
CEUR	Copyright	Notice	
CEUR Workshop Proceedings (CEUR-WS.org) is a free open-access publication service at Sun
SITE Central Europe operated under the umbrella of RWTH Aachen University. CEUR-WS.org
is a recognized ISSN publication series, ISSN 1613-0073 (json). CEUR-WS.org is hosted at
http://SunSITE.Informatik.RWTH-Aachen.DE/Publications/CEUR-WS/. The publisher of the CEUR-
WS.org site excluding the proceedings volumes is Ruzica Piskac. The publishers of the proceedings
volumes (CEUR-WS.org/Vol-1, CEUR-WS.org/Vol-2, etc.) are the respective editors of the volumes. This
service is provided by the CEUR-WS.org Team.

Published	in:	Proceedings	of	the	12th	Workshop	on	Model-Driven	
Engineering,	Verification	and	Validation	co-located	with	ACM/IEEE	18th	
International	Conference	on	Model	Driven	Engineering	Languages	and	
Systems	(MODELS	2015),	September	2015	

"Merging Features in Featured Transition Systems"

Cite as:

BibTex:

URN: http://ceur-ws.org/Vol-1514/

Joanne M. Atlee, Sandy Beidu, Uli Fahrenberg, Axel Legay. Merging Features in Featured
Transition Systems. Proceedings of the 12th Workshop on Model-Driven Engineering,
Verification and Validation co-located with ACM/IEEE 18th International Conference on
Model Driven Engineering Languages and Systems, Sep 2015, Ottawa, Canada. pp.38-43.

@inproceedings{atlee:hal-01237661,
 TITLE = {{Merging Features in Featured Transition Systems}},
 AUTHOR = {Atlee, Joanne M. and Beidu, Sandy and Fahrenberg, Uli and Legay,
Axel},
 URL = {https://hal.inria.fr/hal-01237661},
 BOOKTITLE = {{Proceedings of the 12th Workshop on Model-Driven Engineering,
Verification and Validation co-located with ACM/IEEE 18th International
Conference on Model Driven Engineering Languages and Systems}},
 ADDRESS = {Ottawa, Canada},
 SERIES = {CEUR Workshop Proceedings},
 VOLUME = {1514},
 PAGES = {38-43},
 YEAR = {2015},
 MONTH = Sep
}

Merging Features in Featured Transition Systems
Joanne M. Atlee

University of Waterloo
jmatlee@uwaterloo.ca

Sandy Beidu
University of Waterloo
sandybeidu@yahoo.com

Uli Fahrenberg
Inria Rennes

ulrich.fahrenberg@inria.fr

Axel Legay
Inria Rennes

axel.legay@inria.fr

Abstract—Featured Transition Systems (FTSs) is a popular
representation for software product lines: an entire product
line is compactly represented as a single transition-machine
model, in which feature-specific behaviour is guarded by feature
expressions that are satisfied (or not) by the presence or absence
of individual features. In previous work, FTS models were mono-
lithic in the sense that the modeller had to construct the full FTS
model of the product line in its entirety. To allow for modularity
of FTS models, we propose here a language for extending an
existing FTS model with new features. We demonstrate the
language using a running example and present results about
the language’s expressivity, commutativity of feature extensions,
feature interactions, and resolution of such interactions.

I. INTRODUCTION

Software product lining is a software development paradigm
in which a family of related software products (e.g., similar
smart phones, or payroll systems) share a common set of
mandatory features and individual products are differentiated
by the presence or absence of optional features. Ideally,
features are increments of functionality that can be developed
independently and combined into products or a product line.

Featured Transition Systems (FTSs) [6] is the prevalent
mathematical model for expressing the behaviour of a soft-
ware product line. An FTS resembles a traditional state-
transition machine, except that transitions are guarded by
feature expressions (as well as annotated with actions): the
feature expression specifies that the transition exists in a prod-
uct only if the product’s features satisfy the feature expression.

As an example, Fig. 1 displays an FTS model of an
automated teller machine (ATM). It has a mandatory feature
that consists of a cycle of card insertion, PIN entrance, amount
specification, cash retrieval, and card retrieval. Hence these
transitions will be present in all products. Also shown is an
optional “Cancel” feature which allows to cancel transactions,
and another optional “Balance” feature which permits the
customer to get an account balance. Thus, the transitions
belonging to feature Ca will be present only in products which
include the Ca feature; the balance-labeled transition from
state 2 to state 4 will be present only in products that include
the B feature.

In previous work, FTS models were monolithic models
of full product lines. There was no means of modelling
individual features and composing them into products or
product-line models, or of specifying feature increments to
an existing product-line model. As such, FTSs could not be
the mathematical basis for modelling technologies that support

0 1 2 3 4
card? PIN amount cash

card!

[Ca] cancel [Ca] cancel

[Ca] cancel

[B] balance

Fig. 1. ATM example

feature decomposition, composition, or incremental evolution
of a product line.

To allow for modularity of FTS models, we propose here a
language of feature merge expressions (FMEs) for specifying
new feature extensions to an existing FTS model. Specifically,
given a base FTS model of mandatory behaviour, an FME is
a sequence of FTS transformations that add transitions and
states and manipulate feature expressions, thereby embedding
new feature-specific behavior into the existing FTS. We show
that a relatively small set of FME constructs is sufficiently
powerful to express any legal extension of an FTS.

From a methodological point of view, we envision appli-
cation of FMEs to FTSs to be automatized, and we will
show below how to achieve this. Once such automatization
is available, FMEs should become a powerful tool for product
line specification.

In the following we give a brief overview of FTSs. In
Section III, we introduce a preliminary language of simple
FMEs and demonstrate its utility on a running example; we
conclude that section with a proof of expressivity of the
simple language. In Section IV, we extend our preliminary
language to include variables, which enable the specification of
more general model-transformation rules that (may) apply to
multiple locations in an existing FTS. We discuss in Section V
the issue of commutativity of feature extensions, interactions
among features, and how to use FMEs to specify resolutions
to interactions. In Section VI we conclude and describe future
directions of this work.

II. FEATURED TRANSITION SYSTEMS

A transition system (TS) S = (S,⌃, I, T, ⌧) consists of a
finite set of states S, a nonempty set of initial states I ✓ S, a
finite set of actions ⌃, and a finite set of transitions T together
with a mapping ⌧ : T ! S ⇥ ⌃ ⇥ S. We write t : s

a�! s0

to indicate a transition t 2 T with ⌧(t) = (s, a, s0). When
necessary, we will distinguish input actions from output labels

0 1

water

get

Fig. 2. Vending machine example: base feature

in ⌃; in Fig. 1 for example, “card?” denotes the card being
input into the ATM, whereas “card!” denotes the card being
returned.

Let N be a set of features. A feature expression is a Boolean
expression over N ; (N) denotes the set of such feature
expressions. A product is a subset p ✓ N . We denote by tt and
ff the universally true, respectively false, feature expressions.
For a product p and a feature expression �, we write p |= �
if p satisfies �.

A featured transition system (FTS) F = (S,⌃, I, T, ⌧, �)
consists of a TS (S,⌃, I, T, ⌧) and a mapping � : T ! (N)
which assigns feature guards to transitions.

FTSs are used as compact specifications of product lines,
or sets of transition systems depending on products. To be
precise, the semantics of an FTS F = (S,⌃, I, T, ⌧, �) is
the mapping JFK from products p ✓ N to TSs given by
JFK(p) = (S,⌃, I, T 0, ⌧) with T 0 = {t 2 T | p |= �(t)}.
That is, the TS JFK(p) contains precisely those transitions
from F which are enabled for the product p. Two FTSs F ,
F 0 are called semantically equivalent, denoted F ⌘ F 0, if
JFK(p) = JF 0K(p) for every product p ✓ N .

III. SIMPLE FEATURE MERGE EXPRESSIONS

We want to merge a new feature into an already given FTS.
The idea is that we specify rules which may add states to the
FTS, add transitions, and modify existing transitions.

A. Example

We introduce feature merge expressions gradually through
a running example. Figure 2 displays a (very) simple vending
machine which hands out water to the thirsty traveler, for free.
Now we would like to add “Coffee” and “T ea” features to it,
noting that these hot beverages do not come for free. To do
so, we use a feature merge expression (FME) as follows.

C : add 0 coin 2

add 2 coffee 1

T : add 0 coin 2

add 2 tea 1

We shall give a formal syntax of FMEs below, but we can
give an intuitive explanation here. The first rule of the C
expression specifies that a new, coin-labeled, transition is to
be added to the FTS, leading to a state 2 which does not
exist. Hence this state is added to the FTS. The second rule
then adds a coffee-labeled transition from state 2 to state 1.
The result is displayed in Fig. 3.

The FME for T specifies to add another coin-labeled transi-
tion from state 0 to state 2, but as there is one such transition
already, the effect is a weakening of the feature guard on this

0 1

2

water

get
[C] coin

[C] coffee

Fig. 3. Vending machine example: base feature plus Coffee

0 1

2

water

get
[C _ T] coin

[C] coffee [T] tea

Fig. 4. Vending machine example: base feature plus Coffee and T ea

transition. Additionally, a new tea-labeled transition is added
(see Fig. 4).

Next we would like to add a “CreditCard” feature to the
vending machine FTS. The FME is as follows:

CC : str 0 coin 2 ¬CC

add 0 C _ T card 3

add 3 C _ T PIN 2

The first rule specifies that the coin-labeled transition from
state 0 to state 2 is to be strengthened with a feature guard
¬CC. Hence the CreditCard feature will disable the coin
transition, making credit card the only payment option. If
we wanted an inclusive CC feature instead, which does
not disable coin payment, then we could have omitted this
strengthening rule. Also note that strengthening rules are a
necessary part of merge expressions; whereas addition rules
introduce behaviour, strengthening rules restrict behaviour.

The last two rules of the FME specify that a new state is to
be added together with two transitions pertaining to the CC
feature. Note the new piece of syntax in the addition rules: the
transitions added should only be enabled if either the Coffee
or T ea feature are present, so they have to be guarded by the
feature expression C _ T . The result of the merge is depicted
in Fig. 5.

B. Formal Syntax and Semantics
In general, a feature merge expression for a feature F

consists of rules of two types:
• addition rules of the form

add s h�i a s0

0 1

2

water

get
[(C _ T) ^ ¬CC] coin

[C] coffee [T] tea
3

[(C _ T) ^ CC] card

[(C _ T) ^ CC] PIN

Fig. 5. Vending machine with Coffee, T ea and CreditCard

(the “h�i” denotes an optional part) which specify to add
a transition (and possibly the states) from s to s0 with
label a and feature guard � ^ F ;

• strengthening rules of the form

str s a s0

which specify that any existing transition from s to s0

with label a has to have its guard strengthened by .
As we saw in the example above, addition rules can

also (implicitly) specify weakening clauses in feature guards:
Adding a transition (s, a, s0) with feature guard to an FTS
which already has a transition (s, a, s0), with feature guard �,
has the same semantic effect as weakening the feature guard
of the latter transition to � _ .

The formal syntax for an FME E is as follows.

E ::= � : IE | E;E

IE ::= add s a s0 | add s a s0

| str s a s0 | IE; IE

Here � can be any feature expression, but will usually be
only a single feature. In an FME � : IE, we call IE an
inner expression. Hence the first line above specifies the syntax
of merge expressions, whereas the second line specifies the
syntax of inner expressions.

We give denotational semantics to FMEs. Let F =
(S,⌃, I, T, ⌧, �) be an FTS and E an FME, then the effect
JEK(F) is a new FTS F 0 which is given by structural induction
on E:

JE1;E2K(F) = JE2K(JE1K(F))

J� : IEK(F) = JIEK�(F)

JIE1; IE2K�(F) = JIE2K�(JIE1K�(F))

Jadd s a s0K�(F) = Jadd s tt a s0K�(F)

Jadd s a s0K�(F) = (S [{s, s0},⌃, I, T [{tnew}, ⌧ 0, �0)
where tnew /2 T is a new transition and

⌧ 0(t) =

(
⌧(t) for t 6= tnew

(s, a, s0) for t = tnew
and

�0(t) =

(
�(t) for t 6= tnew

� ^ for t = tnew

Jstr s a s0 K�(F) = (S,⌃, I, T, ⌧, �0) with

�0(t) =

(
�(t) if ⌧(t) 6= (s, a, s0)

�(t) ^ if ⌧(t) = (s, a, s0)

Here the first line shows how to concatenate merge expres-
sions, and the second line gives the rule for how to access
an inner expression IE inside an FME E = � : IE. The
semantics of this inner expression is then dependent on its
feature guard �, i.e., the meaning of JIEK�(F) depends on �.

The third line then shows how to concatenate inner expres-
sions, and the fourth and fifth lines give semantics to addition
rules. Note that the second addition rule specifies that a new
transition tnew be added to the FTS, whereas the states s and
s0 only are added if they do not already exist in S.

0 1 2 3 4
card? PIN amount cash

card!

Fig. 6. ATM example: base feature

C. Expressivity

We show here that FMEs are powerful enough to make any
legal extension to an FTS.

Theorem 1 For all FTS F , F 0, there exists an FME E such
that JEK(F) ⌘ F 0.

Proof: Let F = (S,⌃, I, T, ⌧, �), F 0 = (S0,⌃0, I 0, T 0, ⌧ 0, �0).
By renaming states if necessary, we can assume that S\S0 =
;. We construct E = tt : IE; IE0, where IE and IE0 are
inner expressions.

We first strengthen all transitions in F to make their feature
guards unsatisfiable. Write T = {t1, . . . , tn} and define IEj =
str ⌧(tj) ff for j = 1, . . . , n. Let IE = IE1; . . . ; IEn. It is
clear that every transition in JIKtt(F) has unsatisfiable feature
guard.

Now we add all transitions in T 0 to JIKEtt(F). Write
T 0 = {t01, . . . , t0m} and define IE0

j = add ⌧ 0(t0j) �0(t0j) for j =
1, . . . ,m. Let IE0 = IE0

1; . . . ; IE
0
m. Then JIE; IE0Ktt(F) =

JEK(F) is semantically equivalent to F 0.

IV. EXTENDED FEATURE MERGE EXPRESSIONS

In order to allow for more generic feature merge expres-
sions, we propose to extend the syntax of FMEs to include
variables. We again introduce these through a running exam-
ple.

Recall the ATM example from Fig. 1, where we for now
ignore the Cancel and Balance features. Figure 6 shows the
ATM base feature.

Now we would like to add a Receipt feature, which models
an ATM where the customer can obtain a receipt after her
transaction. Hence R should add a transition labeled rec? from
state 4 to a new state 5, asking whether the customer wants
a receipt. From state 5, a rec! transition will issue a receipt,
leading to another state 6 from which there is a card! transition
back to state 0. For the case that the customer does not want a
receipt, there should be a transition labeled norec? from state
4 to state 6; also, the R merge expression should strengthen
the existing card!-labeled transition.

In order to make our merge expression more generic, we
will avoid making explicit reference to existing states like
above. Instead, we will specify that the new rec?-labeled
transition is to start at the target state of the existing card!-
labeled transition; similarly, the new card!-labeled transition
is to have the same target state as the existing one. This is

0 1 2 3 4
card? PIN amount cash

5

6

[¬R] card!

[R] rec?

[R] norec? [R] rec!

[R] card!

Fig. 7. ATM example: base feature plus Receipt

0 1 2 3 4
card? PIN amount cash

7

[M] more?

[¬M] card! [M] nomore?

[M] card!

5

6

[R] rec!

Fig. 8. ATM example: base feature plus More

achieved by the following extended feature merge expression
(EFME); the result of the merge is displayed in Fig. 7.

R : foreach t labeled card!
str t ¬R
add src(t) guard(t) rec? 5

add src(t) guard(t) norec? 6

add 5 guard(t) rec! 6
add 6 guard(t) card! tgt(t)

In the above EFME, the line “foreach t labeled card!” loops
over all card!-labeled transitions, binding them to the variable
t. The lines within the loop’s scope can then access the source
state src(t) and the target state tgt(t) of t and its feature guard
guard(t).

We would also like to add a More feature to the original
ATM model, which allows the customer to make more than
one transaction in a session. Hence M should add a transition
labeled more? back from the start of any card!-labeled transi-
tion (this signifying the end of a session) to state 2 and modify
other parts of the FTS accordingly. The EFME for M looks
as follows, with the ATM+More displayed in Fig. 8.

M : foreach t labeled card!
str t ¬M
add src(t) guard(t) more? 2
add src(t) guard(t) nomore? 7

add 7 guard(t) card! tgt(t)

Note how this permits the customer to indicate that she
wants to make another transation (more?) versus that she is
done (nomore?).

The semantics of EFMEs is given by translating them to
simple FMEs. Specifically, let

� : foreach t labeled a : IE

be an EFME, denote by {t 2 T | ⌧(t) = (s, a, s0)} =
{t1, . . . , tn} all the a-labeled transitions of the FTS under

consideration and write ⌧(ti) = (si, a, s0i) for all i = 1, . . . , n.
Then the FME translation is � : IE0

1; . . . ; IE
0
n, where each

IE0
j is obtained from IE by the following syntactic replace-

ments:

src(t) 7! si tgt(t) 7! s0i guard(t) 7! �(ti)

V. FEATURE INTERACTIONS

It is now a natural question to ask how different feature
merges interact with each other. This should be phrased as a
commutativity question: does it matter whether one feature is
merged after another or vice versa, or do the merges commute?
Hence we are interested in the question whether application
of two FMEs to FTS is commutative, that is, given an FTS F
and two FMEs E1, E2, whether JE1;E2K(F) ⌘ JE2;E1K(F).

A. Commutativity of Feature Merges
We will consider the commutativity question on our running

ATM example. First, note that the Balance feature (see Fig. 1)
does not interact with the Receipt feature: if B is specified
using the FME

B : add 2 balance 4

then merging B after R will give the same result as merging
B before R. Similarly, B does not interact with M . Hence
in these cases, the feature merges are commutative and the
merges do not interact.

Much more interesting is the question whether the More
and Receipt feature merges commute. If we first apply the
FME for M and then the one for R to the ATM base, then
the result is the FTS ATM+M+R displayed in Fig. 9. As
the merge expression for M introduces a second card!-labeled
transition into the FTS, the R expression is now applied to
two card!-labeled transitions, one from state 4 to state 0 and
one from state 7 to state 0. Hence this introduces two copies
of the triangle of rec?-, norec?-, and rec!-labeled transitions,
one anchored in state 4 and the other in state 7.

Also two new card!-labeled transitions are introduced, one
with feature guard ¬M ^R and the other with feature guard
M ^ R; but as they both connect state 6 to state 0, they can
be merged into one card!-labeled transition with feature guard
R. Note how this ATM model lets the customer do several
transactions using the more?-labeled transition, and only after
indicating that she is done (nomore?), the ATM asks whether
she wants a receipt.

If we instead apply the FMEs for M and R in the opposite
order, i.e., first R and then M , then the result is the FTS
ATM+R+M displayed in Fig. 10. Its behaviour is different
from ATM+M+R: now the customer is asked whether she
wants a receipt after every transaction in a session, instead of
collecting one receipt at the end.

Hence the merges of R and M do not commute, but both
orders of merging result in reasonable behaviour: ATM+M+R
lets the customer do multiple transactions and asks whether
it should print a receipt once the customer has done all her
transactions; AMT+R+M instead asks whether a receipt is
desired after every single transaction.

0 1 2 3 4
card? PIN amount cash

7

[M] more?

[M] nomore?

5

6

[¬M^¬R] card!

[M^¬R] card!

[¬M ^R] rec?

[¬M ^R] norec?

[M ^R] rec?

[M ^R] norec?

[¬M ^R] rec!

[R] card!

Fig. 9. ATM+M+R: ATM base feature plus More plus Receipt, in this order

0 1 2 3 4
card? PIN amount cash

5

6

[R] rec?

[R] norec? [¬M ^R] rec![R] rec!

7

[¬R ^M] more?

[R ^M] more?

[¬R^¬M] card!

[R^¬M] card!

[¬R ^M] nomore?

[R ^M] nomore?
[M] card!

Fig. 10. ATM+R+M : ATM base feature plus Receipt plus More, in this order

B. Fixing Feature Interactions

From a designer’s point of view, non-commutativity of
feature merges is a sign that feature interactions are taking
place and the design needs to be fixed. We propose such a
fixed ATM design, called ATM+(MR), in Fig. 11. This FTS
lets the customer do several transactions, each time giving her
a choice whether to collect a receipt or not. Once she is done,
she can collect one more receipt and then get her card back.

In order to fix the interaction of the M and R features,
we present an interaction FME which turns both ATM+M+R
and ATM+R+M into the fixed ATM+(MR). The following
FME carefully adjusts and extends both ATM+M+R and
ATM+R+M into ATM+(MR):

R ^M : add 4 more? 2 add 4 rec? 5

str 4 norec? 6 ¬M add 4 nomore? 7

add 5 rec! 6 add 6 more? 2

add 6 nomore? 9 str 6 card! 0 ¬M
add 7 rec? 8 add 7 norec? 9

str 7 card! 0 ¬R add 8 rec! 9
add 9 card! 0

We show the complete feature merge expression for the
ATM example in Fig. 12. Note that this also includes an
FME for the base feature, showing that FMEs can be used
to construct FTSs from the bottom up.

VI. CONCLUSION AND FURTHER WORK

We have introduced a simple language of feature merge
expressions (FMEs) and shown that these can be used for
merging new features into featured transition systems (FTSs).
We have shown that FMEs can be used to introduce any
legal extension to an FTS. For practical usability, we have
introduced extended FMEs (EFMEs), which allow for more
generic merge expressions, and shown how to automatically
translate EFMEs to simple FMEs.

We have shown a comprehensive example of the use of
FMEs to construct and extend FTSs. For further evaluation,
we plan to implement our feature merge mechanism within
ProVeLines [7]. Note that in engineering practice, application
of feature merges can be entirely automatic, except when
feature interactions are detected: in that case, our proposed
tool will notify the engineer who must then solve any problems
manually, using interaction FMEs.

We have also seen that feature merges are not always
commutative, and that such (typically undesirable) failures
of commutativity can be resolved using an extra FME. Non-
commutativity of feature merges also appears in other contexts,
in particular in [3] which uses a much richer modelling
language than ours but otherwise is concerned with similar
modularity problems.

We have shown that non-commutativity of feature merges is
related to feature interactions, which opens up connections to
recent work on detecting and fixing feature interactions [1],

0 1 2 3 4
card? PIN amount cash

5

6

7 8

9

[M] more?

[R] rec?

[R ^ ¬M] norec?

[M] nomore?

[¬R^¬M] card! [R] rec!
[R ^M] more?

[R ^M] nomore?

[R^¬M] card!

[R ^M] rec?

[R ^M] norec?

[¬R ^M] card!
[R ^M] rec!

[R ^M] card!

Fig. 11. ATM+(MR): ATM base feature plus Receipt plus More, with feature interactions fixed

tt : add 0 card? 1 Ca : add 1 cancel 4 M : foreach t labeled card!
add 1 PIN 2 add 2 cancel 4 str t ¬M
add 2 amount 3 add 3 cancel 4 add src(t) guard(t) more? 2
add 3 cash 4 add src(t) guard(t) nomore? 7

add 4 card! 0 B : add 2 balance 4 add 7 guard(t) card! tgt(t)

R : foreach t labeled card! R ^M : add 4 more? 2 add 4 rec? 5

str t ¬R str 4 norec? 6 ¬M add 4 nomore? 7

add src(t) guard(t) rec? 5 add 5 rec! 6 add 6 more? 2

add src(t) guard(t) norec? 6 add 6 nomore? 9 str 6 card! 0 ¬M
add 5 guard(t) rec! 6 add 7 rec? 8 add 7 norec? 9

add 6 guard(t) card! tgt(t) str 7 card! 0 ¬R add 8 rec! 9
add 9 card! 0

Fig. 12. Complete feature merge expression for ATM example

[2], [4], [5], [8]–[11]. In future work, we intend to fur-
ther explore this link between feature interactions and non-
commutativity both from a theoretical and from a practical
point of view. As a simple example, one could use the method
we have introduced in [2], which can measure the number
of feature interactions, to give a quantitative score to non-
commutativity; this may be useful from a developer’s point of
view.

REFERENCES

[1] S. Apel, W. Scholz, C. Lengauer, and C. Kästner, “Detecting depen-
dences and interactions in feature-oriented design,” in ISSRE, 2010, pp.
161–170.

[2] J. M. Atlee, U. Fahrenberg, and A. Legay, “Measuring behaviour
interactions between product-line features,” in FormaliSE. IEEE, 2015,
pp. 20–25.

[3] S. Beidu, J. M. Atlee, and P. Shaker, “Incremental and commutative
composition of state-machine models of features,” in MiSE. IEEE,
2015, pp. 13–18.

[4] M. Calder, M. Kolberg, E. H. Magill, and S. Reiff-Marganiec, “Fea-
ture interaction: a critical review and considered forecast,” Computer
Networks, vol. 41, no. 1, pp. 115–141, 2003.

[5] M. Calder and A. Miller, “Feature interaction detection by pairwise
analysis of LTL properties - A case study,” Formal Methods in System
Design, vol. 28, no. 3, pp. 213–261, 2006.

[6] A. Classen, M. Cordy, P. Schobbens, P. Heymans, A. Legay, and
J. Raskin, “Featured transition systems,” IEEE Trans. Software Eng.,
vol. 39, no. 8, pp. 1069–1089, 2013.

[7] M. Cordy, A. Classen, P. Heymans, P. Schobbens, and A. Legay,
“ProVeLines: a product line of verifiers for software product lines,” in
SPLC workshops. ACM, 2013, pp. 141–146.

[8] A. L. J. Dominguez, “Feature interaction detection in the automotive
domain.” in ASE, 2008, pp. 521–524.

[9] P. K. Jayaraman, J. Whittle, A. M. Elkhodary, and H. Gomaa, “Model
composition in product lines and feature interaction detection using
critical pair analysis,” in MoDELS, 2007, pp. 151–165.

[10] W. Scholz, T. Thüm, S. Apel, and C. Lengauer, “Automatic detection
of feature interactions using the Java modeling language: an experience
report.” in SPLC Workshops, 2011, p. 7.

[11] P. Shaker and J. M. Atlee, “Behaviour interactions among product-line
features,” in SPLC, S. Gnesi, A. Fantechi, P. Heymans, J. Rubin, and
K. Czarnecki, Eds., 2014, pp. 242–246.

	MoDeVVA15.Copyright
	MoDeVVa15

