create a big step that doemaintain
the invariant; for example, the execution of the big stép }, {t2}, {ts}, {t4}) results in
a="T75andb=18.
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3.5.1 Interface Variables in RHS

Similar to using interface variables in the GC of transitipas described in Sectié4.2
interface variables can be used in the RHS of assignmentiseofransitions of the dif-
ferent components of a system. Exactly the same semanianeps those for interface
variables in GC of transitions can be used for the semanfidsterface variables in the
RHS of assignments, but their names prefixed with “RHS” imdtef “GC”: RHS STRONG
SYNCHRONOUSVARIABLE, RHS WEAK SYNCHRONOUSVARIABLE, and RHS AYN-
CHRONOUSVARIABLE. The interface variables in GC semantics of a BSML need not be
the same as its interface variables in RHS semantics. Sitoilthe GC SRONG SYN-
CHRONOUSVARIABLE option, a cyclic dataflow order might arise when the RHIRSNG
SYNCHRONOUSVARIABLE semantic option is chosen. The same advantages and disadvan
tages as the ones for the semantic options of the inter-coempvariable communication,

in Table8, are relevant for the corresponding semantic options oirtfegface variables in
RHS semantic aspect.

3.6 Order of Small Steps

At a snapshot, when it is possible to execute more than ond step based on the en-
abledness of transitions with respect to guard conditiosewvent triggers, some BSMLs
non-deterministically execute one (theoNE option), while others order their executions
either by syntactic means (thexBLiCIT ORDERING option) or bydatafloworders (the
DATAFLOW option), as shown in Tabl8. Stateflow is an example of thexELICIT OR-
DERING option because the transitions of a model are executeddingado the graphical,
clockwise order of their arenad][ A dataflow order allows only those sequences of the
execution of small-steps where a transition that writesvar&ble is executed before tran-
sitions that read the variable. The dataflow order of a modelbe specified by an explicit
partial order between its variables (e.g., SCR P3]), or via variable operatonew, as de-
scribed in Sectior8.4, to determine data dependencies (e.g., reactive modgjedr the
statecharts semantics of Pnueli and Shaigy, [the boolean operat@assi gned is used

in the event trigger of a transition to determine whetherréatée is assigned a value dur-
ing a big step or not, which in effect induces dataflow ordeéween small steps of the big
step!® The ExpLICIT ORDERING and DATAFLOW options can be used to avert undesired
non-determinism by disallowing the execution of the smigps that do not satisfy the or-
dering constraints. In the &7AFLOW semantic option, each big step of a model might have
a different dataflow order. TheXeLiCcIT ORDERING option can be difficult to use because
a modeller may introduce an unintended order of transitibhe DATAFLOW semantics can
be difficult to use because a modeller might create a cycliafidav order, either directly
or by transitivity. The D\TAFLOW semantics is compatible with the domain of some syn-
chronous hardware systems where there is an inherentddistirbetween the value of a
variable at the beginning of a big step, i.e., when the claist and during a big step when
a value might be assigned to a variable.

Example 14 Consider the semantic options in Examplehat lead to an incorrect be-
haviour. One way to fix the incorrect behaviour is to modifg thodel by moving the

10 The GC SRONGSYNCHRONOUSVARIABLE and RHS SRONG SYNCHRONOUSVARIABLE semantic
options for interface variables, described in Secfioh2and SectiorB.5.1, respectively, can also introduce
dataflow orders.
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Table 9 Order of small steps semantic options.

| Options | Definition | Characteristics | Examples |
NONE Small steps are not ordered. L statecharts1/,
(+) Simplicity 21]
(-) Non-determinism
ExpLICIT Execution of small steps is or e | deri Stateflow P]
ORDERING | dered syntactically. (+) Control over ordering
(+) Control over non-determinism
(-) Possible unintended ordering
DATAFLOW | Small steps are ordered so that N T d . SCR P2,
an assignment to a variabla( )C aturall or somed omains 23, reactive
happens before it is being readl. () Pomr_gl overlnon—determlmsm modules  f],
(-) Possible cyclic orders and state-
charts {17]

“p:=1p” assignment fromts to t2, changing the GC ofg to “c < |new(p)| — 1", and

its event generation todial(digit(new_small(c) + 1, p))". Such a model then behaves cor-
rectly: ({ts}, {t2}, {t6}, {ts,te}, - {t3}, {t4, t7}), because the dataflow order does not
allow t2 andtg to be executed together.

Example 15 In Example7, we chose th&1ANY concurrency semantics and tRRESENT
IN NEXT SMALL STEP event lifeline semantics, which lead to an incorrect bebawilf
we choose th&INGLE concurrency semantics, then the model can create both a&corr
big step, and an incorrect, non-terminating big step (e(@ts}, {t2}, {t6}, {te}, - ),
non-deterministically. However, if we use tBgPLICIT ORDERING order of small-steps
semantics according to the graphical, clockwise order efdnena of transitions, then the
model always behaves correctlfts}, {t2}, {t¢}.{t3}, {te}, {t3}, -+ {t7}, {ta}).

3.7 Priority

At a snapshot of a model, there could exist multiple setsafditions that can be chosen
non-deterministically to be executed as its small stepleTab shows three common ways
for assigning a priority to a transition to avert non-detieism. A set of transitiong’ has a
higher priority than a set of transitiofis, if for each pair of transitions, € T andts € T5,
eithert, has a higher priority thaty, or they are not comparable priority wise.

The HERARCHICAL option is a set of priority semantics that use the hieraadhstruc-
ture of the control states of a model to compare the relatii@ity of two enabled tran-
sitions. A HERARCHICAL priority semantics is defined by itsasis which is one of the
three values, SURCE, DESTINATION, ARENA, and itsschemewhich is either RRENT or
CHILD. For example, RENA-PARENT is a priority semantics that gives a higher priority to
a transition whose arena is the highest in the hierarchy ofrgposition tree. The ¥rLICIT
PRIORITY priority option explicitly assigns priority to the tranisins of a model (e.g., by
assigning numbers to transitions and giving a greater numlegher priority B7]). The
NEGATION OF TRIGGERSOption is not an independent way to assign priority, but tises
notion of “negation” to assign priorities; can be assigned a higher priority thanby
conjoining the negation of the event trigger and guard d@mpf ¢ with the ones of;.

Exhaustiveness vs. simplicity.The HERARCHICAL option can be easily understood
by a modeller, but may render many transitions as priorigpmparable. The ErLiCIT
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Table 10 Priority semantic options.

| Options | Definition | Characteristics | Examples |
HIERARCHICAL| The source and destination contrpl 1) Simplicit ARENA-PARENT in
states of transitions determine p Y 'Tp 'C'yl Statemate 19 and
ority. () Incomplete | g5 pce CHILD in
prioritization Rhapsody €]
EXPLICIT Each transition is given an explicit) . Used in B7]
PRIORITY relative priority. (+.) . _Exhaustlve
prioritization

(-) Tedious to use

NEGATION OF | Atransition is given higher priority| . statecharts 4], Esterel
TRIGGERS than another by strengthening tke(+.) __Exhaustlve [6], and Argos B3]
event trigger and GC of the second prioritization
transition such that is not enabled () N0 additional

when the first transition is enabled. syntax_
(-) Tedious to use

PRIORITY option provides great control over specifying the relajr@rity of a set of
transitions, but can be tedious to use (e.g., a wrong relatiority for a pair of transitions
can be deduced transitively). In theeNATION OF TRIGGERSand EXPLICIT PRIORITY
options, it can be difficult to identify the pair of transii® where it is necessary to assign
a relative priority because whether two transitions ard lestabled or not in a small step
depends on the source snapshot. But in principle, it is ptes& specify a priority scheme
for a model exhaustively.

Combination of priority semantics: It is possible to use more than one priority seman-
tics in the semantics of a BSML, as shown in the feature dragraFigure5. In such a
BSML, if a pair of transitions are not comparable accordinghie first priority semantics,
then they are compared according to the second semantitspaon. By the definition of
enabledness, if the DNSATION OF TRIGGERSIs used in a BSML, its semantics overrides
the other priority semantics.

Example 16 In Example5, if we choose th&INGLE concurrency and th RENA-CHILD
priority semantics, then the model always execyfes}) as its big step, allowing the call
to go through.

Example 17 In the model in Figurel, t5 is assigned a higher priority thaty by conjoin-
ing the original event trigger of;, dial(d), with the negation of the event trigger of,
dial(d) A redial, resulting in¢; having the event triggetial(d) A —redial. The effect is that
t2 will be chosen when thedial event occurs instead of .

Example 18 In Examplel0, if transitiontg is given a higher priority thany explicitly, then
the choice of th&VEAK SYNCHRONOUSEVENT semantic option always yields a correct
behaviour (i.e., the door is not opened when the temperasuadove 40°C). Similarly, in
Examplel?2, if transitiontg is given a higher priority than; explicitly, then the choice of
the WEAK SYNCHRONOUSVARIABLE semantic option always yields a correct behaviour.
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3.8 Combo-Step Maximality

The combo-step maximality semantics specifies the exteat @intiguous segment of a
big step where computation is carried out based on the swtfsevents and/or values
of the variables at the beginning of the segment. As spedifiédgure 6, the combo-step
maximality semantics is relevant for a BSML semantics ofitileast one of theombo-
step semantic optionmiamely, RESENT INNEXT CoMBO STEP, GC COMBO STEP, of
RHS ComBO STEP, is chosen in the semantics. These options describe howetusess of
events and values of variables change (or not) within a castdqm For example, if a BSML
uses the RESENT INNEXT CoMmBO STEP and GC @MBO STEP options, then during a
combo step (other than the first combo step of the big step3ttiases of events depend
on the generated events of the previous combo step, and lieswef variables in GC of
transitions depend on the assignments performed in théopieeombo step.

Table 11 shows the three semantic options for the combo-step maiyns@mantic
aspect. These options are similar to the three semantiorgptor the big-step maximality
semantics, but specify the scope of a combo step, insteadb@ step. In the ©mBO
SYNTACTIC option, a BSML allows a modeller to designate a basic costitke of a model
as acombo stableontrol state. During a combo step, once a transitithat enters a combo
stable control state is executed, no other transition whosea overlaps with the arena of
t can be taken during that combo step. In theMBo TAKE ONE option, once a transition
t is executed during a combo step, no other transition whesgaaoverlaps with the arena
of ¢ can be executed during that combo step. As such, @adontrol state can contribute
a maximum of one transition to a combo step. TheMBO TAKE MANY option allows a
sequence of small steps to continue executing until thexenarmore enabled transitions
to be executed. In practice, we are only aware of BSMLs thattlis GMBO TAKE ONE
option for the combo step maximality semantics and theETMANY option for the big-
step maximality semantics (e.g., RSMX] and Statematelp]). As specified in Figure,
the ComBO TAKE MANY combo-step maximality semantics cannot be chosen together
with the TAKE ONE big-step maximality semantics, because a combo step carciotle
more small steps than its big step. The same advantages sadvantages as the ones
for the semantic options of the big-step maximality sentaaspect are relevant for the
corresponding semantic options of the combo-step maxiyrsgimantic aspect.

Scope of a combo stedn the COMBO SYNTACTIC semantic option, the end of a combo
step can be traced syntactically, which can be helpful faistocting and understanding a
model. The scope of a combo step when theMBO TAKE ONE or the GOMBO TAKE
MANY is chosen is more difficult to determine. For example, if tt@MBo TAKE MANY
combo-step maximality semantics, along with tHeeBENT INNEXT COMBO STEP and
GC ComBO STEP semantic options, are chosen, then a combo step of a big @tipuwes
until there are no more transitions that are enabled witheesto the generated events and
the assignments of the previous combo step. In such a sewsainiis far from clear what
the possible combo steps, and thus big steps, of a modelasedon mere review of the
syntax of the model.

Example 19 The model in Figure21l is meant to swap the values of variablesand b
twice during a big step, maintaining their original valueés/e choose th€omBO TAKE
ONE option for the combo step maximality semantics, Tthee MANY option for the big-
step maximality semantics, ti8NGLE concurrency semantics, and the semantics that the
statuses of events and the values of variables are fixedglarcombo step (i.e., theHS
ComBoO STeEPand thePRESENT INNEXT COMBO STEPsemantic options). Upon receiving
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Table 11 Combo-step maximality semantic options.

| Options Definition Characteristics Examples |

COMBO SYNTACTIC No two transitions with . N/A
overlapping arenas thay (+) Syntactical scope for comb

enter designated “comb steps ) . .
stable” control states can (*) SeduentialOr transitions in a

be taken in a samg cOmMPostep
combo step. (-) Non-terminating combo steps

ComMBO TAKE ONE No two transitions with Terminati b RSML [30]
overlapping arenas cap () Terminating combo steps and State-

be taken in a same (f) Unclear, non-syntactical ... e
combo step. scope for combo steps

ComMBO TAKE MANY | No constraint on transi- . . . N/A
tions that can be taken i (+) SequentiaOr transitions in a

a combo step. comba step .
(-) Unclear, non-syntactical scopg

for combo steps

(-) Non-terminating combo steps|

the environmental input evesitap_twice, the model executes transitionsandts, at which
point the first combo step concludes. The second combo st Isy first considering the
effects of the transitions of the first combo step, i.e., ffieeeof swapping the values©&nd

b and the effect of generating eveatsp_a andswap_b, and then executing transitiong
andt4. At the end of the second combo step the big step concludebewdlues ofi andb
are the same as their values at the beginning of the big stépe kffect of the assignments of
the transitions are not hidden from one another during a corsiiep, the correct behaviour
cannot be achieved. For example, depending on whether t- is executed first, both
andb are assigned the initial value for a, respectively?!

Example 20 The model in Figur&2 shows a simple model of a system that controls the op-
eration of a chemical plant® The operation of the plant relies on two chemical substances
A andB. There are two processes, shown as two Or control statesess_1 and Process_2,
which can independently increase the amounts of substah@sl B by one unit or two
units, respectively. The two processes may simultanecemlest for an increase; i.e., envi-
ronmental input eveniac_one andinc_two might be received at the same big step. Variables
a and b represent the amount of requested increase for substanaed substanca, re-
spectively. Environmental output evendrt_process(a, b) instructs a physical component
of the plant to increase the amounts of substah@ndB, by amounts andb, respectively.
Internal eventprocess is meant to instruct th&ontroller to increase the amounts of the
substances. Environmental input evend _process signifies that the requested amounts of

11 As pointed out by one of our reviewers, choosing thekE MANY big-step maximality semantics,
the MANY concurrency semantics, theRPSENT INNEXT CoMBO STEP event lifeline semantics (or the
PRESENT IN REMAINDER event lifeline semantics), and the RH®&&.L STEP assignment memory pro-
tocol, also yields the correct behaviour. While such anvedence of behaviours holds for some models, it
does not always hold. For example, if there is a possibitityr&ce conditions (e.g., in Exam®é) or if it is
important whether a model can reach certain configuraticcoofrol states or not, then it is not possible to
replace the 8YGLE concurrency semantics with theAWy concurrency semantics.

12 This example is inspired by the motivating exampleh jvhere sequence diagrams are used for mod-
elling an aspect of the operation of a nuclear power plant.
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Fig. 21 Swappinga andb twice, using combo steps.
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Fig. 22 Controlling the operation of a chemical plant.

the substances have been successfully increased by theghlegsnponent of the plant, at
which point the system can process new requests.

Consider the snapshot where the model resides in its defanttol statesinc_one and
inc_two are received, and andb are zero. The correct behaviour is to increase the amount
of A and B by three units. We choose tl@gomB0o TAKE ONE option for the combo step
maximality semantics, th€AKE ONE option for the big-step maximality semantics, and
the SINGLE concurrency semantics. The only pair of semantic optioas\tield a correct
behaviour are, th&RESENT INNEXT CoMBO STEPfor the event lifeline semantics and the
RHS SQuaLL STEPsemantic option for the assignment memory protocol seegmihich
produce the following two correct big steggt: }, {ts}, {t5}) and({t3}, {t1}, {t5}). If, for
example, we choose tRRESENT INNEXT COMBO STEP event lifeline semantics together
with theRHS ComBO STEPassignment memory protocol, the same big steps as before are
produced, but the former big step increases the amoumsasid B by two units only, where
as the latter big step increases the amounté.@ind B by one unit only. If we choose the
PRESENT IN REMAINDER event lifeline semantics together with tR&HS SvALL STEP
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assignment memory protocol, which means that we do not reeetidose any semantic
option for the combo-step maximality semantic aspect, tuitianal big step({t; }, {t5},
{ts}) is possible, which ignores the increase requestethioyess_2.

Example 21 In Example6, we described some possible semantics to make the counter in
Example2 to behave correctly. Another possible semantics is a seosahiat subscribes to

the ComBO TAKE ONE combo-step maximality semantics, fireke ONE big-step maxi-
mality semantics, th8INGLE concurrency semantics, and tRRESENT INNEXT COMBO
StePevent lifeline semantics.

Example 22 Another way to maintain the invariant in Examgl&is to choose th€omBo
TAKE ONE combo-step maximality semantics, thekE MANY big-step maximality se-
mantics, and th(RHS ComBO STEP assignment memory protocol. The execution of the
first combo step{t;}, {t3}, results ina = 9 andb = 4, and the execution of the second
combo step{ta}, {t4}, results ina = 27 andb = 22. The order of the execution ¢f; }
and{ts}, and,{t2} and {t4}, do not affect the end result. If we choose @@mBO TAKE
MANY combo-step maximality semantics, then the invariant wbeldnaintained, but the
big step concludes witta= 21 andb = 16;

3.9 Summary of Semantics and Notations

In our framework, a BSML is described by, first, describingvhts syntax can be translated
to our normal-form syntax, and then, enumerating its chofcgemantic options. The syn-
tactic translation to our normal-form syntax is straightfard for most BSMLs, as briefly
discussed in Sectioh 3. In the light of our semantic deconstruction, the specificadf the
semantics of a BSML is also straightforward. Tabkshows the specification of the seman-
tics of some of the BSMLs that we have considered throughwpaper. For the sake of
brevity, we have not included thexternal Output Events semantic aspect. Also, we have
merged some aspects (e.g., Ereabledness Memory Protocol for Internal Variables in
GC merged withinternal Variables in RHS semantic aspects).

4 Semantic Side Effects

In this section, we describe tlséde effectshat arise when a group of semantic options are
chosen together, and explain ways to avoid them. The chdeg@up of semantic options
has a “side effect” when it causes a semantic complicatiah ithnot due to the original
design of any of the semantic options. A side effect can somestbe tolerated because the
benefit of having a set of semantic options in a BSML outwetbles caused complication.

Complicated event lifeline semanticsTo achieve an uncomplicated semantics when choos-
ing the RRESENT IN WHOLE event lifeline semantics, it is recommended to choose the
TAKE ONE big-step maximality semantics also, as done in Argod.[The TAKE ONE
semantic option introduces less complication comparedhe¢oother big-step maximality
semantics, because the status of an event in a big step caeritdieéd by considering at
most one transition of each of the non-overlapping arenasrabdel. Similarly, it is rec-
ommended to choose thesHE ONE semantic option, when choosing the NG SyN-
CHRONOUSEVENT semantic option for interface events.

40



Table 12 Example BSMLs and their semantic options21]f Harel statecharts,4p]: Pnueli and Shalev
)|: Statemate, {]: Esterel, B3]: Argos, [22]: SCR, and B]: reactive modules.)

statecharts,q0]: RSML, [

[ Semantic Aspects

| Semantic Options

[P =] 29

I EIPA] 9]

SYNTACTIC v
Big-Step Maximality | Take ONE VR4 Va4
TAKE MANY Va4
Concurrency SINGLE VIV v
MANY Va4 v
Small-Step SOURCE/DESTINATION
Consistency ORTHOGONAL
ARENA ORTHOGONAL Va4 v
Preemption NON-PREEMPTIVE a4
p PREEMPTIVE
PRESENT INWHOLE VAR
(Internal) Event PRESENT INREMAINDER Va4
Lifeline PRESENT IN NEXT COMBO |V
STEP
PRESENT IN NEXT SMALL
STEP
PRESENT IN SAME
SYNTACTIC INPUT EVENTS v Va4
Environmental Input | RECEIVED EVENTS  As Va4 v
Events ENVIRONMENTAL
HYBRID INPUT EVENT
STRONG  SYNCHRONOUS
EVENT
Ei?:laigzce) Event WEAK SYNCHRONOUS
EVENT
ASYNCHRONOUSEVENT v
(Internal Variables) | GC/RHS BG STEP v
Enabledness GC/RHS MMBO STEP v
Memory Protocol GC/RHS SALL STEP Va4 v
GC/RHS SRONG v
(Interface Variables) | SYNCHRONOUSVARIABLE
Memory Protocol GC/RHS WEAK
SYNCHRONOUSVARIABLE
GC/RHS ASYNCHRONOUS
VARIABLE
Combo-Step COMBO SYNTACTIC
Maximality CoMBO TAKE ONE
COMBO TAKE MANY
NONE v IV
gtrg:sromeall EXPLICIT ORDERING
DATAFLOW v |/
HIERARCHICAL v
Priority EXPLICIT PRIORITY
NEGATION OF TRIGGERS VIV
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Cyclic evaluation orders: To avoid a “cyclic evaluation order” when using thew_small
operator, as described in Sectidrb, a conservative well-formedness criterion can disal-
low small steps whose assignments create cyclic evaluatagrs. Such a well-formedness
criteria depends on the choice of the semantic options ®iSthall-Step Consistency
and Preemption semantic aspects. For example, consider a BSML that sblesctd the
ARENA ORTHOGONAL small-step consistency semantics and tREEMPTIVE preemption
semantics. For such a semantics, a conservative well-fbmess condition to avoid a cyclic
evaluation order is to require that, for a pair of orthogormttrol statess; and.Ss, if the
arena oft is Sy, or a descendent df;, and¢ usesnew_snal | (u) in the RHS of its as-
signmenta; and assigns a value to variahldén assignment., then there is no’ whose
arena isS,, or a descendent of;, and usesmew.snal | (v) in the RHS of its assignment
a}, together with assigning a value #dn its assignment.

Ambiguous dataflow: An ambiguity arises for a dataflow order if a variable is predioy
thenew operator but it is assigned values more than once during stéjg A sufficient, but
not necessary, condition for an unambiguoustAFLow order of small-steps is to require
the TAKE ONE big-step maximality semantics with each variable assigaduae only by the
transitions that have the same arena, as is done in S¢R3 and reactive modules3].
Similarly, the TAkE ONE semantic option can be chosen together with the GG
SYNCHRONOUS VARIABLE or the RHS SRONG SYNCHRONOUS VARIABLE semantic
options for interface variables, to avoid ambiguity in abitag the value of an interface
variable.

Complicated explicit ordering: In the ExPLICIT ORDERING semantic option, when the
small steps of a big step are ordered according to the ordéweddrenas of the transitions
of the big step, being able to take two transitions with theearena in the same big step
causes complication in defining the semantics. For exanfplee TAKE MANY big-step
maximality semantics is chosen, complication arises &zalbig step may consist of sev-
eral rounds of small steps, some of the small steps belorigitige same arena. To avoid
a complicated semantics, the ke ONE big-step maximality semantics could be required
when the &pPLICIT ORDERING order of small steps semantics is chosen.

Partial explicit ordering: Frequently, the 8IGLE concurrency semantics is chosen with
the ExPLICIT ORDERING order of small-steps semantics when thePEICIT ORDERING
ordering permits only one transition to be taken in each ksteyp. However, if the ordering
is partial, or hierarchically-based, then theNly concurrency semantics can also be used.

Inconsistent preemption and priority semantics:When the REEMPTIVE preemption se-
mantics is chosen, the choice of the priority semanticsrogtes whether the interrupt
transition has higher or lower priority than non-interragnsitions. For example, giving
the highest priority to a transition whose destination oulrgtate is the lowest in the com-
position tree, i.e., the choice of theeBTINATION-CHILD semantics, has the effect of giv-
ing interrupt transitiort in Figure 11(b) a higher priority thart’, which is an intuitive,
desired behaviour. Similarly, the RENA-PARENT priority semantics gives transitionin
Figure11(a) a higher priority than transition.

Conflicting maximality: The choice of the BNTACTIC semantic option for the big-step

maximality semantics together with the choice of theMB0O SYNTACTIC semantic option
for the combo-step maximality semantic aspect means thag# step may move a model
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to a snapshot where the model resides in a pair of orthogamdtat states, one being a
Stable control state and the other@Gombo Stablecontrol state. In such a snapshot, it is
unclear whether the current combo step has concluded, oAfietnatively, choosing the
TAKE MANY semantic option for the big-step maximality semantic asped the @MBO
SYNTACTIC semantic option for the combo-step maximality semantieespvoids this
problem.

5 Related Work

We cover a more comprehensive class of BSMLs and range of B&Whantics than found
in related work. Relative to previous comparative studfelifterent subsets of BSMLs (e.qg.,
statecharts variantg §, 2€], Synchronous languages€], Esterel variants{,47], and UML
StateMachines4[]), we isolate the essential semantic aspects in a langnaggendent
manner and in terms of the big step as a whole. Huizing anchG2& compare simple
BSMLs that have only events, covering most of the eventifilesemantic options and the
observability of events among components. In our decoctibry we are able to describe
these options more concisely and place them in the contesthef semantics aspects for
BSMLs.

By considering a big step as a whole, we have raised the ldvabsiraction of the
semantic variations compared to our previous work on tetagamanticsy/]. The com-
position operators of template semantics are modelledwi@ancurrency and consistency,
and event lifeline semantic aspects. For example,irtexleavingand parallel composi-
tion operators correspond to theN&LE and MANY semantic options, respectively; and
the rendezvougsomposition operator is represented via tlREBENT IN SAME event life-
line semantics and the My concurrency semantics. Tligterrupt composition operator
is modelled via the small-step consistency and preemp#omastic options. By relating
parts of the behaviour of composition operators to the stepasitic aspects, we provide a
foundation for understanding the range of possible contiposbperators.

6 Conclusion and Future Work

We have presented a novel deconstruction of the semantiig-step modelling languages
into eight high-level, mostly orthogonal semantic aspeéfs analyzed the relative advan-
tages and disadvantages of the characteristics of the semations of each aspect. The
design/choice of a language involves making tradeoffs eebhndifferent options. Using our
aspects, options, as well as the taxonomy of the syntaatistaets of BSMLs, represented
conveniently by two feature diagrams and a set of depenégmetween their features, our
framework empowers requirements engineers and languasigneées to make such trade-
offs in an informed way. For example, if averting non-deti&ism is desirable, semantics
that permit race conditions, unordered execution of sntefiss SNGLE concurrency, non-
prioritized transitions, etc. are less suitable choic&R$2,23] is an example of a BSML
with simpler semantics than many others because its ladkdrtthical control states means
it does not require the semantic aspects of small-stepstensiy, preemption, and priority.
Our analysis of the side effects between semantic optidowsk requirements engineer
to identify the difficulties that may arise in certain comdgions of semantic features. For
example, the semantics in Examplé, which avoids the undesired non-determinism of
the SNGLE concurrency semantics, is not found in an existing BSML. ey, a user of
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this semantics is warned about the “complicated explidedng” side effect described in
Section4.

We have devised a parametric semantic definition schemdditmalizes a large sub-
set of the BSML semantics that arise from our deconstructidiile preserving its struc-
ture [L2]. We believe our work forms a basis for identifying and foflpgroving seman-
tic properties of a set of semantic options when considesgdther, as opposed to when
considered in isolation, as we described in this paper. $ucperties would provide the
requirements engineer with a better sense of what are “gootisky” combinations of
semantic choices to produce a simple, elegant model fortaraysnder study.

In the future, we plan to create tool suites based on the faseraantics of BSMLs to
support the analysis of BSML models. We believe that our vaank be used to study how
semantic choices affect the simplicity and performancenafysis tools.
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