
IEEE	Copyright	Notice	
Copyright	(c)	2003	IEEE	
Personal	use	of	this	material	is	permitted.	Permission	from	IEEE	must	be	obtained	for	all	
other	uses,	in	any	current	or	future	media,	including	reprinting/republishing	this	material	
for	advertising	or	promotional	purposes,	creating	new	collective	works,	for	resale	or	
redistribution	to	servers	or	lists,	or	reuse	of	any	copyrighted	component	of	this	work	in	
other	works.	

Published	in:	Proceedings	of	the	IEEE	International	Requirements	
Engineering	Conference	(RE'03),	September	2003	

“Understanding and Comparing Model-Based Specification

Notations”
Cite as:

BibTex:

DOI: https://doi.org/10.1109/ICRE.2003.1232750

Jianwei Niu, Joanne M. Atlee, and Nancy A. Day. 2003. Understanding and
Comparing Model-Based Specification Notations. In Proceedings of the 11th IEEE
International Conference on Requirements Engineering (RE '03). IEEE Computer
Society, Washington, DC, USA, 188-199.

@inproceedings{Niu:2003:UCM:942807.943861,
 author = {Niu, Jianwei and Atlee, Joanne M. and Day, Nancy A.},
 title = {Understanding and Comparing Model-Based Specification Notations},
 booktitle = {Proceedings of the 11th IEEE International Conference on Requirements
Engineering},
 series = {RE '03},
 year = {2003},
 pages = {188--199},
}

Understanding and Comparing Model-Based Specification Notations

Jianwei Niu, Joanne M. Atlee, Nancy A. Day
University of Waterloo

200 University Avenue West
Waterloo, Ontario, Canada

N2L 3G1�
jniu,jmatlee,nday � @uwaterloo.ca

Abstract

Specifiers must be able to understand and compare the
specification notations that they use. Traditional means for
describing notations’ semantics (e.g., operational seman-
tics, logic, natural language) do not help users to iden-
tify the essential differences among notations. In previous
work, we presented a template-based approach to defining
model-based notations, in which semantics that are com-
mon among notations (e.g., the concept of an enabled tran-
sition) are captured in the template and a notation’s d istinct
semantics (e.g., which states can enable transitions) are
specified as parameters. In this paper, we demonstrate the
template’s generality by using it to document the semantics
of SCR, SDL, and Petri Nets. We also show how the tem-
plate can be used to compare notation variants. We believe
template definitions of notations ease a user’s effort in un-
derstanding and comparing model-based notations

1. Introduction

A requirements writer must have a solid understanding
of specification notations to be able to choose appropriate
notations and to use them properly. However, it can be
difficult to acquire this expertise from published descrip-
tions of notations. Notation developers tend to write ei-
ther for a formal-methods audience (providing an opera-
tional semantics or logic definition), or for a software engi-
neering audience (providing a pseudo-code or natural lan-
guage definition). Formal definitions are precise, enabling
tool development and inviting comparisons between nota-
tions; but such definitions are complex, involving multiple
inter-dependent mathematical relations. Pseudo-code def-
initions provide a more intuitive understanding of seman-
tics, describing when computations are performed and when
variables change value; but such definitions tend to be less
precise and less helpful for comparing notations.

We have developed a template approach to describe the
semantics of model-based notations [14, 15]. Our goal with
the template is to make it easier to document the seman-
tics of notations by focusing on how notations differ and by
requiring a user to describe only these differences. In our
method, a parameterized template pre-defines the seman-
tics that are common among notations, and users specify the
notation-specific semantics via parameter values. For exam-
ple, the template defines the notion of enabled transitions
in terms of enabling states, enabling events, and enabling
variable values; parameters specify these latter three pred-
icates. Composition operators are defined separately from
the step semantics, and are parameterized by the same tem-
plate parameters. The result is a semantics definition that
isolates a notation’s distinctive semantics, making it easier
for requirements writers and students to compare the essen-
tial differences among model-based notations.

Our template was developed after surveying the exe-
cution semantics of eight popular specification notations:
CSP [7], CCS [12], LOTOS [8], basic transition systems
(BTS) [11], a subset of SDL88 [9], and three variants of
statecharts [3, 4, 10]. In this paper, we demonstrate the
template’s generality by using it to describe the seman-
tics of Petri Nets, SCR, and a larger subset of SDL; these
three languages are quite different from the notations in
our original survey and from each other. We also show
how to use our template approach to compare statecharts
variants (original statecharts [3], Pnueli and Shalev’s state-
charts [18], RSML [10], STATEMATE [4], and UML state
models [16]). We assume that the reader is familiar with all
of these notations.

2. Overview of the Template

In this section, we give an overview of our template ap-
proach to describing model-based notations. The approach
separates the definition of a notation’s step semantics from
the definitions of its composition operators. We define a

notation’s step semantics in terms of the semantics of a sin-
gle, sequential hierarchical transition system (HTS) – an ex-
tended finite state machine, adapted from basic transition
systems [11] and statecharts [2]. An HTS supports no con-
currency. Composition operators specify how collections of
HTSs execute concurrently, transferring control to one an-
other and exchanging events and data.

2.1. Syntax of HTS

A hierarchical transition system (HTS) is an 8-tuple,�
S � SI � SF � SH � E � V � V I � T � . S is a finite set of states, SI � S

is the set of initial states, SF � S is the set of final basic
states, and SH is the state hierarchy 1. E is a finite set of
events, including both internal and external events. V is a
finite set of typed data variables, whose initial values satisfy
predicate V I . We assume that the names of unshared events
and variables are distinct across HTSs. T is a finite set of
transitions, each with the form,

�
src � trig � cond � act � dest � prty �

where src, dest � S are the transition’s source and destina-
tion states, respectively; trig � E is zero or more trigger-
ing events; cond is a predicate over V; act is zero or more
actions that generate events and assign values to some vari-
ables in V; and prty is the transition’s priority. A notation
need not use all of the transition elements. We use iden-
tifiers S � SI � SF � SH � E � V � V I , and T throughout the paper to
refer to these HTS elements.

The state hierarchy consists of super states, which con-
tain other states, and basic states, which contain no other
states. Each super state has a default child state, such that
this default state is entered if the super state is a transition’s
destination state. A state hierarchy SH defines a partial or-
dering on states, with the root state as the minimal element
and basic states as maximal elements. We use helper func-
tions to access static information about an HTS:
� src ���	� are the source states of � .
� dest �
�	� is the destination state of � .
� trig ���	� are the events that trigger � .
� pos �
�	� are events whose occurrence trigger � .
� neg ���	� are negative events whose non-occurrence trig-

ger � .
� cond ���	� is � ’s predicate guard condition
� gen �
�	� are the events generated by � ’s actions.
� asn �
�	� are variable-value assignments in � ’s actions.
� scope ����� is the lowest common ancestor state of the

transition’s source and destination states.
1A state in an HTS refers to a control state from which a transition can

originate or can end. It differs from the concept of a state in a classical fi-
nite state machine (FSM) [1], in that a traditional FSM is always in exactly
one state, whereas an HTS is always in a non-empty set of states.

� rank(s) is the distance between state s and the root
state, where rank � root �
��� .

� entered � s � are the states entered when s is entered,
including s’s ancestors and its descendants’ default
states.

We will also apply these functions to sets of transitions.
Their meanings are the same, but those functions that re-
turn a single result (e.g., scope) will return a set of results.

2.2. Step Semantics

We define the semantics of an HTS as a snapshot
relation. A snapshot is an observable point in an
HTS’s execution, and a snapshot relation relates con-
secutive snapshots. Formally, a snapshot is an 8-tuple�
CS � IE � AV � O � CSa � IEa � AVa � Ia � , where CS is the set of

current states (CS � S), IE is the set of current internal
events (IE � E), and AV is the set of current variable val-
ues, respectively; the set AV is a function that maps each
variable in V to its current value. O is the set of current out-
puts to be communicated to concurrent components. Snap-
shot elements CSa � AVa � IEa, and Ia are auxiliary variables
that accumulate data about states, variable values, internal
events, and external events, respectively. Inputs to an HTS
(e.g., external events) are not part of the snapshot because
they lie outside of the system. Instead, the template parame-
ters will incorporate input events and data into the auxiliary
snapshot elements. If a notation does not need a snapshot
element (e.g., process algebras have no variables), then the
related template parameters need not be provided.

A step moves an HTS from one snapshot to a succes-
sor snapshot. A micro-step results from executing exactly
one transition. A macro-step is a sequence of zero or more
micro-steps that is initiated by new input I from the envi-
ronment. In simple macro-step semantics, new input from
the environment is sensed at the start of every step, and a
macro-step is either a single micro-step or an idle step (i.e.,
the snapshot does not change). In stable macro-step se-
mantics, input from the environment is sensed only upon
reaching a stable snapshot, in which no transition is en-
abled; a stable snapshot ends the HTS’s reaction to one set
of input I and begins the start of a new macro step.

The step-semantics of a notation is a parameterized
macro-step, Nmacro, defined formally in [14]. The template
parameters specify how enabled transitions are determined,
how an executing transition affects the value of the snap-
shot, and how the snapshot is initialized at the beginning of
a macro-step. Parameters also determine the type of macro-
step and how priority among transitions is handled.

The template parameters are organized in Table 1 by lan-
guage construct. For example, the five state-related param-
eters work together to record the set of current states and to
determine the set of enabling states: reset CS, reset CSa

Affected Snapshot Element Start of Macro-step Micro-step �
reset CS � ss � I � � CSi next CS � ss � � � CS

� �
states reset CSa � ss � I � � CSi

a next CSa � ss � � � CS
�
a �

en states � ss � �	�
reset IE � ss � I � � IEi next IE � ss � � � IE � �

events reset IEa � ss � I � � IEi
a next IEa � ss � � � IE �a �

reset Ia � ss � I � � Ii
a next Ia � ss � � � I �a �

en events � ss � ���
reset AV � ss � I � � AV i next AV � ss � � � AV

� �
variables reset AVa � ss � I � � AV i

a next AVa � ss � � � AV
�
a �

en cond � ss � �	�
outputs reset O � ss � I � � Oi next O � ss � � � O � �

macro semantics
Additional Parameters pri � � � ��� T

resolve � AV � � AV � � asnAV �
Table 1. Parameters to be provided by template user

clean out irrelevant state information accumulated in the
previous macro-step, and incorporate any state information
from the inputs I; en states tests whether transitions are en-
abled with respect to the state information; and next CS,
next CSa specify how a transition � ’s actions affect the
possible next current states (CS

�
) and next auxiliary states

(CS
�
a). The parameters related to events and variables play

comparable roles, with enabling events depending not only
on internal event information, but also on external events.

Macro-semantics are either simple or stable, as described
above; simple semantics are either diligent, meaning that
enabled transitions have priority over idle steps, or non-
diligent. The function pri � � � for a set of transitions

�
implements the notation’s priority scheme (e.g., sub-state
behaviour could override super-state behaviour). The tem-
plate parameter resolve � AV � � AV � � asnAV � captures different
notations’ policies for resolving conflicts among variable-
value assignments (e.g., non-deterministic choice). This
predicate is true if asnAV is a non-conflicting set of variable-
value assignments resulting from resolution of the assign-
ments in AV � and AV � .

2.3. Composition Operators

Composition operators specify how HTSs execute con-
currently. The operands of a composition operator are com-
ponents, where a component is either a single HTS or a
collection of HTSs that have been composed via some com-
position operator(s). Semantically, a composition operator
specifies how the components’ snapshots change when the
components take a collective step.

We define composition operators as parameterized, com-
posite micro-step and/or macro-step relations that relate
pairs of consecutive snapshot collections. For example, the

composite micro-step relation for an operator op is

Nop
micro � ���ss � �	�ss � � � �
�� � ���� � � � ���ss

�
� ���ss

�
� � �

which relates snapshot collections �ss � and �ss
�
� if component

one executes transitions ��
� , and relates snapshot collections
�ss � and �ss

�
� when component two executes transitions ���� , all

in the same micro-step. The definition of Nop
micro is parame-

terized by the micro-step semantics of the two components,
N �

micro and N �
micro. The definition of the composition op-

erator determines how the effects of the changes in each
component are shared, and how transfer of control from one
component to another can occur. We represent these effects
by using substitution to modify snapshots: ss � xy is a snap-
shot that is equal to snapshot ss, except that element x has
value y. Substitution over a set of snapshots �ss � xy defines a
substitution to each snapshot in �ss.

We use helper predicates update, communicate, and
communicate vars to perform common substitutions that
realize the sharing of events and variable assignments.
Predicate update is used when only one component executes
in the micro-step: it passes to the non-executing component
those events generated by executing component. Predicate
communicate is used when both components execute in the
micro-step: it passes to one component those events gener-
ated by the other component. Predicate communicate vars
handles the communication of shared variable values, such
that conflicts among variable assignments are resolved, and
all resulting snapshots have the same value associated with
a shared variable. Predicate communicate vars uses tem-
plate parameter resolve to implement the notations’ policy
for resolving variable-value assignments. In general, com-
position operators use the template parameters, so that they
adhere to their components’ semantics for updating snap-
shot elements.

Npara-diligent
micro

�����
ss ��� �

ss �	�
� ���� �
� �� ���
� ���ss �� � �ss �� �����
if � stable

���
ss � ����� stable

���
ss � �� �

iss ��� �
iss��� ���� �� N �

micro
���
ss ��� �� ��� �

iss � ��� communicate
� �
iss � � �

ss ��� �� �"! �� �
� �ss �� �
N �

micro
���
ss�
� �� �
� �

iss ����� communicate
� �
iss ��� �

ss �
� �� �"! �� �
� �ss �� �
communicate vars

�����
ss � � �ss � �
� ���� � � �� � �
� ���ss �� � �ss �� �

$$% (* both take a step *)

else

����'& (� N �
micro

���
ss � � �� � � �ss �� �)� �� ��*,+

update
���
ss � � �� � � �ss �� ��� communicate vars

�����
ss � � �ss� �
� ���� � � + �
� ���ss �� � �ss �� ����-

(* symmetric case *)

$$% (* only one executes;
the other changes
shared variables

and events *)

Figure 1. Micro-step semantics for parallel composition

In Figure 1, we provide the definition of a micro-step
parallel composition, as defined in [15]. A more de-
tailed presentation of a richer set of operators can be found
in [14, 15]. In parallel composition, in each micro-step,
the two components execute simultaneously if they are both
enabled. The components’ next snapshots should satisfy
N �

micro and N �
micro, except for the values of shared variables

and events that must be communicated to each other. We in-
troduce intermediate snapshots �iss � and �iss � that are reach-
able by the components’ Nmicro relations, and we use the
predicates communicate and communicate vars to describe
how the components’ next snapshots in the composed ma-
chine differ from these intermediate snapshots. If only one
component can execute, then the other component’s snap-
shot stays the same, except for updating shared variables
and events. The case where both components do not change
is not a possible micro-step, because it implies that a stable
snapshot has been reached, initiating a new macro-step.

2.4. Template Semantics

In defining the template semantics of any notation, a se-
mantics writer needs to provide three types of information:

1. Syntax – a mapping from the notation’s syntax to HTS
syntax

2. Template parameters – functions and predicates that
instantiate the HTS’s parameterized semantics to de-
fine the notation’s step-semantics

3. Composition Operators – operators for composing
multiple HTSs into an integrated specification

The next few sections show how the above template can be
used to express the semantics of various notations.

3. SCR

In this section, we present the template semantics of
the Software Cost Reduction (SCR) notation, as defined in

[6, 5]. SCR is an example of a dataflow language, in which a
specification comprises a network of functions that are com-
posed via function composition; the network executes in re-
sponse to new input, producing new output. Dataflow lan-
guages were not included in our original survey; thus, this
result demonstrates how template semantics can accommo-
date a different communication mechanism from broadcast
or point-to-point.

In SCR, a system specification is a collection of math-
ematical functions, represented as tables. Each function
specifies the value of one variable. SCR variables are parti-
tioned into monitored variables, which are set by the envi-
ronment; controlled variables, which are set by the system
and output to the environment; and terms, which are internal
variables set by the system. As such, an SCR specification
defines functions only for terms and controlled variables.
An SCR modeclass is a distinguished term, whose values
are modes of operation (or simply modes); effective choice
of modes helps to structure the specification’s other func-
tions into cohesive cases.

A step in SCR semantics is the application of all of
the specification’s functions: the composition operator is
functional composition, such that each of the specification’s
functions executes exactly once per step. Every step starts
with a change in the value of exactly one monitored vari-
able (as per SCR’s One Input Assumption [6]). The specifi-
cation’s functions are then applied in an order that adheres
to the def-use relation among the functions’ variables: any
function that refers to updated values of variables must ex-
ecute after the functions that update those variables. These
update dependencies impose a partial order on the specifica-
tion’s functions that must be respected during composition.
A specification is ill-formed if its dependency graph has a
cycle.

SCR does not support named events. Instead, events are
changes to the values of conditions. A basic event, ex-
pressed as @T(cond), occurs in a step if the value of boolean

Condition Table Event Table

Mode Condition
Off True X
Heat, Temp

�
175 Temp � 175

Maintain

DisplayTemp’= � blank � �Temp/25��� 25

Mode Event
Off X @T(Dial=bake) @T(Dial=bake)

WHEN[Temp � SetT] WHEN[Temp � SetT]
Heat @T(Dial=off) X @T(Temp � SetT)
Maintain @T(Dial=off) @T(Temp � (SetT-20)) X

Mode’= Off Heat Maintain

Figure 2. Partial SCR specification of a control system for an oven

condition cond becomes true in that step.2 A simple con-
ditioned event, expressed as @T(cond1) WHEN [cond2],
occurs in a step if its basic event @T(cond1) occurs in the
step and if its WHEN condition cond2 evaluates to true
with respect to variable values that held at the start of the
step. A conditioned event is the conjunction and disjunc-
tion of multiple simple conditioned events.

We will use a simple specification of an oven-control
system to help describe the SCR notation. The oven’s mon-
itored variables are
� Dial : � off, bake 	 – the user-set command
� SetT : [0..550] – the user-set temperature
� Temp : [0..600] – the air temperature in the oven

The modes are Heat (the oven is warming to temperature
SetT), Maintain (the system is maintaining an oven temper-
ature around SetT), and Off. The system displays the oven
temperature via controlled variable DisplayTemp, whenever
the oven is on and its temperature is 175
 F or greater. To
avoid rapid fluctuations in the displayed value, the value is
rounded down to the nearest number divisible by 25.

SCR uses two types of tables to express mathematical
functions: condition tables and event tables3. A condition
table defines a case-based assignment to a variable. Fig-
ure 2 shows is a condition table for controlled variable Dis-
playTemp. The bottom row of the table specifies the variable
being assigned and its possible values. The Mode column
decomposes the function’s definition by mode value. Each
of the table entries defines a conditional assignment to the
variable: if the current mode is one of the modes listed in the
row’s Mode-column entry, and if the table entry’s condition
evaluates to true, then the variable is assigned to the value
listed at the bottom of the table entry’s column. For ex-
ample, DisplayTemp displays nothing if the oven is in mode
Off or if the oven temperature is below 175
 F. A table entry

2Basic event @F(cond), representing a condition becoming false, can
be expressed as @T(� cond). Basic event @C(cond) is equivalent to the
expression @T(cond) � @F(cond). Basic event @C(x), where variable x
is not necessarily boolean, occurs in a step if variable x changes value in
that step. Henceforth, we assume that all basic events are of type @T(cond)
or @C(x), without loss of generality, although for simplicity we’ll refer in
general discussion only to basic events of type @T(cond).

3A mode transition table, which defines assignments to a modeclass
variable, is a type of event table.

of X denotes an impossible case in the function definition.
Condition-table expressions always refer to current values
of modes and variables (cf. expressions in event-table en-
tries). A condition table’s cases must be both mutually dis-
joint and complete; hence, each condition table defines a
total function.

An event table is similar to a condition table, in that the
table entries define mode-partitioned, conditional assign-
ments to a single variable. Figure 2 shows an event table
for mode transitions in the oven control-system specifica-
tion. Unlike in condition tables, event-table entries are con-
ditioned events over previous and current variable values,
and the modes in the Mode column are considered addi-
tional WHEN conditions in these events. A particular table
entry applies if one of the modes listed in the row’s Mode-
column entry held at the start of the step, if the entry’s basic
events occur in the step, and if the entry’s WHEN condi-
tions held at the start of the step; then the table’s variable is
assigned to the value listed at the bottom of the table entry’s
column. A table entry of X denotes an impossible case in
the function definition. Thus, the event table in Figure 2 is
equivalent to the following, more traditional representation
of a mathematical function, where unprimed variables refer
to values at the start of the macro-step and primed variables
refer to values in the current snapshot:

Mode
� �

����� �����
Off if �Mode� Heat � Dial �� off � Dial � � off ����Mode� Maintain � Dial �� off � Dial � � off �
Heat if �Mode� Off � Dial �� bake � Dial � � bake �

Temp � SetT ����Mode� Maintain � Temp ��� SetT ����� �!�
Temp � ��� SetT � �"��� �#$#%#

In the last case above, the modeclass transitions to mode
Heat if the previous mode was Maintain, the oven tempera-
ture was within 20 degrees of the user-set temperature at the
start of the step, and the oven temperature is now at least 20
degrees cooler than the user-set temperature. The cases in
an event table must be mutually disjoint, but are not nec-
essarily complete; hence, the function includes an implicit
else clause that re-assigns the function’s variable to the vari-
able’s current value if none of the specified cases is satisfied.
Thus event-table functions are also total functions.

In mapping the syntax of SCR to the syntax of HTS, we

Snapshot Start of Macro-step Micro-step �
Element

AV assign
�
ss � AV � I � AV � * assign

�
ss � AV � eval

�
ss � asn

� � �����
O + O � * controlled

�
V � � eval

�
ss � asn

� � ���
en states

�
ss � � � * true

en events
�
ss � � � * true

en cond
�
ss � � � * ss � AV � * cond

� � �
macro semantics * simple, diligent

pri
��� � * �

Table 2. Template parameters for SCR condition tables

Snapshot Start of Micro-step �
Element Macro-step

AV assign
�
ss � AV � I � AV � * assign

�
ss � AV � eval

�
ss � asn

� � �����
O + O � * controlled

�
V � � eval

�
ss � asn

� � ���
AVa ss � AV AV �a * ss � AVa

en states
�
ss � � � * true

en events
�
ss � � � *�

e � trig
� � �
����

e * @T
�
c �	� �

ss � AVa � * � c � ss � AV � * c ���� �
e * @C

�
x �	� �

ss � AVa
�
x ��
* ss � AV

�
x �����
�

en cond
�
ss � � � * ss � AVa � * cond

� � �
macro semantics * simple, diligent

pri
��� � * �

Table 3. Template parameters for SCR event tables

map each SCR table to a distinct HTS, where
� V is the set of specification variables that appear in the

table, including modeclasses. V is partitioned into sets
monitored, terms, and controlled.

� VI is a predicate specifying initial modes.
� T is the table’s set of conditional assignments. In con-

dition tables, an entry defines zero or one HTS tran-
sition, whose trigger event is empty, whose enabling
conditions are the entry’s condition plus the entry’s
mode set, and whose action is the entry’s assignment
to the table’s variable. In event tables, an entry defines
zero or more HTS transitions, one for each disjunct in
the entry’s conditioned event; the transition’s trigger
events are the disjunct’s basic events, its enabling con-
ditions are the disjunct’s WHEN conditions plus the
entry’s mode set, and its action is the entry’s assign-
ment to the table’s variable. A table entry of X maps
to zero HTS transitions.

In the event table in Figure 2, the mode transition from
mode Off to mode Heat maps to HTS transition� ��� @T � Dial� bake ��� Mode� Off � Temp � SetT � Mode � � Heat � ���$���
Our mapping of SCR syntax does not use HTS states
(S � SI � SF � SH), or named events E.

To express SCR step-semantics, we instantiate separate
templates for condition tables and event tables. In our tem-
plate instantiation for condition tables (Table 2),
� AV is the set of current variable values
� Environment input I is a monitored-variable assign-

ment that updates the variable values in AV at the start
of every step. (Function assign � X � Y � takes variable-
value assignments X and Y , and it updates the assign-
ments in X with the assignments in Y , ignoring assign-
ments in Y to variables not in X. Function eval � ss � a �
evaluates assignment a using variable values ss � AV .)

� System outputs O are assignments to controlled vari-
ables. (Function controlled � V ��� eval � asn ���	� � uses
the Z domain-restriction operator � to ensure that the
HTS outputs a variable assignment only if the variable
is among the specification’s controlled variables.)

� Predicates en states and en events are vacuously true,
because there are no states or events.

� Predicate en cond evaluates a transition enabling con-
ditions with respect to current variable values in AV .

� The step-semantics is simple, diligent macro-step se-
mantics, where a macro-step is one micro-step (i.e., the
execution of one of the HTS’s transitions).

� There is no priority scheme among transitions (i.e., pri
is the identity function) because the transitions in an
HTS are mutually disjoint.

The template instantiation for event tables (Table 3) is sim-
ilar, except that events and conditions are evaluated with
respect to both previous and current variable values. Hence,
� Auxiliary variable AVa is used to store variable values

that hold at the start of the step.
� Predicate en events tests whether a transition’s trig-

gering events have all occurred since the start of the
step. With respect to events of type @C(x), it tests
whether variable x has changed value since the start of
the step. (Notation ss � AV � x � returns the value of vari-
able x in ss � AV .)

� Predicate en cond tests whether a transition’s WHEN
conditions evaluated to true at the start of the step.

SCR’s sole composition operator is functional composi-
tion: each micro-step of an SCR specification is the com-
position of HTS micro-steps, one from each of the tables’
HTSs; the order of composition is with respect to a pro-
vided, static, total order TO on the HTSs. The provided total

Nfun comp
micro ���ss � �� � �ss

� � TO �

�ss
� � NTO

�
n �

micro

�
� � �
�
NTO
� � �

micro

�
NTO
� � �

micro ���ss � �
� � � � ��� � � � � � � � n ���
�� � � �
� � � � � � � � � n 	��	� i
 n ��� � i � enabled trans

�
NTO
�
i
 � �

micro � � � � � NTO
� � �

micro ���ss � �
� � � � � � � � � i
 � � � TTO
�
i � ���

Figure 3. Micro-step semantics for SCR composition

order TO must adhere to the partial order on the specifica-
tion’s functions, which is imposed by the functions’ vari-
able dependencies. Any topological sort will do, since all
will result in equivalent compositions. The tables’ partial
order, a representative total order TO, and cycle detection
are all calculated off-line using def-use analysis.

Our modelling of SCR’s composition operator

Nfun comp
micro , shown in Figure 3, determines whether a

set of transitions �� executing with respect to a collection of
snapshots �ss (one snapshot per component HTS) will result
in a collection of next snapshots �ss

�
. In this definition,

we use a functional representation of the HTSs’ Nmicro
steps (the HTSs’ micro-step semantics are guaranteed to be
functions, because the SCR tables are all functions). Let
TO be indexed 1 through n, which is the number of tables
being composed. The first line says that the collection
of next snapshots �ss

�
results from applying each HTS’s

micro-step function Nmicro in the total order specified by
TO, starting from snapshots �ss. The second line ensures
that the transition set �� contains exactly one transition
from each of the HTS’s set of transitions T , and that each
transition � i is enabled when its HTS executes.

We note that there are multiple ways to structure a no-
tation’s template semantics, just as there are multiple ways
to structure a notation’s operational semantics. For exam-
ple, SCR users who view modeclasses as state machines
might have represented modes as states. Alternatively, a
user could view any dependent variable defined by an SCR
event table as a stable machine. We chose the above repre-
sentation because it more closely matches existing descrip-
tions of the semantics of SCR, which treat modeclasses as
distinguished variables. In general, we have not yet ex-
plored the methodological issues of how best to structure
a notation’s template semantics.

4. SDL

In this section, we present the template semantics for the
Specification and Description Language (SDL), as defined
in SDL88 [9]. An SDL specification has three types of com-
ponents. SDL processes, the most basic components, are
extended finite state machines that send and react to signals.
SDL blocks contain multiple, concurrent processes, which
are inter-connected by non-delaying, signal-passing routes;

more abstract SDL blocks compose lower-level blocks that
are inter-connected by delaying communication channels.
An SDL system, the root component, is an abstract SDL
block that communicates with the environment.

S
0

x<5

a

d

b

x:=x+1

e

S
1

S
2

c

S
0

 (false)

 (true)

Figure 4. An SDL process example

An SDL process consists of states, variables, signals, de-
cisions, and transitions. A transition has a source state; is
triggered by an input signal; and has multiple possible ac-
tions (variable assignments and output signals) and desti-
nation states, depending on decision points in the transition.
Each process has an unbounded input queue to store the sig-
nals it receives from its signal routes. A signal is removed
from the head of the queue (if not empty) when the process
is in an SDL state. If the signal can trigger a transition,
the process executes the transition; otherwise, the signal is
discarded. Figure 4 shows a simple example of an SDL pro-
cess. In state s � , an input signal a at the head of the queue
can trigger a transition that increments the value of variable
x by 1, outputs signal d if the condition x ��� is true, or
outputs a signal e if the condition is false. Another transi-
tion from state s � to state s � executes if the input signal is b,
sending output signal c.

Syntactically, we map each SDL process to one HTS,
whose states, variables, and events represent the process’s
states, variables, and signals, respectively. We model each
conditional path through an SDL transition’s actions as a set
of HTS transitions: we create an auxiliary state for each de-
cision construct, and we create an HTS transition for every
segment of an SDL transition between an SDL source state
and a decision construct, between two decision constructs,
or between a decision construct and an SDL state. The ini-
tial transition is triggered by the input signal and leads to

Snapshot Start of Micro-step �
Element Macro-step

CS CS CS � * dest
� � �

IE append
�
ss � IE � I � if trig

� � � * +
then IE � * append

�
ss � IE � gen

� � ���
else IE � * append

�
tail

�
ss � IE �
� gen

� � ���
AV AV

let AVp * assign
�
ss � AV � parm

�
trig

� � ����� in
AV � * assign

�
AVp � eval

�
ss � asn

� � �����
O + O � * ss � O ! gen

� � �
en states

�
ss � � � � src

� � � � ss � CS
en events

�
ss � � � � trig

� � � ��� head
�
ss � IE ���

en cond
�
ss � � � � ss � AV � * cond

� � �
macro semantics � stable

pri
��� � � �

Table 4. Template parameters for SDL Process

NSDL block
macro

�����
ss � � �ss � �
� I � ���ss �� � �ss �� ���
� � �

CHE � � �
CH �

E � �
� � �
CHE � � �

CH �
E � �
� � �

CH � E � �
CH �� E �
� � �

CH � E � �
CH �� E �
� � �

CH � � � �
CH �� � �
� � �

CH � � � �
CH �� � � *

�
m � n � p � q �

����������
���

N �
macro

���
ss ��� front

� �
CHE ��� m � ! front

� �
CH � �
� n �
� �ss �� ��� �

CH �� � * append
�
last

� �
CH� � � n �
� �ss �� � O ��

CH �
E � * append

�
last

� �
CHE ��� m �
� I �)� �

CH �� E * append
� �
CH � E � �ss �� � O �

N �
macro

���
ss� � front

� �
CHE � � p � ! front

� �
CH � � � q �
� �ss �� ��� �

CH �� � * append
�
last

� �
CH � � � q �
� �ss �� � O ��

CH �
E � * append

�
last

� �
CHE � � p �
� I � � �

CH �� E * append
� �
CH � E � �ss �� � O �

$$$$$$$$% (* both take a step *)

Figure 5. Macro-step semantics for SDL parallel composition

the first auxiliary state, and each subsequent transition is
enabled by its source-state’s decision-construct’s condition
and leads to a subsequent auxiliary state or to a destination
state. For example, the transition triggered by signal a in
Figure 4 is split into the HTS transitions t � , t � , and t � , where
t � is from state s � to an auxiliary state sa� (at decision point
x � �), t � is from state sa� to s � , and t � is from state sa� to s � .
Because the decision construct’s conditions are disjoint and
complete, the HTS transitions are guaranteed to terminate
in a distinct destination state.

To correctly model the removal of signals from the input
queue, for each

�
SDL state, event � pair that does not trig-

ger an SDL transition, we create an HTS transition whose
sole effect on the snapshot is to remove the signal from the
queue. We use the following operations on queues:

– head � Q � returns the first element of the queue
– tail � Q � removes the first element from the queue
– front � Q � k � returns the first k elements of the queue
– last � Q � k � removes the first k elements of the queue
– append � Q � e � adds events in e to the end of the queue
The template semantics for an SDL process is provided

in Table 4.
� In every micro-step, the new current state is the transi-

tion’s destination state.
� The input queue for each process is modelled as a

queue in snapshot element IE. SDL processes do not
distinguish between internal and external signals, so a
process’s input queue holds both. If an executing tran-
sition has a trigger event, the trigger event is removed
from the head of the input queue and the transition’s
generated events are appended to the end of the queue;

otherwise (it is a transition from a decision construct),
the only change to the input queue is the addition of
the transition’s generated events.

� Variables are local to processes in SDL, but their val-
ues may be passed among processes via signals’ pa-
rameters. Variable values AV are updated according to
data carried by the trigger event (function parms re-
turns a set of mappings from local variables to signal
parameters); the variables are subsequently updated by
the transition’s sequence of variable assignments.

� Output signals are accumulated in O.
� Predicate (en states) tests that transition’s source

states are in the set of the current states CS.
� Predicate en cond tests a transition’s enabling condi-

tions with respect to current variable values in AV .� Predicate (en events) tests that a transition’s trigger
event matches the signal at the head of the input queue.

� SDL has stable macro-step semantics (i.e., a macro-
step is a sequence of HTS micro steps from a source
SDL state through auxiliary decision-point states to an
SDL destination state.� SDL has no priority scheme.

Processes are composed using the parallel composition
operator described in Section 2.3. Our template seman-
tics assumes that events are broadcast to all components.
We simulate SDL’s point-to-point communication by as-
suming that every event contains its address, and a process
enqueues an input signal only if the signal’s address is the
process’s address. Parallel composition implements non-
delaying communication among processes.

We define a variant parallel-composition operator for
composing SDL blocks in Figure 5. The user provides
the composition operator with channel sets �CHE � , �CHE � ,�CH � E, �CH � E, �CH � � , and �CH � � . Each channel set is a collec-
tion of uni-directional, delaying, communication channels
(queues) whose source is denoted by the left subscript and
whose destination is denoted by the right subscript. Channel
sets �CHE � and �CHE � represent the channels that pass sig-
nals from the environment to blocks in components one and
two, respectively. Channel sets �CH � E and �CH � E represent
the channels that pass signals from blocks in components
one and two to the environment, respectively. Channel sets
�CH � � pass signals from blocks in component one to blocks

in component two; channel sets �CH � � act similarly. In each
macro-step, the inputs I are appended to the ends of every
channel in �CHE � and �CHE � (recall that the leaf processes
will enqueue an event only if the signal’s address is the pro-
cess’s address); some number of signals are removed from
the fronts of the channels in �CHE � and �CHE � , �CH � � , and
�CH � � and are treated as input I to their respective compo-

nents’ processes; the components execute; and the output
signals from each component’s processes are enqueued in
the components’ output channels.

5. Petri Nets

In this section, we show how to represent the semantics
of Petri Nets using our template. Petri Nets are a well-used
formal notation for modelling and analyzing software sys-
tems (e.g., concurrent systems, distributed systems, com-
munication protocols) [13, 17]. Many extensions of Petri
Nets notation have been developed for modelling different
applications by researchers, however, we only consider tra-
ditional Petri Nets in this paper.

A Petri Net, usually represented as a directed graph,
contains five types of elements: places, transitions, arcs, a
weight function, and an initial marking. A place, drawn as
a circle, contains zero or more tokens (dots). A transition is
drawn as a bar or a box. An arc, drawn as a directed line,
represents a relation between a place and a transition. A
pair � pi � t � denotes an arc from a source place pi to a tran-
sition t, and a pair � t � po � denotes an arc from a transition t
to a destination place po. In Petri Nets, each place (or each
transition) can have one or more input transitions (or one or
more input places), and one or more output transitions (or
one or more output places). A weight is an integer attached
to an arc, and a weight function, w, maps an arc, � pi � t � or
� t � po � , to its weight. If the weight is 1, it is usually omitted.
A distribution of tokens in places in a Petri Net is called a
marking, which represents a state of the net.

(a)
 (b)
 (c)

p
1
 p
2
 p
3

p
4
 p
5

t

Figure 6. Example Petri Nets

At most one transition executes at a time in a Petri Net.
A transition t is enabled if each of its input places pi con-
tains at least w � pi � t � tokens. The firing of transition t re-
moves w � pi � t � tokens from each input place pi of t and adds
w � t � po � tokens to each output place po of t. Consider Fig-
ure 6 (a), depicting a transition with three input places p � ,
p � , p � ; two output places p � , p � ; all of whose arcs have
a weight of 1. Transition t is enabled because all three of
its input places contain a token. After firing, a token is re-
moved from each input place and a token is added to each
output place.

We map a Petri Net to one HTS. Each place in the Petri
Net is represented as a unique variable of the HTS, whose
type is integer and whose value is the number of tokens in
the place. An initial marking of a Petri Net determines the
HTS’s initial variable-value assignment. Because a Petri
Net has no control states or events, the HTS state and event
elements are empty. Each Petri Net transition is represented
as an HTS transition with the form

�
cond � act � , where cond

is a predicate that tests that the transition’s input places have
the necessary number of tokens with respect to weights on
the input arcs, and act adds zero or more tokens to the out-
put places, according to the weights on the output arcs. For
example, Petri Net transition t in Figure 6(a) would be rep-
resented as the following HTS transition:

cond � v � � w � p � � t �� v � � w � p � � t �� v � � w � p � � t �
asn � v � � v ��� w � p � � t ��� v � � v ��� w � p � � t ���

v � � v ��� w � p � � t ��� v � � v �
	 w � t � p � ���
v � � v � 	 w � t � p � ���

where variables v � , v � , v � , v � , and v � are the numbers of
tokens in the places p � , p � , p � , p � , and p � , respectively. In
Figure 6(b), two transitions are in conflict: they share one
input place, both are enabled, but only one of them can exe-
cute in a step. The transition that executes disables the other
until its input place is populated again. In Figure 6(c), if the
transitions’ output place has an upper limit b on the number
of tokens it can hold, then the firing of one transition may
disable the other. We can capture this in an HTS by adding
the extra enabling condition vo

	 w � t � po �
 b to each tran-
sition that has an output with a bound.

Snapshot Start of Micro-step �
Element Macro-step

AV AV AV
� � assign � ss � AV � eval � ss � asn ���	� � �

en states � ss � ��� � true
en events � ss � �	� � true

en cond � ss � �	� � ss � AV � � cond �
�	�
macro semantics � simple, diligent

pri � � � � �

Table 5. Template parameters for Petri Nets

Table 5 shows the relevant template parameters for Petri
Nets. AV is the only snapshot element used, and the variable
values are modified by the actions of executing transitions.
Petri Nets use simple, diligent, macro-step semantics. There
is no priority among the transitions (pri � � �
� �

). Petri Nets
do not use any composition operators.

6 Statecharts Variants

In this section, we show how to use our template ap-
proach to compare notational variants, in particular state-
charts variants. Statecharts, first introduced by Harel [3],
are one of the most popular model-based specification no-
tations. Many users have redefined subtle aspects of the
statecharts semantics to better suit their particular problem,
thereby creating a plethora of statecharts variants. For spec-
ifiers, it can be very difficult to understand the similarities
and differences among these variants. von der Beeck’s work
comparing statecharts variants [19] is well cited because it
provides a number of criteria for comparing variants. Our
template parameters highlight the variants’ differences in a
more formal and succinct manner than previously possible.

Syntactically, all statecharts variants map into HTSs that
are composed using parallel composition (i.e., AND com-
position) and interrupt composition, which combines com-
ponents via a set of interrupt transitions that pass control
between the components; interrupt transitions can originate
from within a component. Table 6 shows the template pa-
rameter values for five popular statecharts variants (Harel’s
original semantics [3], Pnueli & Shalev [18], RSML [10],
STATEMATE [4], and UML [16]). UML has simple, dili-
gent macro-step semantics; the other statecharts variants
have stable macro-step semantics.

The template parameters CS, CSa, and en states param-
eters capture the differences in which states can enable tran-
sitions. In Harel’s and in Pnueli & Shalev’s semantics, each
non-concurrent HTS can execute only one transition per
macro-step. We model this using CSa, which stores the set
of enabling states and is set to the empty set after a transition
is taken. RSML and STATEMATE do not have this restric-
tion, and it is possible for a macro-step to be an infinite loop
of one or more HTSs’ transitions.

Template parameters AV , AVa, and en cond capture the
differences in which variables can enable transitions. The
current variable values (AV) are updated by executing tran-

sitions. In STATEMATE, a single transition may assign
multiple values to the same variable, but only the last as-
signment has an effect. The abbreviation assignlast used in
Table 6 has the following meaning:

AV
� � assign � ss � AV � lasts � asn �
�	� � �

where lasts returns the last assignment made to each vari-
able. STATEMATE allows multiple transitions in the same
micro-step to assign conflicting values to variables. The
conflicts are non-deterministically resolved:

resolve � vv � � vv � � vv � � resolveSTM
�

vv � � � a � b � � � a � b ��� vv ��� � a � b ��� vv � 	��� � � a � b ��� vv � � � c � d ��� vv � � a � c �	� b � d ��

Harel and Pnueli & Shalev allow external events to

trigger transitions throughout a macro-step; parameter Ia

holds these events. In RSML and STATEMATE, exter-
nal events can trigger transitions only in the first micro-
step. We assume that timeout events are external events.
For notations that differentiate syntactically between inter-
nal events and external events (e.g., RSML), we use func-
tion internev � E � to refer to the set of internal events and the
function externev � E � for the set of external events.

Similarly, Harel and Pnueli & Shalev allow internal
events generated in a micro-step to trigger any future transi-
tion in the same macro-step; parameter IE accumulates gen-
erated events. RSML and STATEMATE allow only events
generated in the previous micro-step to trigger a transition.
In UML, each object has an event queue that emits one event
per (simple) macro-step. Because transitions may trigger on
implicit internal events, such as the entering and exiting of
states or changes in conditions or in variable values, param-
eters IE and O use a macro function ev gen that returns all
explicit and implicit events generated when transition � ex-
ecutes in snapshot ss.

Many statecharts variants allow transitions to trigger on
event expressions, such as negated events (i.e., lack of an
event) or disjunctions of events. We treat disjunctive events
as a notational convenience for combining transitions that
have similar actions. To handle negated events, we dis-
tinguish between trigger events pos ���	� and negated trigger
events neg �
�	� . Pnueli & Shalev do not allow two transi-
tions to execute in the same macro-step, if one is triggered
by negated event not a and the other generates event a;
they call this scenario a global inconsistency. To model
Pnueli & Shalev’s semantics, we use IEa to accumulate the

Pa
ra

m
et

er
H

ar
el

[3
]

P
nu

el
i[

18
]

R
S

M
L

[1
0]

S
TA

T
E

M
A

T
E

[4
]

U
M

L
[1

6]

re
se

t
C

S

� ss

� I

�

ss

� C
S

ss

� C
S

ss

� C
S

ss

� C
S

ss

� C
S

ne
xt

C
S

� ss

�
� � C

S

� �

C
S

�
� en

te
re

d

� de
st

� ���

re
se

t
C

S a

� ss

� I

�

ss

� C
S

ss

� C
S

n/
a

n/
a

n/
a

ne
xt

C
S a

� ss

�
� � C

S

� a

�

C
S

� a

�
�

C
S

� a

�
�

n/
a

n/
a

n/
a

en
st

at
es

� ss

�
��

sr
c

� ��
� ss

� C
S a

sr
c

� ��
� ss

� C
S a

sr
c

� ��
� ss

� C
S

sr
c

� ��
� ss

� C
S

sr
c

� ��
� ss

� C
S

re
se

t
IE

� ss

� I

�

�

�

�

�

ap
pe

nd

� ss

� IE

� I

�

ne
xt

IE

� ss

�
� � IE

� �

IE

�
� ss

� IE

	 ev
ge

n

� ss

�
��

IE

�
� ss

� IE

	 ev
ge

n

� ss

�
��

IE

�
� ev

ge
n

� ss

�
��

in
te

rn
ev

� E

�

IE

�
� ev

ge
n

� ss

�
��

IE

�
� ap

pe
nd

� ta
il

� ss

� IE

� �

ev
ge

n

� ss

�
���

re
se

t
IE

a

� ss

� I

�

n/
a

�

n/
a

n/
a

n/
a

ne
xt

IE
a

� ss

�
� � IE

� a

�

n/
a

IE

� a

� ss

� IE
a

	 ne
g

� ��

n/
a

n/
a

n/
a

re
se

t
I a

� ss

� I

�

I
I

I
I

n/
a

ne
xt

I a

� ss

�
� � I

� a

�

I

� a

� ss

� I a
I

� a

� ss

� I a
I

� a

�
�

I
� a

�
�

n/
a

en
ev

en
ts

� ss

�
��

po
s

� ��
� ss

� IE

	 ss

� I a

�

� ne
g

� ��

� ss

� IE

	 ss

� I a

��
�

�

po
s

� ��
� ss

� IE

	 ss

� I a

�

� ne
g

� ��

� ss

� IE

	 ss

� I a

��
�

�

�
� ss

� IE
a

 ge
n

� ���
�

�

tr
ig

� ��
� ss

� IE

	 ss

� I a
tr

ig

� ��
� ss

� IE

	 ss

� I a
tr

ig

� ��
� he

ad

� IE

�

re
se

t
O

� ss

� I

�

�

�

�

�

�

ne
xt

O

� ss

�
� � O

� �

O

�
� ss

� O

	 ev
ge

n

� ss

�
��

O

�
� ss

� O
	

� ev
ge

n

� ss

�
��

ex
te

rn
ev

� E

��

O

�
� ev

ge
n

� ss

�
��

O

�
� ss

� O

	 ev
ge

n

� ss

�
��

re
se

t
AV

� ss

� I

�

ss

� AV
ss

� AV
ss

� AV
ss

� AV
ss

� AV

ne
xt

AV

� ss

�
� � A

V

� �

AV

�
� as

si
gn

� ss

� AV

� e
va

l

� ss

� a
sn

� ���
�

as
si

gn
la

st
AV

�
�

as
si

gn

� ss

� AV

� e
va

l

� ss

� a
sn

� ���
�

re
se

t
AV

a

� ss

� I

�

ss

� AV
ss

� AV
n/

a
n/

a
n/

a

ne
xt

AV
a

� ss

�
� � A

V

� a

�

AV

� a

� ss

� AV
a

AV

� a

� ss

� AV
a

n/
a

n/
a

n/
a

en
co

nd

� ss

�
��

ss

� AV

� s
s

� AV
a

�
� co

nd

� ��

ss

� AV

� s
s

� AV
a

�
� co

nd

� ��

ss

� AV

�
� co

nd

� ��

ss

� AV

�
� co

nd

� ��

ss

� AV

�
� co

nd

� ��

m
ac

ro
se

m
an

tic
s

st
ab

le
st

ab
le

st
ab

le
st

ab
le

si
m

pl
e,

di
lig

en
t

pr
i

�

�

no
pr

io
ri

ty
no

pr
io

ri
ty

no
pr

io
ri

ty
lo

w
es

t

� r
an

ke
d

sc
op

e
hi

gh
es

t

� r
an

ke
d

so
ur

ce

re
so

lv
e

� vv

� � v
v

� � v
v

�

n/
a

re
so

lv
e S

T
M

n/
a

Ta
b

le
6.

Te
m

p
la

te
p

ar
am

et
er

s
fo

r
st

at
ec

h
ar

ts
va

ri
an

ts
(“

n
/a

”
m

ea
n

s
n

o
t

ap
p

lic
ab

le
)

negated events that trigger transitions in the macro-step.
Subsequent transitions are enabled only if their generated
events are disjoint with this set IEa (see Table 6’s definition
for en events). Harel’s statecharts and STATEMATE al-
low global inconsistencies; RSML does not allow negated
events; UML cannot exhibit global inconsistency because it
has simple macro-step semantics.

With respect to outputs, in Harel’s and in Pnueli &
Shalev’s semantics, all events generated during the micro-
step are communicated as outputs. In RSML, all generated
external events are communicated as outputs. In STATEM-
ATE, only the events generated in the last micro-step of the
macro-step are communicated as outputs.

With respect to priorities on transitions, Harel’s, Pnueli
& Shalev’s, and RSML’s semantics place no priority
scheme on transitions. STATEMATE gives priority to tran-
sitions whose scope has the lowest rank, where scope and
rank are defined in Section 2. UML favours transitions with
the highest-ranked source state.

Some of the statecharts features not modelled here (i.e.,
compound transitions) are simply notational conveniences
that can be accommodated by using the features’ expanded
definitions. Some features (e.g., history states) can be mod-
elled with changes to the template parameters (e.g., calcula-
tion of current states) without requiring changes to the pa-
rameterized template definitions. Other features (e.g., real-
time clocks) are best modelled as an extension to our HTS
model. Generality of the HTS model is described in [15]

7 Conclusion

We have demonstrated that our template approach for
describing model-based notations is expressive enough to
define the semantics of Petri Nets, SDL, and SCR. A no-
tation’s template definition is succinct and better facilitates
comparison among notations than traditional descriptions,
because the template separates the different concerns of
the step semantics. Template definitions of some notations
(e.g., SCR) stretch the intended uses of some of the snapshot
elements, and it is not clear whether the resulting definition
is easier to understand than a traditional definition; but the
template semantics representation would make it easier to
compare SCR with other dataflow languages.

We are currently working on using template definitions
of notations to generate notation-specific analysis tools,
such as model checkers. We believe this work will make it
possible to create formal analysis tools for custom notations
with considerably less effort than previously possible.

8 Acknowledgments

We thank Dan Berry, Yun Lu, Andrew Malton, and John
Thistle for helpful discussions of early aspects of this work.

We also thank Constance Heitmeyer and Ralph Jeffords for
their help with the semantics of SCR and for their feedback
on earlier drafts of this paper.

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Prin-
ciples, Techniques, and Tools. Addison-Wesley, Reading,
MA, USA, 1986.

[2] D. Harel. Statecharts: A visual formalism for complex sys-
tems. Science of Computing, 8:231–274, 1987.

[3] D. Harel et al. On the formal semantics of statecharts. In
Symp. on Logic in Comp. Sci., pages 54–64, 1987.

[4] D. Harel and A. Naamad. The Statemate semantics of stat-
echarts. ACM Trans. on Soft. Eng. Meth., 5(4):293–333,
1996.

[5] C. L. Heitmeyer and R. D. Jeffords. The SCR tabular nota-
tion: A formal foundation, 2003. NLR/MR/5546-03-8678.

[6] C. L. Heitmeyer, R. D. Jeffords, and B. G. Labaw. Auto-
mated consistency checking of requirements specifications.
ACM Trans. on Soft. Eng. Meth., 5(3):231–261, 1996.

[7] C. A. R. Hoare. Communicating Sequential Processes. Pren-
tice Hall, UK, 1985.

[8] ISO8807. LOTOS - a formal description technique based on
the temporal ordering of observational behaviour. Technical
report, ISO, 1988.

[9] ITU-T. Recommendation Z.100. Specification and Descrip-
tion Language (SDL). Technical Report Z-100, International
Telecommunication Union - Standardization Sector, 1999.

[10] N. G. Leveson, M. P. E. Heimdahl, H. Hildreth, and J. D.
Reese. Requirements specification for process-control sys-
tems. IEEE Trans. on Soft. Eng., 20(9), September 1994.

[11] Z. Manna and A. Pnueli. The Temporal Logic of Reactive
and Concurrent Systems: Specification. Springer-Verlag,
1991.

[12] R. Milner. Communication and Concurrency. Prentice Hall,
New York, 1989.

[13] T. Murata. Petri Nets: Properties, analysis and applications.
Proc. of the IEEE, 77(4):541–580, April 1989.

[14] J. Niu, J. M. Atlee, and N. A. Day. Composable semantics
for model-based notations. In Proc. of the ACM SIGSOFT
FSE-10, pages 149–158, 2002.

[15] J. Niu, J. M. Atlee, and N. A. Day. Template semantics
for model-based notations. Technical Report CS-2003-19,
University of Waterloo, School of Computer Science, 2003.
Submitted for publication.

[16] Object Management Group. Unified Modelling Language
(UML), v1.4, 2001. Internet: www.omg.org.

[17] J. L. Peterson. Petri Nets. ACM Computing Surveys,
9(3):223–252, September 1977.

[18] A. Pnueli and M. Shalev. What is in a step: On the semantics
of statecharts. In Proceedings of the Symposium on Theoret-
ical Aspects of Computer Software, volume 526 of LNCS,
pages 244–264. Springer-Verlag, 1991.

[19] M. von der Beeck. A comparison of statecharts variants. In
Formal Techniques in Real Time and Fault-Tolerant Systems,
volume 863 of LNCS, pages 128–148. Springer, 1994.

	RE03.Copyright
	RE03

