
IEEE	Copyright	Notice	
Copyright	(c)	2019	IEEE	
Personal	use	of	this	material	is	permitted.	Permission	from	IEEE	must	be	obtained	for	all	
other	uses,	in	any	current	or	future	media,	including	reprinting/republishing	this	material	
for	advertising	or	promotional	purposes,	creating	new	collective	works,	for	resale	or	
redistribution	to	servers	or	lists,	or	reuse	of	any	copyrighted	component	of	this	work	in	
other	works.	

Published	in:	Proceedings	of	ACM/IEEE	International	Conference	on	Model	
Driven	Engineering	Languages	and	Systems	(MODELS'19)	September	2019	

	

A Focus+Context Approach to Alleviate Cognitive Challenges of Editing and
Debugging UML Models	

Cite as:

BibTex:

@INPROCEEDINGS{8906900,
author={P. {Pourali} and J. M. {Atlee}},
booktitle={2019 ACM/IEEE 22nd International Conference on Model Driven Engineering
Languages and Systems (MODELS)},
title={A Focus+Context Approach to Alleviate Cognitive Challenges of Editing and Debugging
UML Models},
year={2019},
pages={183-193},

DOI: https://doi.org/10.1109/MODELS.2019.000-3

P.	Pourali	and	J.	M.	Atlee,	"A	Focus+Context	Approach	to	Alleviate	Cognitive	
Challenges	of	Editing	and	Debugging	UML	Models,"	2019	ACM/IEEE	22nd	
International	Conference	on	Model	Driven	Engineering	Languages	and	Systems	
(MODELS),	Munich,	Germany,	2019,	pp.	183-193.

A Focus+Context Approach to Alleviate Cognitive
Challenges of Editing and Debugging UML Models

Parsa Pourali
Department of Electrical and Computer Engineering

University of Waterloo
Waterloo, Canada

ppourali@uwaterloo.ca

Joanne M. Atlee
David Cheriton School of Computer Science

University of Waterloo
Waterloo, Canada

jmatlee@uwaterloo.ca

Abstract—Model-Driven Engineering has been proposed to
increase the productivity of developing a software system. Despite
its benefits, it has not been fully adopted in the software
industry. Research has shown that modelling tools are amongst
the top barriers for the adoption of MDE by industry. Recently,
researchers have conducted empirical studies to identify the most-
severe cognitive difficulties of modellers when using UML model
editors. Their analyses show that users’ prominent challenges
are in remembering the contextual information when performing
a particular modelling task; and locating, understanding, and
fixing errors in the models. To alleviate these difficulties, we
propose two Focus+Context user interfaces that provide enhanced
cognitive support and automation in the user’s interaction with
a model editor. Moreover, we conducted two empirical studies
to assess the effectiveness of our interfaces on human users.
Our results reveal that our interfaces help users 1) improve
their ability to successfully fulfil their tasks, 2) avoid unnecessary
switches among diagrams, 3) produce more error-free models, 4)
remember contextual information, and 5) reduce time on tasks.

Index Terms—User-Centric Software Development, Empirical
Study, UML, Modelling Tools, Modelling Challenges.

I. INTRODUCTION

Model-Driven Engineering (MDE) is a software design
methodology that focuses on improving the productivity of
developing software systems by representing and testing the
important properties of the system before coding begins. MDE
involves several artefacts amongst which models are the core
assets. The engineer designs precise models to express the
elements of a software system and their properties (by means
of graphical or textual notations) in order to enhance the pro-
cess of automated code generation and improve understanding
and reasoning on the system. Despite their benefits, models
have not been well-adopted in the industry because of various
barriers, amongst which the lack of proper tooling techniques
is the most crucial [1] [2].

Model editors allow modellers to edit and debug models.
Tool vendors have expended considerable effort to design and
develop model editors that are easy to use, but their endeavors
have not fully succeeded in overcoming adoption barriers
because their approaches are mostly artefact-centric. That is,
their model-easing features facilitate modelling tasks mostly
by taking into account only the state and properties of the
model, the meta-model, and the constraints on them. Although
artefact-centric approaches offer many different tooling tech-

niques and features to improve the editors’ usefulness, their
effectiveness is rarely empirically assessed. Tool developers
rarely investigate modellers’ prominent challenges (by per-
forming a thorough analysis of the modellers and their tasks),
and they do not assess the effectiveness of modellers in using
their tools. Thus, they miss opportunities to address usability
concerns, leading to a chasm between what modellers expect
and what the model editors provide.

We believe that a more effective and complementary ap-
proach to improve modelling editors’ usability is to employ
user-centric techniques, which focus on understanding users’
difficulties and augmenting users’ cognitive abilities such as
visual capabilities, working memory, and task-specific design
comprehension. Accordingly, our approach, which we call
User-Centric and Artefact-Centric Development of Models
(UCAnDoModels), employs both user-centric and artefact-
centric strategies to enhance the MDE editors’ usability. Our
approach consists of five important steps: 1) understanding
the foremost difficulties experienced by model editor users,
2) correlating each of the difficulties to human cognitive
challenges, 3) proposing tooling solutions that address the
cognitive challenges, 4) assessing the effectiveness of the
proposed solutions on human users, and 5) iterating over the
solution to optimize it based on feedback from users.

Based on the results of our previous empirical study [3],
users’ most-severe difficulties are: (1) Context: remembering
contextual information and (2) Debugging: locating, under-
standing and fixing errors and inconsistencies in models. To
overcome these difficulties, we propose two Focus+Context
[4] interfaces that aim to reduce cognitive challenges of
developing models by providing users with the information
(Context) that are relevant to performing a particular task
(Focus). We implemented our proposed interfaces in a UML
model editor that we developed using Eclipse-based modelling
technologies. Finally, we conducted a user study to evaluate
the effectiveness of our proposed Focus+Context interfaces.

The rest of this paper is organized as follows. In Section
II, we discuss the background knowledge relevant to under-
standing our work. In Section III, we present an architectural
overview of our model editor. In Sections IV and V, we present
more detailed descriptions of our Focus+Context user inter-
faces for the Context and Debugging challenges, respectively.

In Section VI, we present the results of an empirical evaluation
of our techniques followed by the threats to the validity in
Section VII. Section VIII discusses the related works. We
conclude in Section IX.

II. BACKGROUND

The Unified Modelling Language (UML) offers static and
dynamic types of diagrams to model different aspects of a
system: static diagrams illustrate the structure of the system,
whereas dynamic diagrams model the behaviour of the system.
The most-prominent examples of static and dynamic diagrams
are the Class diagram and the State-Machine diagram.

A Class diagram represents a system’s entities and their
properties (e.g., attributes and operation), as well as the rela-
tionships among the entities. Fig. 1 shows an example Class
diagram consisting of a few classes. It shows the attributes
and operations of the classes (if any), and illustrates how these
classes are related to each other through edges. An edge can
represent an association (e.g., a Transponder can be sensed by
a Sensor), a composition (e.g., a Gate includes Sensors), or a
Generalization (e.g., GateA is a sub-type of Gate).

Fig. 1: An example of a Class diagram

For each class in the Class diagram, there can be a State-
Machine diagram that represents its behaviour. Fig. 2 shows
an example State-Machine diagram for the class GateA. It
consists of an initial pseudo-state and two normal states
(Closed and Open). These states are connected by transition
links. A transition is labelled by an expression that shows the
event that triggers the transition, the conditions (referred to as
a guard) must hold for the transition to execute, and the effects
of the transition (referred to as an action) when it executes.

Fig. 2: An example of a State-Machine diagram

In spite of the invaluable benefits offered by the UML,
researchers have shown that users’ challenges with UML

tools are one of the major obstacles to the adoption of
MDE by industry [1] [2]. We [3] investigated further and
conducted a formative user study to identify and understand
the difficulties of editing and debugging UML Class and
State-Machine diagrams, representing the static and dynamic
diagrams1 used most permanently in model analysis and
code generation, respectively. Their study revealed that users’
most-severe cognitive challenges are 1) Context: remembering
contextual information needed to write correct, complete, and
precise transition expressions in State-Machine diagrams, and
2) Debugging: locating and fixing errors in the model. Ghazi
and Glinz [5] partially confirms these same challenges, in the
context of tools to develop requirements artefacts.

These challenges stem primarily from the separation of
concerns that are inherent in the distinct views captured in
distinct UML diagrams. UML modelling tools offer diagram-
specific editors that do little to help users fetch and understand
the inter-related information that is expressed separately in
other related diagrams [6]. For example, developing a correct
expression for a state-transition guard in a State-Machine
diagram can be cumbersome for the modeller because they
need to refer to precise details about names, types, attributes,
parameters, and associations of model elements that are de-
fined in a separate Class diagram.

III. TOOL OVERVIEW

We propose UCAnDoModels, which employs both user-
centric and artefact-centric strategies to overcome users’ fore-
most challenges with UML model editors and we built a
model editor that incorporates the UCAnDoModels approach.
This section presents some of the underlying capabilities of
our editor. The editor’s architecture is shown in Fig. 3. The
Graphical and/or Textual Editors (Editors) embody the
primary components that allow users to edit a model; their
default diagramming features were built using Eclipse’s Ecore
Modelling Framework (EMF) [7], the Graphical Modeling
Framework (GMF) [8], and the Xtext Textual Editor [9].

Within the Editors component, our primary contributions
are Task-Oriented Model Editors, which aim to alleviate
the Context challenge. They are composed of the following
modules:

Distance-Oriented Objects Indexer: responsible for collect-
ing the information about relationships among all of the model
elements declared in the Class diagram. Its main task is to
order the model elements by the Distance value between
each element and the specific element that is the current
focus of an editing task. For example, if we are writing a
transition expression in a State-Machine diagram for class C1,
the Distance-Oriented Objects Indexer categorizes the model’s
elements into five categories as follows:
Category A: comprises the values or literals of the basic
types (e.g., Boolean, Integer, enumerations). For instance, if
the model element of current focus is of type Boolean, then

1Hereafter, the term modelling refers to editing and debugging Class and
State-Machine diagrams.

Fig. 3: The overall architecture of our UCAnDoModels editor

values of True and False values are included in this category.
Basic-type values or literals have a Distance of 0.
Category B: comprises the object members (e.g., operations or
attributes) that are defined in C1. The distance for an element
in Category B is one (Distance = 1).
Category C: comprises the model elements that are defined
in the ancestor classes of C1. The elements in this category
have a Distance of 2.
Category D: comprises the model elements that are defined
in the classes with which C1 has a direct relationship (as-
sociation, composition or aggregation). The Distance for a
class related by composition or aggregation is equal to 3 and
the Distance for a class related by an association is 4. Thus,
compositions have priority over associations.
Category E: comprises the model elements that are defined
within the classes that are indirectly related to C1. The
Distance for an element in this category depends on the
number of links (edges) between the element and C1, that is
Distance = 4 + (NumberOfLinks − 1). Thus, the further
the element, the less related it is.
After categorizing the elements, the Indexer ranks them based

on their respective Distance values and alphabetically sorts
the elements that have the same Distance.

Type-Based and Distance-Oriented Content-Assist: Content-
Assist in Java [10] (or Intellisense in Visual Studio [11]) is
a tooling feature that enables the developer to view a list of
the next available commands to write (at a specific cursor
position) when writing Java code. The list is populated by

the IDE and is based on the types of the elements declared
in a program or on the programming language’s grammar.
Model editors are starting to borrow such techniques and allow
modellers to use Content-Assist when writing model expres-
sions. However, the main challenge of designing a Content-
Assist is proposing relevant and valid options to the user
[12]. The existing editors retrieve the list of available options
from the meta-model and its constraints. They essentially
populate the Content-Assist list based on the language syntax,
rather than analysing the model elements and filtering out the
ones that are not semantically sound. In contrast, our editor
provides Type-Based and Distance-Oriented Content-Assist
to propose values or model elements that are most likely to
be the intended next clause in the expression currently under
edit, thereby reducing the effort of editing the expression. Our
Content-Assist uses the Distance-Oriented Objects Indexer
component described above and embeds a Type-Based Clas-
sifier that performs lightweight type checking to ensure that
variable assignments and conditional expressions (e.g., guard
conditions) are semantically sound by type. For instance, if
an operand in an assignment is an attribute of type T1, then
the other operand should be limited to attributes or operations
with the return type of T1 or sub-type of T1. After filtering out
the elements that are not sound-by-type, the Distance-Oriented
Objects Indexer ranks and orders the elements.

With our Content-Assist, the user will be given only
options that are syntactically correct and semantically sound.
Such assistance is expected to improve model correctness
and reduce modelling efforts, because the modeller is offered
a refined list of valid options rather than an exhaustive list
of all syntactically-related model elements, which can be
lengthy and difficult to explore.

Distance-Based Model Element Finder: This module allows
users to search for an intended model element among all the
existing model elements. It first attempts to find the elements
whose names exactly match what the user typed. However, it is
not always the case that the user remembers the exact name of
an element; users usually remember a part of a name or tries to
“guess” a similar name. Therefore, if no element with the exact
name is found, this module uses the Levenshtein edit distance
[13] algorithm, an approximate string-matching algorithm, to
look for elements whose names are similar to what the user
typed, and lists them in decreasing order of the computed edit
distance. If multiple elements with the same edit distance are
found, the module uses the Distance-Oriented Object Indexer
to rank and order them before displaying them to the user.

The Model Observer (MO) component continuously listens
to model edits and checks that each edit satisfies the editor’s
consistency rules. Our model editor adapts nine types of Well-
formedness rules and five types of Consistency rules proposed
by Lange et al. [14]. The Well-formedness rules prevent the
modeller from using incorrect UML syntax or writing an ill-
formed expression. The Consistency rules check for more
severe types of errors such as using an undefined element,
producing a semantically wrong expression, or introducing

TABLE I: List of Recall and Modify actions, and the relevant sections of the Focus+Context Transition Editor

ID Type Description Section(s)
Rec.1 Recall Remembering the elements in the Class diagram (i.e., Classes, Attributes, Operations, Types) A,B,C
Rec.2 Recall Remembering the relationships amongst the entities in the Class diagram A
Rec.3 Recall Remembering/reusing expressions (i.e., event, guard, actions) that are used in other transitions D
Rec.4 Recall Looking for an intended element based on the modeller’s recollection of its name C
Mod.1 Modify Creating an intended element (e.g., classes, attributes, operations) in the Class diagram A,B,C
Mod.2 Modify Creating a relationship between entities in the Class diagram A
Mod.3 Modify Changing the type of an element (e.g., attribute) in the Class diagram B

type-mismatches in a condition. If a Well-formedness or a
Consistency rule is violated as a result of a modification or a
deletion in the model (e.g., using an element in a transition
expression that is undefined in the Class diagram), the MO
conveys the inconsistency to the User-Interactive Consistency
Manager module, described below.

The User-Interactive Consistency Manager component
consists of two main modules: a Consistency Checker and a
Consistency Solver. The Consistency Checker detects the type
of inconsistency based on Lange’s definition [14], and finds a
proper solution, using the Solution Finder and Solution Han-
dler modules (embodied in the Consistency Solver), respec-
tively. A solution can be Auto-Fix, Quick-Fix, or Interactive-
Fix. Auto-Fix applies if the Solution Finder suggests that
there is only one possible valid fix for an inconsistency (e.g.,
renaming a model element should rename all its uses in the
model); the Solution Handler asks the user to confirm the
fix before automatically fixing the model. Quick-Fix applies
if the Solution Finder identifies multiple valid fixes for an
inconsistency. The Solution Handler then proposes the list of
possible fixes and allows the user to choose one from the list.
For example, if there is an initial pseudo-state in a region
that is not connected to any other states, the Solution Handler
provides the user with a list of possible regular states to which
the initial pseudo-state can be connected. If the Solution Finder
decides that neither Auto-Fix nor Quick-Fix techniques are
useful, it displays our Interactive-Fix dialogue and asks the
user to intervene to resolve the issue before proceeding with
subsequent model edits.

These modules provide fundamental capabilities in our
Task-Oriented Model Editor, described in Section IV, and our
User-Interactive Consistency Manager, described in Section V.
Please note that, the capabilities of the interfaces are the main
focus of this paper and not the visual design.

IV. FOCUS+CONTEXT TRANSITION EDITOR

We believe that the Context challenge is mostly due to two
difficulties: 1) Recall: consulting multiple relevant diagrams
to find contextual information (e.g., a modeller may need to
switch back to the Class diagram to recall an intended element
that he/she wants when writing a state-transition expression
in a State-Machine diagram), and 2) Modify: performing the
prerequisite steps to some modelling task (e.g., defining a
model element in the Class diagram before using it in a state-
transition expression).

Focus+Context editors [4] have been proposed to reduce
users’ cognitive load, by allowing them to integrate various

Fig. 4: Our Focus+Context Transition Editor

diagrams (i.e., Context) that are relevant to their current
task (i.e., Focus). Accordingly, our model editor employs the
Focus+Context Transition Editor (see Fig. 4) to alleviate the
task of editing transition expressions. The Focus section per-
tains to the editing task; in this case, the task of writing a state-
transition expression in a State-Machine diagram. Sections A,
B, C, and D are used to alleviate the challenges of Recall and
Modify. Table I lists all the user’s possible contextual actions
(i.e., Recall and Modify activities) related to the editing of a
transition expression, and shows which aspects of the editor’s
interface is designed to tackle each of the contextual actions
(see the Section column). In the following, we introduce each
section of the interface and explain how it can help alleviate
the difficulties of Recall and Modify.

• Section ContextA: A major difficulty that a user may
face when editing a transition label is knowing about
the classes, attributes, and operations declared in the
Class diagram (Rec.1). It is also important to understand
the relationships between the current class (whose State-
Machine diagram is currently being edited) and other
classes in the Class diagram (Rec.2). A modeller is more
likely to refer to an attribute or operation of the current
class or of an associated class, than to an attribute or
operation of an unrelated class. The purpose of ContextA
section is to display the relationships among the classes,
based on the data collected from the Distance-Oriented
Object Indexer (Section III). Specifically, modellers are
informed about the current class, the classes that have
a Direct Relationship with the current class (the type of
relationship is illustrated by an icon), the classes that have
an Indirect Relationship (i.e., connecting through another
class), and the classes that have No Relationship with the
current class. This categorisation of the classes allows the
modeller to focus on the classes to which they are most

likely need to refer.
Furthermore, a user can create an association between
the classes (Mod.2), by dragging the class from the list
of Indirect Relationship or No Relationship classes and
dropping it into the list of Direct Relationship classes.
The tool then creates an association between the current
class and the dragged class, but the user can always
right click on the newly associated class and modify the
type of the relationship from association to composition,
aggregation, or generalization. Alternatively, the user can
create a new class (Mod.1) by typing the name of the class
in the text field located at the bottom of the section.

• Section ContextB: A modeller may continuously refer to
the Class diagram to look for the attributes and operations
of classes (Rec.1) as these elements are the most-likely
candidates to be referenced in a transition label. Section
ContextB, lists the attributes and operations from the class
selected from the lists shown in Section ContextA. In
Fig. 4, ContextB lists the attributes and operations of the
Sensor class selected in ContextA. If the intended attribute
or operation does not exist in the selected class, the
user can simply create them using the interface (Mod.1).
Moreover, the user can right-click on an attribute or
operation to change its type (Mod.3).

• Section ContextC: To help users overcome the chal-
lenges of remembering an intended element, section Con-
textC enables the modeller to look for an element based
on what they can remember of the element’s name. As the
user types into the search text field, the Distance-Based
Model Element Finder (Section III) displays in real-time
the list of elements whose names match exactly to the
searched word followed by the model elements whose
names most-closely match to the typed name (Mod.1).

• Section ContextD: The results of prior user studies
suggest that users often look for a similar transition to
reuse or learn from when editing another transition’s
expression. This, however, can be cumbersome as it may
not be easy to identify a specific transition in a large and
complex model. In Section ContextD, we allow modellers
to search among the State-Machine diagrams in the model
for other transitions by their name or elements in their
labels (Rec.3), and reuse their event, guard, or action.

• Section Focus: This section provides aids that improve
the modeller’s Focus on the current editing task. It divides
the task into three text fields which correspond to the
event, guard, and action segments of the transition ex-
pression that is being edited; and it supports two different
ways of setting these segments: Feature-Rich Text Fields
and Drag-n-Drop.
Feature-Rich Text Fields provide various capabilities to
the users such as syntax-highlighting, displaying errors
and warnings, and Content-Assist that together nudge the
modeller towards a correct model and warn the modeller
when they violate a consistency rule. The Content-Assist
is user-activated and uses Type-Based and Distance-
Oriented Ranking module to list related model elements

in order of hypothesized relevance.
Drag-n-Drop: In addition to writing in the text fields
to set a transition’s event, guard, or action, modellers can
drag any element from the list of attributes and operations
(ContextB) and drop it to the corresponding event. guard
or action text fields. The tool will then automatically set
the event, guard, or action expressions for the user.

We hypothesize that: Providing editing facilitators for the
Recall and Modify activities can reduce the efforts related to
the Focus (i.e., editing a transition). We derive two research
questions from the hypothesis:

• RQ1: Does using our Focus+Context Transition Editor
improve the effectiveness (i.e., task success) and efficiency
(i.e., time on tasks and number of diagram views) of users
when developing transitions versus using other editors?

• RQ2: How well does our Focus+Context Transition Edi-
tor alleviate Context-related challenges?

V. USER-INTERACTIVE CONSISTENCY MANAGEMENT

A typical large-scale system can be composed of hundreds
of classes and corresponding State-Machine diagrams [6] [15].
Maintaining consistency in such large-scale systems requires
a lot of effort due to the number of inter-related elements
among the different diagrams. In our opinion, for a consistency
management approach to be successful, it should take the
following human-centric concerns into the account: Recog-
nizing the sources of inconsistency, alerting the user of an
inconsistency without being intrusive, ensuring that the user
can easily access to all relevant information needed to resolve
the inconsistency (Context), and supporting the users in their
plans to resolve an inconsistency.

Recognition: The first step to resolve an inconsistency is
to recognize when a change to the model (i.e., editing the
Focus) has introduced an inconsistency across the model. The
recognition process can be influenced by two memory-related
issues: 1) Transience: a measure of how easily information can
be retrieved from memory and the degree to which memory
deteriorates over time [16]; and 2) Absentmindedness: lapses in
paying attention [16]. The process of recognizing an occurred
inconsistency can fail because the modeller decides to resolve
the inconsistency at a later time (and then forgets), or he/she
does not even notice the inconsistency. To avoid failure to
address inconsistencies, our tool attempts to locate and resolve
inconsistencies while they are being made.

We are convinced that it is easier and faster to recognize and
correct errors while they are being made because the error-
inducing part of the model is still fresh in the modeller’s
mind. Our editor includes three error detection and resolu-
tion strategies (Auto-Fix, Quick-Fix, and Interactive-Fix) that
attract the user’s attention to a new error. Auto-Fix and Quick-
Fix approaches were described in Section III. Our Interactive-
Fix interface, shown in Fig. 5, pops up a dialogue box during
model-editing whenever a detected error is complex enough
to require greater user input.

Intrusiveness: It is often argued that resolving inconsis-
tencies on-the-fly during modelling is disruptive and counter-

Fig. 5: Our Interactive-Fix Interface

productive to users because of the memory overload imposed
by the context switching among the different diagrams to
locate an error [17] [18]; and because the interruption distracts
the user from their original train of thought [19]–[22]. In
contrast, we argue that recovering errors in real-time need
not adversely affect a user’s performance and satisfaction. We
devise a model editor that mitigates the disruptive impacts of
interruptions while enabling on-the-fly error resolution.

Make the Invisible Visible: One of the cognitive factors
involved in the process of maintaining model consistency is
Association, which refers to cross-linking a piece of informa-
tion to other related pieces of information. That is, the ability
to remember and list the cross-linked and out-of-sight (or out-
of-mind) model elements that may become inconsistent as a
result of an edit.

To promote the Association (cognitive) ability, our User-
Interactive-Fix interface (see Fig. 5) provides a hierarchical
view of all of the inconsistent elements in the model that are
affected by an original edit. The root node in the hierarchy
is the diagram that contains the erroneous element(s). For
example, Fig. 5 shows that the id attribute of the Gate class has
been deleted from the Class diagram, which introduces errors
in different guard expressions in the model. Accordingly,
the root nodes are the containing State-Machine diagrams
with child nodes representing the parent transitions of the
guards which themselves have child nodes corresponding to
the erroneous guards (e.g., guard expression of transitions t1
in the FeatureModule: GateB diagram).

Action Planning: An important step in problem-solving
and decision-making is to choose from the possible alternative
actions. Most editors do not assist the modeller in fixing an
inconsistency when it occurs; a few editors suggest that the
modeller undo the edit or delete the inconsistent element. Our
tool allows the modeller to edit or delete (using an Actions-
To-Do menu) the inconsistent element, or its parent element.
For example, if a newly inconsistent element is a guard, then
the user can select to edit the guard expression (using the
embedded textual editor) or delete it, or just delete the parent
transition. Note that, the edit action is not limited to the guard
expression: the user can easily access and edit the event or
actions of the parent transition, or other ancestor elements.

Context: Recalling the Context [23] is another critical
cognitive factor influencing the process of resolving inconsis-
tencies. It refers to remembering and integrating the essential
pieces of information that help the user to resolve an inconsis-
tency. These information may be spread into other diagrams

than the Focus diagram; thus requiring the user to switch
amongst different diagrams, which can be cumbersome.

To support the Context ability, our Interactive-Fix interface
embeds a feature-rich textual editor which presents the textual
representation of a selected inconsistent element and allows the
modeller to edit the element. The textual editor uses our Type-
Based and Distance-Oriented Content-Assist module to facil-
itate the task of editing by prioritizing and proposing relevant
model elements. Alternatively, our tool provides a graphical
editor for viewing and editing the containing diagram.

In summary, we hypothesize that: Our User-Interactive
Consistency Management interface improves the users’ effec-
tiveness in creating more correct models and reduces users’
feelings of being disrupted when fixing an inconsistency, by
taking the involving human-cognition factors. Based on this
hypothesis, we investigate the following research questions:

• RQ3: Do modellers who use our Interactive Consistency
Management interface create more correct models than
modellers who use other existing editors?

• RQ4: Do modellers who use our Interactive Consistency
Management interface judge the interface as being too
intrusive and disruptive to them when working with the
editor versus the level of correctness that it provides?

VI. EMPIRICAL EVALUATION

We conducted two user studies2 (Context study followed
by Debugging study) to evaluate the effectiveness of our
tooling advancements. The Context user study aimed to assess
the effectiveness of our Focus+Context Transition Editor as
an example of our Focus+Context editors, in alleviating the
challenges in remembering modelling Context; whereas the
Debugging study was aimed to evaluate our User-Interactive
Consistency Management interface in reducing the efforts of
Debugging. We designed the experiments according to the
guidelines from Tullis and Albert [24] and Pietron et al. [25],
such as number of subjects and data-collection techniques.

A. Experimental Design

Task Design: We designed nine tasks for the Context user
study and eight tasks for the Debugging user study. Each
participant was given structured descriptions of the tasks and
was asked to perform the tasks accordingly. The Context-
related tasks included editing the Class and State-Machine
diagrams of a Parking Lot system. For example:
Open the State Machine for Gate D. Find the transition that is
labelled as Tran3. Set the Event, Guard, or Action for Tran3
based on the following description.

• Event: After five seconds (recall that the time object
notifies the system every five seconds).

• Guard: The gate’s sensor does NOT sense blockage.
• Action: The gate should become closed; that is, the gate’s

position should be set to down.
The Debugging-related tasks involved editing parts of the

model and resolving any inconsistencies that may occur as a

2More information regarding the study materials can be found at:
https://github.com/ppourali/UserStudy-on-Tooling-Advances.git

result of that edit. For example:
The Sensor class has a Blockage attribute with the type of int.
Change the Blockage attribute’s type from int to bool, and fix
any inconsistencies that edit may cause.

Recruitment: We recruited participants by sending an email
message to CS and SE students at our institution who were
expected to have sufficient knowledge of UML tools as well as
UML Class and State-Machine diagrams. The following two
steps were taken to ensure that our subjects are as represen-
tative as possible of the target population of UML modellers:
1) We asked prospective subjects about their competency
in creating UML Class and State-Machine diagrams; 2) We
asked subjects to answer 10 UML-specific questions which
we incorporated in our recruitment letter. During six months
of advertisement, we recruited 18 eligible subjects. All the 18
subjects participated in both Context and Debugging studies
declared to have experience with modelling tools.

Application Domain: We chose a fairly simple Gated
Parking Lot system as the application domain in order to
mitigate the effects of domain knowledge on the participants’
performance. Moreover, the participants were given the Class
diagram of the system in advance, and were asked to study
a textual description of the Parking Lot domain as well as
the classes and their properties (i.e., attributes and operations)
to become familiar with the system before the studies began.
They could always refer back to the description if needed.
Also, they had access to the Class diagram in their tool.

Treatment Allocation: We employed a randomized
Between-Subjects strategy to assign tools to participants. Each
participant was randomly assigned to work with either our
tool or the modelling tool of their own choice. We decided
to allow subjects choose their favorite modelling tool in part
because there is no best competing tool (e.g., while one tool
has features to help users write guard expressions, another tool
might be better at showing and highlighting errors); and in part
to mitigate against the threat that a subject in the control group
performed poorly due to the unfamiliarity with the tool.

All the subjects went through a 10-minutes “warm-up”
phase before starting the tasks, in which the researcher and the
subjects walked through the tool (being our tool or the tool of
their choice) and practiced developing an example transition.
This helped subjects recall the relevant tool’s features and
become ready to use the tool. Table II shows the distribution
of tools used by subjects. Tool determination made in Context
study applied also to the Debugging study.

TABLE II: Number of participants per tool
Our tool Capella VisualParadigm MagicDraw Papyrus

9 3 2 2 2

Data Collection and Metrics: We collected several metrics
to answer our research questions about the subjects’ effective-
ness and efficiency in using the tools: 1) success score, 2)
number of errors, 3) time spent on each task, 4) lostness score,
and 5) self-reported metrics.

Fig. 6: Post-Session rating of experienced Context-related challenges

1) Success Score: A subject earned a success score of 1.0
when they completed a tasks successfully on their own,
a score of 0.5 (partial success) when they sought help
(e.g., ’What was the class’s name?’) and subsequently
completed the task successfully, and a score of 0.0 when
they failed to meet the goal of the task.

2) Number of Errors: We counted the number of errors
that each participant made per task. Specifically, we
counted errors that fall into the error taxonomy proposed
by Lange et al. [15] (i.e, various well-formedness and
consistency types of error).

3) Time Spent on Each Task: We measured the time that
each subject took to perform each task, as a measure of
the subjects efficiency in using a tool.

4) Lostness Score: As a second measure of the subjects’
efficiency with the tools, we computed a Lostness Score
(ranging from Zero to One), which represents how
’lost’ a subject was when performing a particular task.
Lostness (L) [24] is computed using three inputs:
N = The number of different (unique) diagrams viewed
when performing a task,
S = The total number of diagrams opened during the
task (included repeated openings), and
R = The optimum number of diagrams that should have
been viewed to fulfill the task.
A Lostness Score is calculated as:

L =

√
(
N

S
− 1)2 + (

R

N
− 1)2 (1)

The higher the Lostness score, the more often the subject
viewed unnecessary diagrams during a task. According
to Smith [26], a Lostness Score of greater than 0.5 is
deemed to be high.

5) Self-Reported Metrics: We asked the subjects about
their opinion of their anticipated and (perceived) ac-
tual performance with their respective modelling tool.
Specifically, we asked the subjects to rate the following
experiences based on the Likert scale ranging from 1
(Strongly Disagree) to 7 (Strongly Agree) with a neutral
value of 4:

• Context Challenge Rating: At the end of each ses-
sion of the Context study, we asked the subjects
to what extent they experienced Context-related
challenges when performing tasks(See Fig. 6).

• Intrusiveness Rating: To measure how intrusive our
Consistency Management interface is, we asked the
subjects who used our tool, before the Debugging
sessions, to rank on a Likert scale (from 1=Strongly

Fig. 7: Context Study: Average success rate per task for users of our
editor vs. other editors

Fig. 8: Context Study: Average time per task for our editor vs. other
editors

Disagree to 7=Strongly Agree) the extent to which
they agreed that maintaining model consistency
at all times is counter-productive (disrupting the
modelling tasks). At the end of the Debugging
study, we asked subjects to rank the extent to which
they felt that the interruptions by the Consistency
Management editor were disruptive.

B. Results of the Context User Study

For each of 18 subjects, we conducted one session lasting
60 to 90 minutes, during which our Focus+Context Transition
Editor was evaluated for its efficiency and effectiveness.

RQ1: Does using our Focus+Context Transition Editor
improve the effectiveness (i.e., task success) and efficiency (i.e.,
time on tasks and number of diagram views) of users when
developing transitions versus using other editors?

Our results indicate that subjects’ effectiveness and effi-
ciency increased significantly when using our editor.

Task Success: We added the subjects’ success scores and
computed a single score (referred to as General Success) for
the subjects. The average General Success ratio for all the
subjects, shown in Fig. 7, illustrates a raise in the success rate
of the users of our editors versus other editors for all the tasks.

Time on Task: Fig. 8 shows the mean time on each task for
our editor versus other editors. For a more meaningful result,
we included the average time only for the successful tasks.
As shown, the average time per task is shorter for the users
of our editor compared to the users of the other editors.

Lostness: Fig. 9 shows the average of the subjects’ Lostness
scores broken down by task. The participants who used other
editors were “lost” in all of the tasks, whereas the users of

Fig. 9: Context Study: Average Lostness score per task for users of
our editor vs. other editors

Fig. 10: Context Study: Context-related experienced challenges ex-
perienced on average by subjects who used editor vs. other editors

our editor showed almost no sign of being lost (except for the
tasks 8 and 9).

These results strongly suggest that modellers benefit from
a sliced view (from related diagrams) of the context of their
modelling task.

RQ2: How does our focus+context transition editor perform
in alleviating the Context-related challenges?

We used self-reported metrics to assess the Context-related
challenges that the subjects faced when using the model
editors. As mentioned, we used three questions to measure
the extent to which each subject experienced Context-related
challenges (see Fig. 6). Fig. 10 shows the average of the
subjects’ answers to each question for our editor versus their
answers for other editors. As can be seen, Context-related
challenges were deemed to be experienced more than twice as
much in other editors than in our editor. This significant gap
suggests that Focus+Context editors can play a critical role
in alleviating users’ cognitive load- especially in reducing the
challenges of remembering and editing contextual information.

C. Results of the Debugging User Study

For each of 18 subjects, we conducted one session lasting
60-90 minutes, during which we evaluated the effectiveness
of our User-Interactive Consistency Manager in reducing the
number of errors in a model and mitigating the disruptive
impacts of real-time error resolution.

RQ3: Do modellers who use our Interactive Consistency
Management interface create more correct models than mod-
ellers who use other existing editors?

The main research question in developing the User-
Interactive Consistency Management was to assess its effec-
tiveness in reducing the number of errors. For this purpose, the
task success scores and the number of errors per tasks were

collected and the results of subjects using our editor were
compared against the results of subjects using other editors.

Task Success: As shown in Fig. 11, participants who used
our editor were more successful in locating and resolving
inconsistencies than the participants who used other editors.

Fig. 11: Debugging Study: Percentage of tasks that were successfully
completed by subjects who used our editor vs. other editors

Errors on Tasks: As shown in Fig. 12, subjects who used
our editor made on average no errors in all tasks, which is a
significant improvement over the performance of the subjects
who used other tools.

Time on Tasks: It is not enough to be effective, if users
are not also efficient. As shown in Fig. 13, subjects who used
our editor completed all tasks, except Task5, in less time
on average than the subjects who used other editors. After
reviewing the recorded video and audio files of the sessions,
we noticed that the time on Task5 was lengthened mostly
because the users found it necessary to pause and point out a
feedback on how to improve the scalability of our interface.

RQ4: Do modellers who use our Interactive Consistency
Management interface judge the interface as being too in-
trusive and disruptive to them when working with the editor
versus the level of correctness that it provides?

One of the main hypotheses underlying the design of our
User-Interactive Consistency Management interface is that
managing consistencies in real-time while editing a model
does not have to be intrusive to the modeller (in contrast
to what researchers believe) if tool developers take human
cognitive factors into account when designing interfaces. For
the users of our editor, the result of their self-reported Ex-
pected Disruption asked Pre-Session and their self-reported
Experienced Disruption asked Post-Session is depicted in the
box plot shown in Fig. 14. It shows that the subjects strongly

Fig. 12: Debugging Study: Average number of errors per task for
user of our editor vs. other editors

Fig. 13: Debugging Study: Average time per task for subjects using
our editor vs. other editors

Fig. 14: Debugging Study: Subjects’ assessment of the intrusiveness
of our Interactive Consistency Manager

expected that maintaining model consistency at all times would
be intrusive. However, after using our editor, their experience
ratings showed the opposite. That is, their mean experience
rating indicates that they barely felt disrupted when asked by
our editor to debug inconsistencies during model editing.

VII. THREATS TO THE VALIDITY

The main threat to the validity is the participants’ com-
petency with the UML and UML editors. We tried to miti-
gate against this threat by asking the subjects to self-declare
their familiarity with the UML and editors. In addition, we
embedded a UML exercise in our recruitment questionnaire
and only recruited those subjects who could pass the exercise.
One might argue that recruiting participants during a six-
month period may result in variability in their experience
with modelling tools. However, we applied the same screening
procedure for all participants and the participants were not
actively learning about tools during this time frame. We do
not believe that the recruiting period introduced variability in
participants’ background.

Another threat to external validity is the participants’ famil-
iarity with the application domain and the system’s complexity.
To cope with this threat, we chose a simple and familiar
application domain. In addition, we designed the task to be
simple enough so that the subjects could perform their tasks
without a complete understanding of the system. Moreover,
we designed Task9 in the Context study and Tasks 4 and 5
in the Debugging study to be more difficult than other tasks,
so that we can observe how the users’ performance would be
affected in case of more difficult tasks. The results show that
there is still an improvement for the subjects who used our tool

versus the subjects who used other tools. However, the size of
the model in our studies is not comparable to models of large-
scale complex systems (e.g., see [15]), and it is possible that
the performance improvements that the subjects demonstrated
in the studies would not scale to much larger models.

The relatively small number of subjects may be another
threat to the validity, but the number is recognized as adequate
by various sources [24] [27].

VIII. RELATED WORK

Many artefact-centric techniques are proposed to improve
the usefulness of model editors. However, little work has
been done on applying human-factors theory to enhance the
usability of these editors. We are convinced that the state-of-
the-art still lacks a systematic consideration of humanr-centric
solutions when designing modelling tools [28]. As far as this
paper is concerned, the below related work are divided into the
solutions that alleviate the Context and Debugging challenges.

A few features in model editors [29]–[34] reduce (directly
or indirectly) the Context-related challenges of editing UML
models by employing different usability techniques. For ex-
ample, MagicDraw [31], VisualParadigm [35], and ArgoUML
[33] are industrial modelling tools that help reduce the efforts
of modelling by offering several tooling features such as well-
designed UIs, navigability and zooming features, wizards, and
search capabilities. These tools however are more concerned
with the general usability of their editors rather than targeting
specific challenges that users experience. Recently, a few
Eclipse-based model editors (e.g., Capella [34], Papyrus [30],
Yakindu [32]) have augmented their capabilities to offer more
content-specific features such as Content-Assist. Although
Content-Assist alleviates some Context-related challenges,
their approach still suffers from information overload and the
lack of filtering and ranking algorithms that can effectively
reduce the amount of contextual information that the modeller
typically reads before finding what they are looking for.

Task-Oriented Interface [6] [36]–[38] can be seen as a
type of Focus+Context [4] solution that alleviates the users’
load by enabling the user to view the contextual information
that are relevant to the Focus task. For example, FlexView
[37] provides features that enables the user to easily divide
the screen into different regions in order to view different
requirements artefacts. However, their tool does not aid users
in recognizing the contextual relationships, as ours does.

Code and model completion techniques [39]–[43] are also
proposed in the literature. While these techniques, in general,
can be employed in different domains, tools and stages of
coding or modelling, they mostly differ in their approach
to propose more exact and useful completions. For instance,
Steimann and Ulke [41] look for ways to complete the
specification of an incomplete model element based on the
meta-model’s well-formedness rules. We, however, employ
Content-Assist to help modellers make their next step (e.g.,
setting a property value or changing it) based on more than
just the well-formedness rules (e.g., semantic rules).

With respect to the model Debugging challenge, the litera-
ture is rich when it comes to managing consistency in UML
models [17] [44] [45] [46] [47] [48]. Many approaches are
Proactive (Consistent-by-Construction) in that they ensure that
a model is consistent and correct at any point in time [17] [48].
However, most proactive consistency-management approaches
barely take into account human factors, and as a result, their
implementations are deemed intrusive to the user [18], leading
many researchers believe that “maintaining consistency at
all time is counterproductive” [49]. In our work, we have
taken a human cognitive-based approach that aims to provide
modellers with an easy-to-use supportive (e.g., Content-Assist)
interface that helps modellers resolve inconsistencies in real-
time, while their intent is still fresh in their mind.

The above approaches provide some tooling features that
improve understandability and navigability of the artefacts;
but without any consideration of the semantics of the artefacts
or the relations among them [38]. Moreover, most modelling
editors have not been evaluated with respect to whether they
enhance users’ effectiveness in editing and debugging models.
Consequently, there is a chasm between what users expect in
the way of tool support and what the tools actually provide
[50]. In contrast, our work focuses on 1) taking into account
users’ cognitive factors to improve their interactions with
model editors to edit and debug Class and State-Machine
diagrams, and 2) assessing the effectiveness of our proposed
techniques on human users and gaining feedback.

IX. CONCLUSION

Research has shown that tools are amongst the top barriers
to adopt MDE in industry [1] [2]. UML modellers face un-
necessary burdens to the modelling tasks, leading practitioners
to be reluctant to employ MDE [2]. The main reason is that
tool vendors do not take into account human-cognition factors
when designing their tools.

To address challenges of using UML editors, we identified
the most-relevant human-cognition factors and devised tool
advancements based on the factors. More specifically, we
employed two Focus+Context user interfaces that effectively
reduce efforts of Context and Debugging challenges when
designing UML Class and State-Machine diagrams. We sub-
sequently conducted an empirical user study to assess the
effectiveness of our user interfaces on human users.

The results of our studies indicate that employing a Fo-
cus+Context approach can significantly improve users’ sat-
isfaction of using model editors and can increase their ef-
fectiveness and efficiency in editing and debugging models.
Our results have implications for tool vendors to enhance and
improve the quality of UML model editors, which is crucial
for a greater adoption of MDE by industry.

REFERENCES

[1] R. Jolak, T. Ho-Quang, M. R. Chaudron, and R. R. Schiffelers, “Model-
based software engineering: A multiple-case study on challenges and
development efforts,” in Proceedings of the 21th ACM/IEEE Int. Conf.
on Model Driven Engineering Languages and Systems. ACM, 2018,
pp. 213–223.

[2] G. Mussbacher, D. Amyot, R. Breu, J.-M. Bruel, B. H. Cheng, P. Collet,
B. Combemale, R. B. France, R. Heldal, J. Hill et al., “The relevance of
model-driven engineering thirty years from now,” pp. 183–200, 2014.

[3] P. Pourali and J. M. Atlee, “An empirical investigation to understand the
difficulties and challenges of software modellers when using modelling
tools,” in Proceedings of the 21th ACM/IEEE Int. Conf. on Model Driven
Engineering Languages and Systems. ACM, 2018, pp. 224–234.

[4] A. Cockburn, A. Karlson, and B. B. Bederson, “A review of overview+
detail, zooming, and focus+ context interfaces,” ACM Computing Sur-
veys (CSUR), vol. 41, no. 1, p. 2, 2009.

[5] P. Ghazi and M. Glinz, “An exploratory study on user interaction chal-
lenges when handling interconnected requirements artifacts of various
sizes,” in 24th International Requirements Engineering Conference (RE).
IEEE, 2016, pp. 76–85.

[6] H. Kagdi and J. I. Maletic, “Onion graphs for focus+ context views
of uml class diagrams,” in 4th International Workshop on Visualizing
Software for Understanding and Analysis. IEEE, 2007, pp. 80–87.

[7] S. Berlik, Eclipse Modeling Framework. Addison-Wesley, 2007.
[8] M. Herrmannsdoerfer, D. Ratiu, and G. Wachsmuth, “Language evolu-

tion in practice: The history of gmf,” in Int. Conf. on Software Language
Engineering. Springer, 2009, pp. 3–22.

[9] S. Efftinge and M. Völter, “oaw xtext: A framework for textual dsls,”
in Workshop on Modeling Symposium at Eclipse Summit, vol. 32, 2006,
p. 118.

[10] M. Scheidgen, “Integrating Content Assist into Textual Modelling Edi-
tors,” Modellierung 2008, 12.-14. März 2008, Berlin, vol. 127, pp. 121–
131, 2008.

[11] M. Press, Microsoft Visual InterDev 6.0 Programmer’s Guide. Mi-
crosoft Press, 1998.

[12] T. Pati, S. Kolli, and J. H. Hill, “Proactive modeling: a new model
intelligence technique,” Software & Systems Modeling, vol. 16, no. 2,
pp. 499–521, 2017.

[13] V. Levenshtein, “Binary codes capable of correcting spurious insertions
and deletions of ones,” Problems of Information Transmission, vol. 1,
pp. 8–17, 1965.

[14] C. F. J. Lange and M. R. V. Chaudron, “Effects of Defects in UML
Models: An Experimental Investigation,” in Proceedings of the 28th Int.
Conf. on Software Engineering, 2006, pp. 401–411.

[15] C. F. J. Lange, M. R. V. Chaudron, and J. Muskens, “In practice: Uml
software architecture and design description,” IEEE software, vol. 23,
no. 2, pp. 40–46, 2006.

[16] D. Schacter, D. T. Gilbert, and D. M. Wegner, Psychology (2nd
Edition). New York: Worth, 2011.

[17] A. Egyed, “Instant consistency checking for the uml,” in Proceedings of
the 28th Int. Conf. on Software engineering. ACM, 2006, pp. 381–390.

[18] I. Hadar and A. Zamansky, “Cognitive factors in inconsistency manage-
ment,” in 23rd Int. Conf. on Requirements Engineering(RE’15). IEEE,
2015, pp. 226–229.

[19] P. D. Adamczyk and B. P. Bailey, “If not now, when?: the effects of
interruption at different moments within task execution,” in Proceedings
of the SIGCHI conference on Human factors in computing systems.
ACM, 2004, pp. 271–278.

[20] A. Baethge and T. Rigotti, “Interruptions to workflow: Their relationship
with irritation and satisfaction with performance, and the mediating roles
of time pressure and mental demands,” Work & Stress, vol. 27, no. 1,
pp. 43–63, 2013.

[21] B. P. Bailey and J. A. Konstan, “On the need for attention-aware systems:
Measuring effects of interruption on task performance, error rate, and
affective state,” Computers in human behavior, vol. 22, no. 4, pp. 685–
708, 2006.

[22] D. A. Boehm-Davis and R. Remington, “Reducing the disruptive effects
of interruption: A cognitive framework for analysing the costs and
benefits of intervention strategies,” Accident Analysis & Prevention,
vol. 41, no. 5, pp. 1124–1129, 2009.

[23] R. Budiu, “Memory recognition and recall in user interfaces,” Nielsen
Norman Group, 2014.

[24] W. Albert and T. Tullis, Measuring the user experience: collecting,
analyzing, and presenting usability metrics. Newnes, 2013.

[25] J. Pietron, A. Raschke, M. Stegmaier, M. Tichy, and E. Rukzio, “A
Study Design Template for Identifying Usability Issues in Graphical
Modeling Tools,” Tech. Rep.

[26] P. A. Smith, “Towards a practical measure of hypertext usability,”
Interacting with computers, vol. 8, no. 4, pp. 365–381, 1996.

[27] J. Sauro and J. R. Lewis, Quantifying the user experience: Practical
statistics for user research. Morgan Kaufmann, 2016.

[28] S. Abrahão, F. Bourdeleau, B. Cheng, S. Kokaly, R. Paige, H. Stöerrle,
and J. Whittle, “User experience for model-driven engineering: Chal-
lenges and future directions,” in 20th Int. Conf. on Model Driven
Engineering Languages and Systems (MODELS). IEEE, 2017, pp.
229–236.

[29] M. a. Garzon, H. Aljamaan, and T. C. Lethbridge, “Umple: A framework
for Model Driven Development of Object-Oriented Systems,” in 2015
IEEE 22nd Int. Conf. on Software Analysis, Evolution, and Reengineer-
ing (SANER), 2015, pp. 494–498.

[30] S. Gérard, C. Dumoulin, P. Tessier, and B. Selic, “Papyrus: A UML2
tool for domain-specific language modeling,” in Proceedings of the
International Dagstuhl Conference on Model-Based Engineering of
Embedded Real-Time Systems (MBEERTS’07), 2007, pp. 361–368.

[31] N. M. Inc, “Magicdraw, uml,” 2013.
[32] A. Muelder, “Yakindu Statechart Modeling Tools,” 2011.
[33] J. E. Robbins and D. F. Redmiles, “Cognitive support, uml adherence,

and xmi interchange in argo/uml,” Information and Software Technology,
vol. 42, no. 2, pp. 79–89, 2000.

[34] P. Roques, “MBSE with the ARCADIA Method and the Capella Tool,”
in 8th European Congress on Embedded Real Time Software and
Systems (ERTS 2016), Toulouse, France, Jan. 2016.

[35] V. Paradigm, “Visual paradigm for uml,” Visual Paradigm for UML-
UML tool for software application development, p. 72, 2013.

[36] M. Glinz, S. Berner, and S. Joos, “Object-oriented modeling with adora,”
vol. 27, no. 6. Elsevier, 2002, pp. 425–444.

[37] P. Ghazi, N. Seyff, and M. Glinz, “FlexiView: A Magnet-Based Ap-
proach for Visualizing Requirements Artifacts,” in International Working
Conference on Requirements Engineering: Foundation for Software
Quality, ser. Lecture Notes in Computer Science (LNCS), 2015, vol.
9013, pp. 262–269.

[38] M. Kersten, “Focusing knowledge work with task context.” Ph.D.
dissertation, University of British Columbia, 2007.

[39] S. Das and C. Shah, “Contextual code completion using machine
learning,” 2015.

[40] A. Dyck, A. Ganser, and H. Lichter, “Model recommenders for
command-enabled editors,” in International Workshop on Model-driven
Engineering By Example (MDEBE), 2013, pp. 12–21.

[41] F. Steimann and B. Ulke, “Generic model assist,” in Int. Conf. on Model
Driven Engineering Languages and Systems (MODELS), ser. Lecture
Notes in Computer Science (LNCS), A. Moreira, B. Schätz, J. Gray,
A. Vallecillo, and P. Clarke, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, vol. 8107, pp. 18–34.

[42] T. Pati, D. C. Feiock, and J. H. Hill, “Proactive modeling: auto-
generating models from their semantics and constraints,” in Proceedings
of the 2012 workshop on Domain-specific modeling. ACM, 2012, pp.
7–12.

[43] V. Raychev, M. Vechev, and E. Yahav, “Code completion with statistical
language models,” ACM SIGPLAN Notices, vol. 49, no. 6, pp. 419–428,
2014.

[44] A. A. Alshazly, A. M. Elfatatry, and M. S. Abougabal, “Detecting defects
in software requirements specification,” Alexandria Engineering Journal,
vol. 53, no. 3, pp. 513–527, 2014.

[45] X. Blanc, I. Mounier, A. Mougenot, and T. Mens, “Detecting model
inconsistency through operation-based model construction,” in 30th Int.
Conf. on Software Engineering. IEEE, 2008, pp. 511–520.

[46] C. Nentwich, W. Emmerich, A. Finkelstein, and E. Ellmer, “Flexible
consistency checking,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 12, no. 1, pp. 28–63, jan 2003.

[47] M. Sabetzadeh, S. Nejati, S. Liaskos, S. Easterbrook, and M. Chechik,
“Consistency checking of conceptual models via model merging,” in
15th IEEE International Requirements Engineering Conference (RE
2007), Oct 2007, pp. 221–230.

[48] M. Snoeck, C. Michiels, and G. Dedene, “Consistency by construction:
the case of merode,” in Int. Conf. on Conceptual Modeling. Springer,
2003, pp. 105–117.

[49] B. Nuseibeh, S. Easterbrook, and A. Russo, “Making inconsistency
respectable in software development,” Journal of Systems and Software,
vol. 58, no. 2, pp. 171–180, 2001.

[50] S. Lahtinen and J. Peltonen, “Adding speech recognition support to uml
tools,” Journal of Visual Languages & Computing, vol. 16, no. 1, pp.
85 – 118, 2005, 2003 IEEE Symposium on Human Centric Computing
Languages and Environments.

	MODELS19.Copyright
	MODELS19

