IEEE Copyright Notice

Copyright (c) 2009 IEEE

Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material
for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in
other works.

Published in: Proceedings of IEEE International Requirements Engineering
Conference (RE'09), September 2009

“Semantic Criteria for Choosing a Language for Big-Step Models”

Cite as:

Shahram Esmaeilsabzali, Nancy A. Day, Joanne M. Atlee, and Jianwei Niu. 2009.
Semantic Criteria for Choosing a Language for Big-Step Models. In Proceedings of
the 2009 17th IEEE International Requirements Engineering Conference, RE (RE
'09). IEEE Computer Society, Washington, DC, USA, 181-190.

BibTex:

@inproceedings { Esmaeilsabzali:2009:SCC:1683309.1684864,

author = {Esmaeilsabzali, Shahram and Day, Nancy A. and Atlee, Joanne M. and Niu,
Jianwei},

title = {Semantic Criteria for Choosing a Language for Big-Step Models},

booktitle = {Proceedings of the 2009 17th IEEE International Requirements Engineering
Conference, RE},

series = {RE '09},

year = {2009},

pages = {181--190}

H

DOI: https://doi.org/10.1109/RE.2009.29

Semantic Criteria for Choosing a Language for Big-Step Models

Shahram Esmaeilsabzali, Nancy A. Day, Joanne M. Atlee
David R. Cheriton School of Computer Science

University of Waterloo
Waterloo, Ontario, Canada N2L 3G1

{sesmaeil,nday,jmatlee } @cs.uwaterloo.ca

Abstract

With the popularity of model-driven methodologies, and
the abundance of modelling languages, a major question
for a requirements engineer is: which language is suitable
for modelling a system under study? We address this ques-
tion from a semantic point-of-view for big-step modelling
languages (BSMLs). BSMLs are a class of popular be-
havioural modelling languages in which a model can re-
spond to an input by executing multiple, possibly concur-
rent, transitions. e deconstruct the operational seman-
tics of a large class of BSMILs into high-level, orthogonal
semantic aspects, and analyze the relative advantages and
disadvantages of the common semantic options for each of
these aspects. Our goal isto empower a requirements engi-
neer to compare and choose an appropriate BSVIL.

1 Introduction

With the popularity of model-driven methodologies, and
the abundance of modelling languages (and domain-specific
languages), a major question for a requirements engineer
is: which language is suitable for modelling a system un-
der study (SUS)? We introduce the term big-step mod-
elling languages (BSMLs) to characterize a class of pop-
ular behavioural modelling languages in which a model
can respond to an environmental input by executing a big-
step, which consists of a sequence of small-steps, each of
which may contain multiple concurrent transitions. Nu-
merous BSMLs have been introduced (e.g., Statecharts[9]
and its variants [31], Synchronous languages [8], and UML
Statemachines [25]); many of which have similar syntaxes
but subtly different and complicated semantics.

The choice of a BSML for an SUS depends on many fac-
tors, including the domain of the SUS, the expertise of the
requirements engineer in a class of notations, etc. In this
paper, we address this question from a semantic point-of-
view for a large class of BSMLs. Our first contribution is a
novel deconstruction of the operational semantics of a large
class of BSMLs into seven high-level, mostly orthogonal,

Jianwei Niu
Department of Computer Science
University of Texas at San Antonio
San Antonio, Texas, U.S.A 78249
niu@cs.utsa.edu

semantic aspects and an enumeration of the common se-
mantic options found in existing BSMLs for each of these
aspects. Our second contribution is an analysis of the rela-
tive advantages and disadvantages of each semantic option
to provide rationale for a requirements engineer to choose
one option over another.

Our deconstruction arises from surveying existing
BSMLs viewed from the perspective of the big-step as a
whole. We separate the operation of a big-step into orthog-
onal aspects where existing languages have shown varia-
tions. We believe these seven aspects capture the essential
semantic differences in most existing BSMLs, and thereby
empower requirements engineers to compare and choose
the most suitable BSML for an SUS. Choosing a set of se-
mantic options involves making trade-offs among consider-
ations such as simplicity, determinism, causality, ordered-
ness, modularity, etc. We envision our work to be used in
three ways: (i) as a semantic catalog, to compare the seman-
tics of existing BSMLs and choose an appropriate BSML,
(ii) as a semantic scale, to assess the semantic properties
of a BSML, and (iii) as a semantic menu, to help design a
BSML from scratch.

Our deconstruction is more concise and systematic
than previous comparative studies of different subsets of
BSMLs (e.g., [17, 8, 31, 4, 29, 30]) because it recognizes
a big-step as a whole, rather than only considering its con-
stituent transitions operationally. In our previous work on
template semantics [24], we created a formal framework
for comparing the semantics of many BSMLs by instanti-
ating a template of 22 parameters that define a small-step.
The seven semantic aspects we present here capture cross-
cutting dependencies found in the template parameters, cre-
ating a deconstruction that defines a big-step directly. This
higher level of abstraction isolates the semantic differences
between languages more clearly.

The remainder of the paper is organized as follows. In
Section 2, we describe the common syntax and common
basic semantics that we use throughout the paper. In Sec-
tion 3, we present our seven semantic aspects for BSMLSs,

the semantic options for each, and an analysis of the rela-
tive advantages and disadvantages of each semantic option.
We use a model of a dialer subsystem of an IP phone de-
vice as a running example. In Section 4, we describe the
interdependencies between the choices of semantic options.
Section 5 covers the related work. Finally, in Section 6, we
conclude our paper and discuss future work. Our techni-
cal report [7] has more detailed discussion, more compre-
hensive enumerations of the BSMLs that use each semantic
option, and more examples.

2 Common Syntax and Basic Semantics

In this section, we present the terminology that we use
throughout the paper. We first explain our common syntax,
and then describe the common basic semantics, which can
be refined by semantic options.

2.1 Syntax

There is a plethora of BSMLs, including those with
graphical syntax (e.g., Statecharts variants [31], Ar-
gos [22]), and those with textual syntax (e.g., Reactive
Modules [1], Esterel [3], SCR [14, 13]). As is usual when
studying a class of related notations, we use a syntactic
normal form that is sufficiently expressive to represent the
syntax of other notations [16]. Our normal form syntax is
the composed hierarchical transition system (CHTS) syn-
tax [24].1 A model is a CHTS and consists of: (i) a compo-
sition tree whose nodes are distinct control states, and (ii) a
set of transitions between the control states.

Control States: A control state (e.g., DialDigits in
Figure 1) is a named artifact that a modeller uses to rep-
resent a noteworthy moment in the execution of a model.
Such a moment is an abstraction that groups together the
past behaviours (consisting of inputs received by the model
and the model’s past reactions to these inputs) that have a
common set of future behaviours. By using a control state,
a modeller can describe future behaviour in terms of the
current control state and the current environmental inputs. 2

A control state has a type, which is either Basic, Or, or
Concurrent. A leaf node of a composition tree is a Basic
control state. An Or or a Concurrent control state is hi-
erarchical, and has children, each of which can be of any
type. For example, in Figure 1, control state Dialing is a
Concurrent state and has two Or control states, Dialer
and Redialer. We use the parent, ancestor, child, and de-
scendant relations with their usual meanings. The least
common ancestor of two control states is the lowest con-
trol state (closest to the leaves of the composition tree) in
the hierarchy of the composition tree that is an ancestor
of both. Two control states are orthogonal if neither is an
ancestor of the other and their least common ancestor is a

Lcf., [24] for the mapping of some BSMLs to the CHTS syntax.
2Some BSMLs use the lines of programs to realize control states.

Dialing

Dialer

to: (dial(d) A redial)[c = 0]/lp:=d;c:=1; out(d)

ts: dial(d)[c < 10]
/lp:=1lpx10+d;
t1: (dial(d) A —~redial)[c < 10] e+ Tout(d)
Je++;lp:=1px 10+ d; "out(d)

Redial
edrater ts: redial[c = 0] /p:=lp; “dial(digit(lp, 1))

te: [c<|pl]
“dial(digit(p, (c+1))

Figure 1. Dialer/Redialer Model.

Concurrent state. An Or control state has a default con-
trol state, which is its child and is identified by an incoming
arrow that has no source state. A hierarchical transition
system (HTS) is a maximal subtree with no Concurrent
control states (e.g., Dialer and Redialer).

Transitions. A transition (e.g., t1 in Figure 1) has a
source and a destination control state, and consists of four
optional parts: (i) an event trigger, which is a conjunction
of events and negation of events;® (ii) a variable condi-
tion (enclosed by “[]”), which is a boolean expression over
the set of variables of the model; (iii) a sequence of as-
signments (prefixed by a “/”); and (iv) a set of generated
events (prefixed by a “ ™). A generated event may have
a parameter that can be modelled by associating a variable
with it. The types of variables are not relevant, and we as-
sume all models are well-typed. Variables and events are
global; local variables and scoped events can be modelled
by a renaming that turns them into their global equivalents.

2.2 Common Basic Semantics

Initially, a model resides in the default control states of
its Or control states, no events are present, and its vari-
ables have their initial values. The operational semantics
of a BSML describe how a model reacts to an environmen-
tal input via a big-step. An environmental input is a set of
events and variable assignments that are received from the
environment. Figure 2 illustrates a big-step 7", which is a re-
action of a model to environmental input 7. A big-stepis an
alternating sequence of small-steps and snapshots, where a
small-step is the execution of a set of transitions, and a snap-
shot is a tuple that stores information.* T;’s (1 < i < n)
are small-steps of T', and sp, sp’, and sp;’s (1 < i < n) are
its snapshots. Some BSMLs, such as RSML [19], Statem-
ate [11], and Reactive Modules [1], introduce an interme-
diate grouping of a sequence of small steps, which we call

3Disjunction can be modelled by splitting a transition into multiple
transitions each of which represents one of the disjuncts [28].

4Big-steps and small-steps are often called macro-steps and micro-
steps, respectively. We adopt new terms to avoid association with the fixed
semantics of the languages that use those terms.

t1

E——
—_— —

St e 00— =0 ~®
I sp : SP1 Spn—2 i spn_1 i sp
tm
Small-steps —— ~—~— =
T Th—2 Th-1
Combo-steps s — - ~ -
Big-step T ~ ~ ~

Figure 2. Steps.

a combo-step. Sections 3.2 and 3.3 describe when combo-
steps are useful.

Snapshots. A snapshot is a tuple that consists of: (i) a
configuration, which is a set of control states; (ii) a vari-
able evaluation, which is a set of variable name, value pairs;
and (iii) a set of events. A big-step, small-step, or combo-
step has a source and a destination snapshot (e.g., sp and
sp’ are source and destination snapshots of 7°).

Enabledness: In each small step, a set of enabled tran-
sitions is chosen to be executed. A transition is enabled
if its event trigger and variable condition are satisfied, and
its source control state is in the source configuration of the
small-step. Different semantic options use different snap-
shots of a big-step to define enabledness.

Execution: The effects of the execution of the transi-
tions of a small-step create its destination snapshot. When a
transition is executed, it leaves its source control state (and
its descendents), and enters a destination control state (and
its descendents). When entering an Or control state, a tran-
sition enters its default control state, and when entering a
Concurrent control state, it enters all of its children.
The semantics of event generation and variable assignment
differ between BSMLs. The execution of a small-step is
atomic: the variable assignments and event generation of
one transition cannot be seen by another transition (except
for the “SAME” event lifeline option [cf., Section 3.2]). Be-
cause of atomicity, a sequence of assignments on a transi-
tion can be converted to a set of assignments [18, 20].

When choosing a BSML for modelling an SUS, the
domain of the SUS must satisfy the assumptions of the
BSML regarding its ability to take multiple transitions in
response to an environmental input and not miss other in-
puts. There are three types of assumptions: (i) fast compu-
tation (also known as synchrony hypothesis and zero-time
assumption [3]), which states that the system is fast enough
and thus never misses an input; (ii) helpful environment,
which states that the environment is helpful by not issuing
an input when the system is not ready [8]; and (iii) asyn-
chronous communication, which states that the system is
equipped with a buffering mechanism to store the environ-
mental inputs. The first two assumptions are mutually ex-
clusive with the third one. In this paper, we consider only
the BSMLs with the first two assumptions.

Initialization with
Environmental Inputs

Determine Transitions
Enabled by Events
(Event Lifeline—

Section 3.2)

!

Determine Transitions
Enabled by Variables
(Enabledness Memory Consistent Sets of
Protocol — Section 3.3) Enabled Transitions

¢ (Concurrency and
Consistency — Section 3.5)

Maximal
Big-step? (Maximality
—Section 3.1)

Determine the Maximal,

Determine Transitions
That Satisfy the
Ordering Constraints

(Order of Small-steps
— Section 3.4)

I

Choose One High Priority
Set of Transitions
(Priority — Section 3.6)

Execute the Small-step

. (Assignment Memory
End of Big-step Protocol — Section 3.7)

Figure 3. Operation of a Big-step.

3 Semantic Aspects

We deconstruct the operation of a big-step into seven
stages described in Figure 3. This systematic deconstruc-
tion is based on: (i) conceptual sequentiality in the process
of creating a small-step (partly based on the syntactic ele-
ments of the model), (ii) orthogonal concerns in the opera-
tion of a big-step, and (iii) semantic variation points in ex-
isting BSMLs. Each stage of the diagram represents one of
our semantic aspects. A semantic aspect includes a collec-
tion of semantic options, each of which is a semantic choice
for carrying out a stage.®

There are seven semantic aspects: maximality, event
lifeline, enabledness memory protocol, order of small-
steps, concurrency and consistency, priority, and assign-
ment memory protocol. The maximality aspect specifies
when a big-step ends, at which point the environment is
sensed for new environmental inputs, and a new big-step
begins. The event lifeline aspect specifies how far within a
big-step a generated event can be sensed to trigger a tran-
sition. The enabledness memory protocol aspect specifies
the snapshot from which the values of variables are read to
enable the variable condition of a transition. The order of
small-steps aspect describes options for the order of tran-
sitions within a big-step. From the transitions enabled by
events, variables, and ordering constraints, the concurrency
and consistency aspect chooses the potential small-steps:

5The model in Figure 3 can be extended to include combo-steps by
creating an inner loop that controls the maximality of combo-steps.

| Options | Advantages | Disadvantages | Examples |
SYNTACTIC | Traceable big-steps Non-terminating big-steps | Esterel [3] (pause command), and Rhapsody [10]
and UML Statemachines [25] “run-to-completion”
TAKE ONE Terminating Unclear destination Statecharts [9, 12, 28], Reactive Modules [1], and
big-steps Argos [22]
TAKE MANY | Can specify sequen- | Unclear destination and | Statemate [11] and RSML [19]
tial computation non-terminating big-steps

Table 1. Maximality Semantic Options.

first, it specifies whether more than one transition can be
taken in a small-step, and second, if more than one tran-
sition can be taken, it specifies the consistency criteria for
including multiple transitions in a small-step. The priority
aspect chooses a small-step from the set of potential small-
steps. The assignment memory protocol aspect specifies the
snapshot from which the value of a variable in the righthand
side of an assignment is read.

In the following subsections, we describe each semantic
aspect. We summarize the semantic options for each aspect
and their relative advantages and disadvantages in a table,
which also includes representative BSMLs for each option.
These options cover the variations found in most existing
BSMLs. We use the SMALL CAP font for the name of se-
mantic options. Throughout the section, we present exam-
ples that are meant to demonstrate the differences between
semantic options (but not to endorse one over another). The
model snippets in our examples are not complete. Finally,
Section 3.8 mentions an additional aspect regarding distin-
guishing environmental and controlled variables/events.

3.1 Maximality

The maximality semantics of a BSML specifies when the
sequence of small-steps of a big-step concludes (i.e., when
the model becomes stable). Table 1 lists the possible se-
mantic options. There are three ways to specify the end of
a big-step: (i) the SYNTACTIC option, where a modeller can
designate the entrance to a control state or the execution of
a transition as the end of a big-step; (ii) the TAKE ONE op-
tion, which allows each HTS to take at most one transition
in a big-step;® and (iii) the TAKE MANY option, which al-
lows a sequence of small-steps to continue executing until
there are no more enabled transitions to be executed. The
TAKE MANY option is useful for modelling a computation
that consists of multiple sequential steps within a HTS.

Scope of a big-step: In the TAKE ONE and the TAKE
MANY options, the end of a big-step is not obvious, which
can be confusing for a modeller. In the SYNTACTIC op-
tion, the end of a big-step can be traced syntactically, but
a big-step might have the option to conclude or continue.

6The execution of a transition whose source is a Concurrent control
state is counted towards all of its descendant HTSs.

~
t1: dial(d)[c < 10]
Figure 4. Dialer System.

In the SYNTACTIC and TAKE MANY options, it is possible
for a big-step to never terminate. Some BSMLs with the
SYNTACTIC semantics require the non-stable control states
of a model to have “else” transitions so that a big-step can
always reach a stable configuration (e.g., [25, 10]).
Combo-step maximality: The same semantic options
can be used for the maximality of combo-steps (but usually
the TAKE ONE and TAKE MANY options are chosen for
combo-step and big-step maximality, respectively [11, 19]).

Example 1 The model in Figure 4 collects a dialed digit
of a phone device (environmental input event dial(d)) and
transmits the dialed digit d to the IP network via generated
event out(d). Variable ¢ allows maximum 10 digits to be
collected, at which point the central IP system would con-
nect the caller to the dialed callee (we do not model the
connection functionality of the system). The “ ++" opera-
tor denotes increment by one.

Assume dial(d) persists during a big-step (i.e, if re-
ceived, it is always present), and c is zero. If the TAKE
MANY option is chosen, then upon receiving the first digit,
the model sends the same digit 10 times. If the SYNTAC-
TIC optionis chosen and entering D ends a big-step, or the
TAKE ONE option is chosen, the model behaves correctly.

3.2 Event Lifeline

A generated event of a transition is broadcast to all parts
of a model. An event’s status, which is either present or
absent, can be sensed by the event trigger of a transition.
The event lifeline semantics of a BSML specifies the snap-
shots of a big-step in which a generated event can be sensed
as present. The maximum lifeline of an event is the big-
step in which it is generated. There are five lifeline seman-
tics (shown in Table 2): (i) in the WHOLE option, a gener-
ated event is present throughout its big-step, from the begin-
ning of its big-step; (ii) in the REMAINDER option, a gen-
erated event is present in the snapshot after it is generated

| Options | Advantages | Disadvantages | Examples |
WHOLE Modularity and global consistency | Non-causality Argos [22] and Esterel [3]
REMAINDER Causality Unorderedness and Statecharts [12, 28]

global inconsistency

NEXT CoMBO-STEP | Causality and some level

Unclear scope of combo-steps | Statemate [11] and

of orderedness and multiple-instance events | RSML [19]
NEXT SMALL-STEP | Causality and orderedness Multiple-instance events Statecharts[6]
SAME Instantaneous communication Non-causality and multiple- | Used in [24]

instance events

Table 2. Lifeline Semantics.

and persists until the end of its big-step; (iii) in the NEXT
CoMBO-STEP option, a generated event is present during
the next combo-step; (iv) in the NEXT SMALL-STEP option,
a generated event is present in the next snapshot; and (v) in
the SAME option, a generated event is communicated in-
stantaneously only during the small-step in which it is gen-
erated.” Implicit events, such as entered (s) [27] (gener-
ated when control state s is entered) or @T (¢) [14, 13] (gen-
erated when the value of variable ¢ changes from false to
true), may have the same semantics as the event lifeline se-
mantics of named events, or not.

Multiple-instance events. The last three lifeline seman-
tics allow multiple instances of the same event, generated by
different small-steps, to exist in the same big-step. These
semantics are complex in that the status of an event can
change multiple times in a big-step.

Casuality: A big-step is causal if its small-steps can be
sequenced such that the small-steps prior to taking a tran-
sition generate any events that are sensed as present by the
transition. To a modeller, the transitions of a non-causal
big-step may seem to execute out of the blue.

Orderedness: The REMAINDER semantics lacks a “rig-
orous causal ordering” [19]: if event e is generated earlier
than event es, then transitions that are triggered by e; do
not necessarily execute earlier than the ones triggered by
es. The NEXT COMBO-STEP semantics was devised to al-
leviate this problem by having a “rigorous causal ordering”
between combo-steps while being insensitive to the order of
event generation within a combo-step [11, 19]. A disadvan-
tage is that a modeller needs to keep track of the scope of
a combo-step in order to consider its generated events all at
once in the next combo-step.

Modularity: The WHOLE option is modular [17] with
respect to events: A generated event during a big-step can
be conceptually considered the same as an environmental
input event because it is present from the beginning of the
big-step. In a non-modular lifeline semantics, a part of a
model cannot play the role of the environment for another
part, which means that a model cannot be constructed in-

"The SAME semantics is usually used in process algebras (e.g.,
CCS [23] and CSP [15]), but can also be adapted for BSMLs [24].

REMAINDER

WHOLE

Globally
Consistent
and
Causal

Globally
Inconsistent

Figure 5. Global Consistency vs. Causality.

crementally. Extensions of the model may change the be-
haviour in different ways than the environment does. There-
fore, all parts of a model should be created together.

Global inconsistency: The REMAINDER option can
produce globally inconsistent big-steps [27, 28]. A big-step
is globally inconsistent if it includes a transition that gen-
erates an event and a transition triggered by the negation of
that event. A globally inconsistent big-step is undesired be-
cause an event is sensed both as absent and present in the
same big-step. It is possible to avoid a globally inconsistent
big-step by not taking a transition that generates an event
that was sensed as absent earlier [21].

Global consistency vs. causality: Figure 5 shows the
relationship between the big-steps of the REMAINDER se-
mantics and the WHOLE semantics. A big-step 7" that is
produced by a globally consistent REMAINDER semantics
can be also produced by a WHOLE semantics because 1"’s
generated events, by the definition of global consistency,
can be assumed to be present from the beginning of the big-
step. Conversely, a big-step 7" that is produced by a causal
WHOLE semantics can be also produced by a REMAINDER
semantics because, by the definition of causality, an event
is sensed as present by a transition of 77 only if it is already
generated in the big-step. Therefore, if global consistency
is guaranteed syntactically (e.g., there are no negated event
triggers), then the REMAINDER semantics generates a sub-
set of the big-steps of the WHOLE semantics.

Example2 The model in Figure 1 is an extension of the
model in Figure 4 to support “ redial” functionality. Vari-
ablelp storesthelast dialed phone number. Upon receiving

8In [17], modularity is defined only for events, but, in the same spirit,
we extend it to other parts of syntax.

| Options | Advantages | Disadvantages | Examples |
BIG-STEP Non-interference and modularity Non-sequentiality Statecharts [12], SCR [14,
13], and Reactive Modules [1]
SMALL-STEP Sequentiality Interference Esterel [3] and SCR [14, 13]
COMBO-STEP Non-interference and sequentiality | Unclear scope of combo-steps | Statemate [11]

Table 3. Enabledness Memory Protocols.

the redial environmental input, Redialer instructs Dialer,
by generating the corresponding dial events, to dial the dig-
itsof Ip. (We denotethe size of aninteger x as|x| anditsnth
digit as digit(x,n).) Variable p is necessary because once
redialling starts lIp is overwritten. Consider the snapshot
where the environmental input event redial isreceived, c is
zero, and |lp| is 10. Let us assume that redial event, when
received, persists throughout the big-step. Also, let us as-
sume the semantics that follows the SYNTACTIC maximal-
ity semantics (annotating a designated control state with a
“ V"), amemory protocol that uses the up-to-date values of
variables (cf., Section 3.3 and 3.7), a concurrency and con-
sistency semantics where all enabled transitions that can
be possibly taken together in a small-step are taken (cf.,
Section 3.5), and the NEXT SMALL-STEP event lifeline se-
mantics. Such a semantics executes big-step ts5, {to, t¢},
{ts,te}, -+, {ts,te}, {ta,t7}, which transmits the first
digit twice and does not transmit the last digit. If we assume
the SAME event lifeline semantics, then the model behaves

correctly: {ts,to}, {ts,t6}, -+, {ta, t7}.°

3.3 Enabledness Memory Protocol

The enabledness memory protocol of a BSML deter-
mines the value of variables that a transition reads for its
variable condition (VC). There are three possible memory
protocols (shown in Table 3): (i) in the BIG-STEP option,
a read of a variable returns its value at the beginning of the
big-step; (ii) in the SMALL-STEP option, a read of a variable
returns its value from the end of the last small-step; and (iii)
in the ComMBO-STEP option, a read of a variable returns its
value at the beginning of the current combo-step.

Non-interferencevs. sequentiality: The BIG-STEP op-
tion is non-interfering: An earlier small-step of a big-step
does not affect the read value of a later small-step. The
SMALL-STEP option, which is an “interfering” semantics, is
useful for specifying a sequence of computation where each
small-step reads the values from the previous small-step.
The CoMBO-STEP option enjoys non-interference inside a
combo-step and sequentiality when a sequence of combo-
steps is considered. In the CoOMBO-STEP option, it is not
straightforward to determine the scope of each combo-step.

9In both cases, if the size of the redialled number is less than 10, the
model cannot stabilize, and remains in Digal Digits control state.

| Operator | Obtains Value From | Total |
pre (e.g., [19]) | big-step source snapshot v
cur (e.g., [12]) | small-step source snapshot v
new (e.g., [1]) | small-step source snapshot X
new_small small-step destination X
(e.g., [27]) snapshot

Table 4. Variable Operators.

Syntactic keywords. A BSML may provide a variable
operator that obtains a value of a variable that is differ-
ent from its value according to its memory protocol. Ta-
ble 4 lists some common operators and specifies whether
they are total or not. A non-total operator may block until
it can be evaluated. Operator new is different from cur
in that it can be evaluated only if its operand has already
been assigned a value during the big-step, which means
it requires a “dataflow” order (cf., Section 3.4). Operator
new_small returns the value assigned to its operand in the
current small-step. By definition, operator pre is not rele-
vant for the BIG-STEP memory protocol and operator cur
is not relevant for the SMALL-STEP memory protocol.

Example 3 Consider the semantic options in Example 2
that lead to an incorrect behaviour. If we modify the VC
of tg t0 “ [new_small(c) < |p|]” and its event generation
to “ dial(digit(new_small(c) + 1,p))”, then the model be-
haves correctly: t5, {tg,tﬁ}, {t3,t6}, <o, b, {t4,t7}.

3.4 Order of Small-steps

At a snapshot, when it is possible to execute more
than one small-step based on the enabledness of transitions
with respect to variable conditions and event triggers, some
BSMLs non-deterministically execute one (the NONE op-
tion), while others order their executions either by syntac-
tic means (the EXpPLICIT option) or by dataflow orders (the
DATAFLOW option). Stateflow [5] is an example of the EX-
PLICIT option because the transitions of a model are ex-
ecuted according to the graphical, clockwise order of its
HTSs [5]. A dataflow order allows only those orders of
small-step executions in which a transition that writes to a
variable is executed before transitions that read the variable.
The dataflow order of a model can be specified by an ex-
plicit partial order between its variables (e.g., SCR [14, 13]),

| Options | Advantages | Disadvantages | Examples
NONE Simplicity Non-determinism Statecharts [9, 12, 28]
ExpLICIT Control over ordering and | Possible unintended orders | Stateflow [5]
greater determinism
DATAFLOW Natural for some domains and | Possible cyclic orders SCR [14, 13] and Reactive Modules [1]
greater determinism

Table 5. Order of Small-steps Semantic Options.

or by using variable operator new, as described in Sec-
tion 3.3, to determine data dependencies (e.g., Reactive
Modules [1]). In the latter case, each big-step of a model
might have a different dataflow order. The ExpLICIT and
DATAFLOW options can be used to avert undesired non-
determinism in a model by disallowing the execution of
the small-steps that do not satisfy the ordering constraints.
The ExPLICIT option can be difficult to use because a mod-
eller may introduce an unintended order of transitions. The
DATAFLOW semantics can be difficult to use because a mod-
eller might create a cyclic dataflow order, either directly or
by transitivity.

Example4 Consider the semantic options in Example 2
that lead to an incorrect behaviour. Yet another way to
fix the problem is to modify the model by moving the
“p:=1p” assignment from t5; to t,, changing the VC
of tg t0 “c < |new(p) — 1|”, and its event generation to
“ dial(digit(new_small(c) + 1,p))”. Such a model then
behaves correctly: ts, ta, te, {t3,t6}, - - -, t3, {ta, t7}.

3.5 Concurrency and Consistency

BSMLs vary in how the enabled transitions of a model
execute together. Table 6 lists the three concurrency and
consistency semantic sub-aspects that specify: (i) whether
more than one transition can be taken in a small-step, and
if so, (ii) which transitions can be taken together, consider-
ing the composition tree of a model, and (iii) whether the
execution of one transition in a small-step can preempt the
execution of another in the small-step.

3.5.1 Concurrency

There are two options: (i) a small-step can execute one tran-
sition at a time (the SINGLE option), and (ii) all enabled
transitions that can be taken together are taken in a small-
step (the MANY option). The SINGLE option is simple
because it does not have to deal with the complexities of
executing multiple transitions (e.g., race conditions), but it
can cause undesired non-determinism because two enabled
transitions can execute in different orders.

Race conditions: A model has a race condition when
more than one transition in a small-step assigns values to a
variable. Typically, one of the assignments is chosen non-
deterministically [24], but there are also other options [7].

Example5 In Example2, if we assumethe SINGLE option,
instead of the MANY option, then the model in Figure 1 can
create a correct hig-step or an incorrect big-step (e.g., ts,
to, t3, - - -, t7, t4), NON-deterministically. However, if we use
the ExpLICIT order of small-step semantics according to
the graphical, clockwise order of the HTSs, then the model
always behaves correctly: ts, to, tg,ts, te, t3, - -, t7, ta.

Next, we consider two semantic sub-aspects that are rel-
evant when the MANY semantics is chosen and specify the
set of transitions that can be taken together in a small-step.
The small-step consistency sub-aspect deals with transitions
that do not interrupt each other and the preemption sub-
aspect deals with transitions that do interrupt each other.

3.5.2 Small-step Consistency

Inthe SOURCE/DESTINATION ORTHOGONAL option, tran-
sitions whose sources and destinations are pairwise orthog-
onal can be taken together in a small-step. The ARENA OR-
THOGONAL option is more restrictive in that two transitions
can be included in the same small-step only if their arenas
are orthogonal, where the arena of a transition is the lowest
Or control state in the hierarchy of the composition tree that
is the ancestor of the source and destination control states
of the transition. In comparison, the ARENA ORTHOG-
ONAL option is simpler than the SOURCE/DESTINATION
ORTHOGONAL option, but it can introduce undesired non-
determinism by not taking all of the enabled transitions that
the SOURCE/DESTINATION ORTHOGONAL option takes. '

3.5.3 Preemption

The notion of preemption [2] is relevant for transitions that
are not pairwise orthogonal. A transition ¢ is an interrupt for
transition ¢ when the sources of transitions are orthogonal
and one of the following conditions holds: (i) the destina-
tion of ¢’ is orthogonal with the source of ¢, and the des-
tination of ¢ is not orthogonal with the sources of either
transitions (Figure 6(a)); or (ii) the destination of neither
transition is orthogonal with the sources of the two transi-
tions, but the destination of ¢ is a descendent of the des-
tination of ¢’ (Figure 6(b)). The NON-PREEMPTIVE op-
tion allows such a ¢ and ¢’ to be executed together in the

10The same semantic options can be defined at the big-step scope, with-
out requiring the MANY semantics (e.g., ARENA ORTHOGONAL in [28]).

| Options | Advantages | Disadvantages | Examples |
Concurrency
SINGLE Simplicity Non-determinism Statecharts [9, 12, 28], State-
flow [5], and Reactive Modules [1]
MANY Greater determinism Race conditions Argos [22] and Esterel [3]

Small-step consistency

ARENA ORTHOGONAL | Simplicity

Non-determinism

Statecharts [9, 12]

SOURCE/DESTINATION | Greater determinism | Complex Statemate [11] and

ORTHOGONAL UML Statemachines [25]
Preemption

NON-PREEMPTIVE Supports “last wish” Complicated flow of control | Argos [22] and Esterel [3]

PREEMPTIVE Simple flow of control | No support for “last wish” Statecharts [28]

Table 6. Concurrency and Consistency Semantic Options.

S S’
’ !
S CRELALYES
,,,,,,,,,, R
5 S12 t |5 512
(b)

Figure 6. Interrupting Transitions.

same small-step, whereas the PREEMPTIVE option does not.
When the NON-PREEMPTIVE semantics is considered, the
destination configuration of a small-step that includes such
a t and ¢’ is determined by t’s destination (i.e., the des-
tination of ¢’ is not relevant). While complex, the NON-
PREEMPTIVE option satisfies the “last wishes” of the chil-
dren of a Concurrent control state that is interrupted.

Example 6 We extend the model in Figure 1 to disallow
a call to be initiated if the “limit” number of concurrent
callsis reached (determined by environmental boolean in-
put variable limit). Consider a new, high priority transi-
tion ¢’ whose source is Redialer, its destination is a new
control state S, which is not ancestrally related to Dialing,
and its variable condition is “ [limit = true]”. If limit is
trueand a caller dialsthelast digit of a phone number, then
the PREEMPTIVE option aborts the dialing, but the NON-
PREEMPTIVE option allows the call to go through.

3.6 Priority

At a snapshot of a model, there could exist multiple sets
of transitions that can be chosen non-deterministically to be
executed as its small-step. Table 7 shows three common
ways for assigning a priority to a transition to avert non-
determinism. A set of transitions 7% has a higher priority
than a set of transitions 7%, if for each pair of transitions
t, € Ty and to € T5, either ¢t has a higher priority than ¢4
or they are not comparable.

The HIERARCHICAL option is a set of priority seman-
tics that use the hierarchical structure of the control states

of a model to compare the relative priority of two enabled
transitions. For example, “arena-parent” is a priority se-
mantics that gives a higher priority to a transition whose
arena is highest in the hierarchy of a composition tree. The
EXpLICIT priority option explicitly assigns priority to the
transitions of a model (e.g., by assigning numbers to tran-
sitions and giving a greater number a higher priority [24]).
The NEGATION OF TRIGGERS option is not an independent
way to assign priority, but uses the notion of “negation” to
assign priorities: ¢1 can be assigned a higher priority than ¢
by conjuncting the negation of the event trigger and variable
condition of ¢, with the ones of ¢, respectively.

Exhaustiveness vs. simplicity: The HIERARCHY op-
tion can be easily understood by a modeller, but may render
many transitions as priority-incomparable. The EXpLICIT
option provides a great control over specifying the relative
priority of a set of transitions, but can be tedious to use (e.g.,
a wrong relative priority for a pair of transitions can be de-
duced transitively). In the NEGATION OF TRIGGERS and
EXPLICIT options, it can be difficult to identify the pair of
transitions where it is necessary to assign a relative priority
because whether two transitions are both enabled or not in
a small-step depends on the source snapshot.

Example 7 In the model in Figure 1, to is assigned a
higher priority than t; by conjoining the original trig-
ger of t1, dial(d), with the negation of the event trigger
of to, dial(d) A redial, resulting in ¢; having the trigger
dial(d) A —redial. The effect isthat t, will be chosen when
theredial event occursinstead of t.

3.7 Assignment Memory Protocol

The assignment memory protocol of a BSML determines
the value of variables that a transition reads for the right-
hand side (RHS) of its assignments. Exactly the same se-
mantic options as those of the enabledness memory proto-
col, as described in Section 3.3, are possible for the assign-
ment memory protocol. The two memory protocols of a
BSML need not be the same (e.g., SCR [14, 13]).

| Options | Advantages | Disadvantages | Examples
HIERARCHICAL Simplicity Incomplete prioritization | ‘‘Arena-parent” in Statemate [11]
ExpLICIT Greater control Tedious to use Used in [24]
NEGATION OF TRIGGERS | Greater control, no | Tedious to use Statecharts [28], Esterel [3],
additional syntax and Argos [22]

Table 7. Priority Semantic Options.

Example 8 Consider the semantic options in Example 2
that lead to a correct behaviour. If we assumethe BIG-STEP
memory protocol for both enabledness and assignment, we
do not need variablep because a read of Ip returnsits value
at the beginning of the big-step. But then for all other reads
that are meant to obtain the current value of a variable, they
should be prefixed by the cur operator.

3.8 External Communication

The model in Figure 1 uses event dial in two differ-
ent ways: (i) as an environmental input event initiated by
a caller, and (ii) as an internal event generated by the
Redialer. To avoid modelling flaws, many have advocated
that the interface of a model with its environment should be
explicitly specified [26, 32]. A celebrated way to achieve
this interface is to distinguish between the elements (i.e.,
events and/or variables) that the environment provides (en-
vironmental input elements) and the elements that the model
can control, syntactically. The controlled elements can be
further partitioned into elements that are observable by the
environment, observable by some components of a model,
and local elements. The semantics of these types of ele-
ments vary and are described in our report [7].

4 Interdependencies

The hierarchical structure of our aspects captures most
of the interdependencies between semantic aspects and op-
tions. In this section, we describe five cross-cutting interde-
pendencies.

A sufficient (but not necessary) condition for an unam-
biguous DATAFLOW semantics is to require the TAKE ONE
maximality semantics with each variable assigned value by
at most one HTS as is done in SCR [14, 13] and Reactive
Modules [1]. A DATAFLOW semantics is ambiguous if a
variable is assigned a value more than once in a big-step.

The use of the SAME event lifeline semantics only
makes sense with the use of the MANY concurrency seman-
tics so that the transition that generates the event and the
transition that senses the event execute concurrently.

Frequently, the SINGLE concurrency semantics is chosen
with the ExpLICIT order of small-step semantics when the
EXPLICIT ordering permits only one transition to be taken
in each small-step. However, if the ordering is partial, or
hierarchically-based, then the MANY concurrency seman-
tics can also be used.

Using the NEXT SMALL-STEP event lifeline semantics
and the SINGLE concurrency semantics together has the ef-
fect that an enabled transition may not have the chance to
execute because it only remains enabled for one small-step.
This effect can be a source of undesired non-determinism.
A similar effect exists if the SMALL-STEP enabledness
memory protocol is chosen with the SINGLE option.

When the PREEMPTIVE preemption semantics is chosen,
the choice of the priority semantics determines whether the
interrupt transition has higher or lower priority than non-
interrupt transitions. For example, giving the highest prior-
ity to a transition whose destination control state is the low-
est in the composition tree has the effect of giving interrupt
transition ¢ in Figure 6(b) a higher priority than ¢’. Simi-
larly, the “arena-parent” priority semantics gives transition
t in Figure 6(a) a higher priority than transition ¢’.

5 Reated Work

We cover a more comprehensive class of BSMLs and
range of BSML semantics than found in related work. Rel-
ative to previous comparative studies of different subsets
of BSMLs (e.g., Statecharts variants [31, 17], Synchronous
languages [8], Esterel variants [4, 30], and UML Statema-
chines [29]), we isolate the essential semantic aspects in
a language-independent manner and in terms of the big-
step as a whole. Huizing and Gerth [17] compare simple
BSMLs that have only events, covering most of the “event
lifeline” semantic options and the observability of events
among “components”. In our deconstruction, we are able to
describe these options more concisely and place them in the
context of other semantics aspects for BSMLs.

By considering a big-step as a whole, we have raised the
level of abstraction of the semantic variations compared to
our previous work on template semantics [24]. The compo-
sition operators of template semantics are modelled via the
concurrency and consistency and event lifeline semantic as-
pects. For example, the interleaving and parallel composi-
tion operators correspond to the SINGLE and MANY seman-
tic options, respectively; and the rendezvous composition
operator is represented via the SAME event lifeline seman-
tics and the MANY concurrency semantics. The interrupt
composition operator is modelled via the small-step consis-
tency and preemption semantic options. By relating parts of
the behaviour of composition operators to the step seman-
tic aspects, we provide a foundation for understanding the
range of possible composition operators.

6 Conclusion and Future Work

We have presented a novel deconstruction of the seman-
tics of big-step modelling languages into seven high-level,
mostly orthogonal semantic aspects. We analyzed the rela-
tive advantages and disadvantages of the common semantic
options of each aspect. The design/choice of a language in-
volves tradeoffs between choosing different features. Our
framework empowers requirements engineers and language
designers to make such tradeoffs in an informed way. For
example, if averting non-determinism is desirable, seman-
tics that permit race condition, unordered execution of
small-steps, SINGLE concurrency, non-prioritized transi-
tions, etc. are less suitable choices. SCR [14, 13] is an ex-
ample of a BSML with simpler semantics than many others
because its lack of hierarchical control states means it does
not require the semantic aspects of small-step consistency,
preemption, and priority. Using our aspects and options, we
can create languages that do not currently exist. For exam-
ple, the semantics in Example 5, which avoids the undesired
non-determinism of the SINGLE concurrency semantics, is
not found in an existing BSML.

We are creating a formal language to describe our seman-
tic aspects concisely. In the future, we plan to map these op-
tions to formal parameters that implement the big-step at the
small-step level, such as those found in template semantics,
to implement tool suites to support BSMLs. We believe our
work will be useful in understanding how semantic choices
affect the simplicity and performance of analysis tools.

Acknowledgments

We thank the reviewers for their insightful comments,
which have improved our paper.

References

[1] R. Alur and T. A. Henzinger. Reactive modules. Formal
Methods in System Design, 15(1):7-48, 1999.

[2] G. Berry. Preemption in concurrent systems. In Proc.
of FSTTCS volume 761 of LNCS, pages 72-93. Springer,
1993.

[3] G. Berry and G. Gonthier. The Esterel synchronous pro-
gramming language: Design, semantics, implementation.
ci. of Comp. Prog., 19(2):87-152, 1992.

[4] F. Boussinot. Sugarcubes implementation of causality. Tech-
nical Report RR-3487, Inria, Institut National de Recherche
en Informatique et en Automatique, 1998.

[5] J. Dabney and T. L. Harman. Mastering Smulink. Pearson
Prentice Hall, 2004.

[6] N. Day. A model checker for Statecharts: Linking CASE
tools with formal methods. Master’s thesis, University of
British Columbia, 1993.

[7] S. Esmaeilsabzali, N. A. Day, J. M. Atlee, and J. Niu. Big-
step semantics. Technical Report CS-2009-05, University of
Waterloo, D.R. Cheriton School of Computer Science, 2009.

(8]
9]
[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

(18]

[19]

[20]

[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]

[29]

[30]

[31]

[32]

N. Halbwachs. Synchronous Programming of Reactive Sys-
tems. Kluwer Academic Publishers; Boston, 1993.

D. Harel. Statecharts: A visual formalism for complex sys-
tems. Sci. of Comp. Prog., 8(3):231-274, 1987.

D. Harel and H. Kugler. The RHAPSODY Semantics of
Statecharts (or, On the Executable Core of the UML). In In-
tegration of Soft. Spec. Techniques for Appl. in Eng., volume
3147 of LNCS, pages 325-354. Springer Verlag, 2004.

D. Harel and A. Naamad. The STATEMATE semantics of
Statecharts. ACM TOSEM, 5(4):293-333, 1996.

D. Harel, A. Pnueli, J. P. Schmidt, and R. Sherman. On the
formal semantics of Statecharts. In Proc. of the Second | EEE
Symp. on Logic in Computation, pages 54-64, 1987.

C. Heitmeyer, R. Jeffords, and B. Labaw. Automated con-
sistency checking of requirements specifications. ACM
TOSEM, 5(3):231-261, 1996.

K. L. Heninger, J. Kallander, D. L. Parnas, and J. E. Shore.
Software requirements for the A-7E aircraft. Technical Re-
port 3876, United States Naval Research Laboratory, 1978.
T. Hoare. Communicating Sequential Processes. Prentice
Hall, 1985.

T. Hoare and H. Jifeng. Unifying Theories of Programming.
Prentice Hall, 1998.

C. Huizing and R. Gerth. Semantics of reactive systems in
abstract time. In Proc. of the Real-Time: Theory in Practice,
REX Workshop, pages 291-314. Springer Verlag, 1992.

L. Lamport and F. B. Schneider. Pretending atomicity. Tech-
nical Report 44, Digital Equipment Corporation, 1989.

N. G. Leveson, M. P. E. Heimdahl, H. Hildreth, and J. D.
Reese. Requirements specification for process-control sys-
tems. |EEE TSE, 20(9):684-707, 1994.

R. J. Lipton. Reduction: A method of proving properties of
parallel programs. Communications of the ACM, 18:717-
721, 1975.

A. Maggiolo-Schettini, A. Peron, and S. Tini. Equivalences
of Statecharts. In Proc. CONCUR, pages 687-702, 1996.

F. Maraninchi and Y. Rémond. Argos: an automaton-based
synchronous language. Comp. Lang., 27(1/3):61-92, 2001.
R. Milner. Communication and Concurrency. Prentice Hall,
1989.

J. Niu, J. M. Atlee, and N. A. Day. Template semantics for
model-based notations. |EEE TSE, 29(10):866—882, 2003.
OMG. OMG Unified Modeling Language (OMG UML),
Superstructure, v2.1.2. 2007. Formal/2007-11-01.

D. L. Parnas and J. Madey. Functional documents for com-
puter systems. Sci. of Comp. Prog., 25(1):19-23, 1995.

A. Pnueli and M. Shalev. What is in a step? In JW. De
Bakker, Liber Amicorum, pages 373-400. CWI, 1989.

A. Pnueliand M. Shalev. What is in a step: On the semantics
of Statecharts. In TACS pages 244-264, 1991.

A. Taleghani and J. M. Atlee. Semantic variations among
UML StateMachines. In MoDELS, volume 4199 of LNCS,
pages 245-259. Springer, 2006.

O. Tardieu. A deterministic logical semantics for pure Es-
terel. ACM Trans. on Prog. Lang. and Systems, 29(2):8:1-
8:26, 2007.

M. von der Beeck. A comparison of Statecharts variants.
In Formal Techniques in Real-Time and Fault-Tolerant Sys-
tems, volume 863 of LNCS, pages 128-148. Springer, 1994.
P. Zave and M. Jackson. Four dark corners of requirements
engineering. ACM TOSEM, 6(1):1-30, 1997.

	RE09.Copyright
	RE09

