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Abstract. The ability to describe synchronization between the coreptsof a
model is a fundamental primitive in modelling languagegeA$tudying existing
modelling languages, we discovered that many synchraaizatechanisms can
be organized into a common abstract framework. Our framevgobased on a
notion of synchronization between transitions of completagy roles. It is pa-
rameterized by the number of interactions a transition e&a part in, i.e., one
vs. many, and the arity of the interaction mechanisms,éxlusive vs. shared,
which are considered for the complementary roles to resuléisynchronization
types. We describe how many modelling constructs, such #ssource, multi-
destination transitions, many composition operators,raady workflow patterns
are forms of synchronization. By generalizing and clagsgfysynchronization
types independently of a particular language, our goal entable language de-
signers to adopt an appropriate synchronization type famaain dfectively.

1 Introduction

The ability to describe synchronization between the coreptsof a model is a fun-
damental primitive in modelling languages. Process algghbsuch as CSP][9] and
CCS [14], make synchronization the focus of the model. Requénts modelling lan-
guages, such as statechalri$ [8, 18], its variants [2], and BtdteMachines [16], have
generally been more centred around behaviour described esients, guards, and
actions on variables. The concurrency primitives inclughethese languages usually
have little or no explicit synchronization mechanisms. émg cases, syntax such as
multi-source and multi-destination transitions hides arf@f synchronization. How-
ever, models of systems can often be more precisely and sgipa@xpressed when
using explicit synchronization mechanisms.

Inspired by the clean and useful synchronization mechanprocess algebras,
our goal is to understand the role of synchronization indigp modelling languages
(BSMLSs). In previous work, we introduced the term BSMLSs teckébe a popular class
of requirements modelling languages, where the modeltigato an environmental
inputis described as a big step consisting of a sequencesdifsieps each with possibly
multiple, concurrent transitions|[4-6]. We found that vettihe BSML family has many
variations of ways in which generated events trigger ttaors in subsequent small
steps, in general, they are lacking in the means to descabettansitions should be



synchronized togethevrithin a small step. In this paper, we extend the family of BSMLs
to support diferent types of synchronization.

In studying the potential use of synchronization mechasismBSMLs, we find
that there are many fiierent possible synchronization types and that we can argani
the design space of these options using a language-indepgpdrameterized frame-
work. Our framework is based on a notion of synchronizatietween transitions of
complementary roles, analgeous to CCS [14]. Our framewsodarameterized by the
number of interactions a transition can take partin, i;@e,\s. many, and the arity of the
interaction mechanisms, i.e., exclusive vs. shared, waietconsidered for both com-
plementary roles to result in 16 types of synchronizatiarhls paper, we focus on the
applications of these synchronization types in requirgmprodelling languages. Our
framework allows us to show how many modelling construaishsas multi-source,
multi-destination transition$ [8, 18], many compositigrecators[[15], many workflow
patterns[[1], and a notion of signal17] are forms of syndciiwation. Furthermore, our
framework gives us a vocabulary for including a variety gfd@g of synchronization
in one model. Compared to previous work on classifying syomeization mechanisms,
our work describes a fierent (cf., [10]) or a larger (cf.[[15]) set of synchronipat
types; it allows multiple types to be used within one modedi & is focused on BSMLs.

Our contribution in this paper is threefold. First, we praseframework for classi-
fying synchronization types in a language-independent 8agond, we introduce the
family of synchronizing big-step modelling languag88SMLSs) that combine existing
BSMLs with synchronization capabilities. Third, we demwate the usefulness and
generality of our framework by describing how many modelloonstructs are forms
of synchronization that can be expressed using the synization types of SBSMLs.

By generalizing and classifying synchronization typesipehdently of a particu-
lar language, our framework allows language designersrtisider the synchronization
types appropriate for a domain in relation to other modetiogcepts found in the do-
main without historical syntactic and semantic dependenfiund between language
constructs. Thus, a language designer can choose and adappeopriate synchro-
nization type for a language in a domattieztively.

The remainder of the paper is organized as follows. SeLtliorieZly describes the
syntax and the semantics of BSMLs. Secfibn 3 presents oghsynization syntax in
SBSMLs, our framework of 16 synchronization types, and tile of these synchro-
nization types in the semantics of SBSMLs. Secfibn 4 praeseoiv synchronization
can describe the semantics of various modelling constr8etstiori b considers related
work, including the comparison of our work with languagestthre specialized for
specifying deterministic behaviour. Sect[dn 6 concludtiesgaper, laying out the direc-
tion of our future work.

2 Background: Big-Step Modelling Languages (BSMLS)

In this section, we present an overview of the common syntdxsamantics of BSMLs
[4H6]. We adopt a few syntactic definitions from Pnueli andl8t's work [18].

A BSML model is a graphical, hierarchical, extended finiggestmachine, consist-
ing of: (i) a hierarchy treeof control statesand (ii) a set ofransitionsbetween them.



A control state has &/pe which is one ofAnd, Or, or Basic All Basiccontrol
states of a model, and only they, appear at the leaves oféharbhy tree of the model.
A control state iscompoundf its type is eitherAnd or Or. Each compound control
state has a set @hild control states. A control state that is a child of anotherticn
state through transitivity is itdescendantSimilarly, theparentandancestorrelations
are defined with their usual meanings. In the graphical sspr&tion, the children of
an And control state are separated by dashed lines.[Fig. 1 show8&MIS model
that we use to describe the syntax and semantics of BSMLs BS8#1Es. The model
characterizes a set of simple synchronized ice skatingranag Initially, all skaters
are together, represented by Basiccontrol stateTogether During the program, the
skaters can split into three groups to performititersectiormaneuver, represented by
the And control statd ntersectiord To avoid a clash, at each point of time, only one of
the three groups can initiate an intersection maneuvelrtr@GistatesGroup;, Group,
andGroups areOr control states, and are the children of control statersection The
skaters can merge back into a group, but the program can ndlyea transition to the
Endcontrol state, when the skaters are split. E@cltontrol state has defaultcontrol
state, which is one of its children that is graphically sfgd by an arrow without a
source control state; e.g., the default control state ofrobstateGroup; is Gi;. The
least common ancestaf a set of control states is the lowest (closest to the lgaves
control state in the hierarchy tree such that each of therabstates is its descendant.
Two control states arerthogonalif neither is an ancestor of the other and their least
common ancestor is aind control state; e.gGroup, andGroup, are orthogonal.

Intersection {UUES(X)}
t3: Spllt T T
Groupy . Group, . Groups
ty: Circle ts: {X) gt {X} ! ty: (X}
Gi1 1| G2 ' | Ga1
! ! ti14 Finish
t7 (X} Lt (X Lt (%)
te {X} ! to: {x} ! 12 {x}
ty: Line [ ! (G ™

ts: Merge

Fig. 1. A model for a set of synchronized ice skating programs.

Each transition has aourcecontrol state and @estinationcontrol state. Addi-
tionally, a transition can have: (i) enabling conditiomsthie form of anevent trigger
which is the conjunction of a set of events and negations efitsy and guard condi-
tion, which is a boolean expression over variables; and (ii) @&attions, in the form
of variable assignmentsndgenerated event&or example, in the model in Figl 1, the
source and destination control stategz;odre TogetherandIntersection respectively;
its event trigger iSplit A transition is aself transitionif its source and destination con-
trol states are the same; e.g., transitigremdt;, are self transitions, which represent the

L In the intersection maneuver, the skaters in one group $katteeen the skaters of another.
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circle andline maneuvers, respectiveEWwo transitions ar@rthogonalif their source
control states are orthogonal, as well as, their destinatimtrol states; e.gts andty.

A BSML semantics specifies how the reaction of a model teranronmental input
is computed as hig step A big step is an alternating sequencesnpshotaindsmall
stepswhich ends when there are no more enabled transitions. Adas$iot of a model,
there could exist multiplpotential small stepsach of which can be taken as the next
small step. Each small step is the execution of a maximal fsetiositions that are
enabled and pairwise orthogonal. Each snapshot captueesifibrmation about the
state of the model, including the control states that the ehogkides in, the statuses
of events, etc., which determine tle@ablednessf a transition. If a model resides
in an And control state, it resides in all of its children. If a modesides in anOr
control state, it resides in one of its children. The exexutf a small step of a model
updates the current snapshot of the model to a new snapsttagitures thefBects of
executing the transitions in the small step. If the destimatontrol state of a transition
in a small step is a compound control state, the default areve followed to determine
the control states of the next snapshot. As an example, vileemodel in Figl 1 resides
in control stateTogetherand environmental input evern@Srcle andSplitare received,
either of the two potential small stefts} and{ts} can be taken, arriving at control state
Togetheror Intersection respectively. There are many variations in the semanfics o
how a BSML determines the enabledness of a transition aeaétsution &ects [4-6].

3 Synchronizing Big-Step Modelling Languages (SBSMLSs)

In this section, first, we introduce our synchronizationtayrfor SBSMLs. We then
present our parametric classification of 16 synchroniratypes together with a de-
scription of their roles in the semantics of SBSMLSs.

3.1 Synchronization Syntax

A compound control state of an SBSML (bomd andOr control states) can have a
set of synchronizerswhich are graphically positioned at the top of the contiates
For example, the control statetersectionin the model in Figl 1L has one synchronizer:
UUES(X). Each synchronize¥(L) has: (i) asynchronization typer; and (ii) alabel set

L, surrounded by parentheses, instead of curly bracketseTre 16 synchronization
types, each of which is a string of four letters, where a te#presents an aspect of
the semantics of the synchronization type. The label setsyfnahronizedeclaresa
unique set ofdentifiers(labels) that areisedby transitions that are to be synchronized
by the synchronizer. In the model in Fig. 1, synchroniZgfS(x) has synchronization
typeUUES, and declares the identifiarin its label sefx}.

A transition in an SBSML model can have: (i) a setrofe sets and (ii) a set of
co-role setsEach role set is a set d¢dbels each of which is an identifier. Each co-
role set is a set afo-labels each of which is an over-lined identifier. For example, in
the model in Fig[lL, the set of role setstgfis {{x}} and the set of co-role set &f is

2 In these maneuvers, the skaters create a formation in @ eind a line pattern, respectively.



{{X}}. The well-formedness criteria of SBSMLs, summarized atethe of this section,
require that all of the labels (co-labels) of a role set (ole-set) are associated with the
identifiers of the same synchronizer. When the set of role @ethe set of co-role sets
of a transition is a singleton, its curly brackets are drabperole set is calledini-role

if it is a singleton angboly-role otherwise. Similarly, a co-role set is calladi-co—role
or poly-co—role For example, the only role set @fis a uni-role. Transitiong, tg, and
t11 can execute together because synchrofiZeg(x) match their role and co-role sets.

3.2 Synchronization Types and Semantics

A synchronization type consists of a sequence of four ketesch of which is a value
for one of the four parameters that together create the sk efnchronization types.
Table[d describes the role of each parameter and its comdsmptwo possible values,
when considered for an arbitrary synchronix¢k). The “Index” column relates the
position of a letter in the synchronization type with its @sponding parameter. Next,
we describe the semantics of synchronization types inldetai

Table 1. Synchronization types and their parameters, when coresider synchronizel(L).

Index{Parameter Purpose Values for SynchronizeY(L)
U: The identifiers inL can be used only
1 How an identifier can be used in the role setgiafuni-roles
transitions P: The identifiers inL can be used in
poly-roles
U: The identifiers inL can be used only
2 How an identifier can be used in the co-role setsini-co-roles
of transitions P: The identifiers inL can be used in
poly-co-roles
3 How many instances of a label can appear inEh©ne, clusively
role sets of transitions in a small step S: Many, in a_fiared manner
4 How many instances of a co-label can appedEirOne, &clusively
the co-role sets of transitions in a small step |S: Many, in a_fiared manner

From a set of enabled, orthogonal transitiohsdetermined by the semantics of
BSMLs, a potential small stepX, X € T, must satisfy the constraints of all of the
synchronizers that control transitionsTin

In a synchronizel(L), the first two letters of its synchronization typé,indicate
how the identifiers inL can be used in transitions within the scopeYdL). A U in
the first position means that for all identifidrg L, all transitions inX that have in
their role setsl must belong to a uni-role (i.e., a singleton role set)Y] kv the second
position means that for all identifierss L, all transitions inX that havd in their co-
role sets] must belong to a uni-co-role set. RAin the first or second position of the
synchronization type places no such constraints but ordyahdiferent meaning from
aU if there are multiple identifers .. The constraints of the first two indices in the
synchronization type can be checked syntactically by Weelhedness constraints.



As in some process algebras, such as JCS [14], a label in setle.g.m, is
matchedwith a co-label in a co-role set that has the same identifier,i. For every
transition,t, included inX, the labels in all its role sets and the co-labels in all its
co-role setanustparticipate in a match: For every labet, in a role set, there must
be a matching co-labein, from another transition included ¥, and vice-versa for
every co-labeln, in its co-role sets. The third and fourth indices of the $yoaization
type indicate how many transitions can participate in thagai: Bfectively, how many
labels,m, can match aim and vice-versa, amongst the role sets and co-role sets of the
transitions inX. For a synchronizer with label setand a synchronization type whose
third letter isE, i.e., one of the**E* synchronization types, every identifiee L, can
appear at most once in the role sets of all transitionX.iffor synchronization types
*#*E every over-lined identifier of, I, can appear at most once in the co-role sets of
all transitions inX. For synchronization types:S* (and***S), an identified € L can
appear multiple times in the role sets (and co-role setd)efransitions irX.

In summary, after collecting the role sets and co-role el the transitions within
X that use identifiers df, we have a set of role sets and a set of co-role sets:

{ri ez, qr3 g, -} and
{{C%’ C%& o '}& {C%, Cg, o '}, o }
These sets should satisfy all of the following conditions:

- Every labelr! must have a corresponding co-labgk rY, and vice versa for every
co-label; and

- If the synchronization type is*E*, for every co-labet}, there is exactly one cor-
responding labet!, such that ¢} = rY;

- If the synchronization type i$**E, for every labelr| there is exactly one corre-
sponding co-labet’, such that), = c%; and

- Finally, the setX must be maximal, i.e., it is not possible to add one or more tra
sition in T and to satisfy the above constraints of the synchronizayioa.

Table2 shows examples of synchronizing transitions adegitd 10 synchronizers
of distinct types. The transitions in each row are enabletipgonal transitions. Intu-
itively, the first two letters of a synchronization type siethe number of interactions,
i.e., the number of matchings over distinct identifierst thiransition can take part in,
i.e., biparty vs. multiparty interaction. The last two letters of a synchronization type
specify the arity of the interaction mechanism, iexclusivevs. sharedinteraction.

In the model in FigllL, when the model reside€Gn,G,1, andGgzy, the set of tran-
sitions{ts, tg, t11} is a potential small step of the model, which satisfies thestamts
of synchronizetUES(X): (1) only uni-roles use; (2) only uni-co-roles use; (3) only
tg has a role set including; and (4) bothts andt;; have co-role sets including The
other two potential small steps afg;, tg, t11} and{ts, tg, t12}. The model neither permits
two groups to initiate an intersection maneuver simultaisgo nor a group to initiate
two intersection maneuvers consecutively.

Each pair of synchronization typ&BEE andPUEE, UUSE andUUES, UPSE andPUES,
PUSE andUPES, PPSE andPPES, andUPSS andPUSS are symmetric. A synchronizer
with one of these types can be replaced with a synchronizbrthé same label set but
the symmetric type, with the role sets and co-role sets akttians being swapped.



Table 2. Examples of synchronizing transitions.

Synchronizer |Synchronizing Transitions
UUEE(m) ty: {m}, to: (M}
UUSE(m) ti{my}, to: {m}, t3: {m}
UUSS(m) ti{my}, to: {my}, ta: {m}, t4: {M}
UPEE(m,n)  |ti:{m}, tz:{n}, tz:{mM N}}
UPSE(m,n) |t {m}, to: {m}, t: {n}, ta: {n}, ts: (M, T}
UPES(m, n) ti{my}, to: {m}, t3: {m, 1}, t4: {M, N}
UPSS(m,n)  |ty: {m}, t: {m}, t3: {n}, t4: {n}, ts: {M, 7}, te: {M, N}
PPEE(m, n, p, q) |ti:{m, n}, t2:{p, g}, tz: (M, P}, t4: {1, G}
PPSE(m,n, p, g) |t {m,n, p, g}, tz:{m, n}, t:{p, g}, ta: {M, P}, ts: {71, T}
PPSS(m,n, p, ) [ti:{m N, p, g}, tz:{m,n}, ts: {p, g}, ts: {M, N, P, T}, ts: (M, P} te: {1, T}

If a model has more than one synchronizer, the constraintiseaf corresponding
synchronization types should be considered togethertheseiX above should satisfy

the synchronization requirements of all of the synchramsizegether.

Lastly, in the semantics described above, a few well-formesd conditions were
assumed. An SBSML modelgell-formedif all of the following five conditions hold,

i Each label uniquely belongs to the label set of exactly gmelsronizer.

il No two synchronizers of a control state have the same symération type.

iii For each label of synchronizemand each transitiop | is associated with at most
one of the role sets or co-role sets dfurthermoremis associated with the lowest
control state that is an ancestor of the source and destmagintrol states of the

transitions that use the labelsmfin their role sets or co-role sets.

iv. Two labels that are associated with the same synchraaizgtpe do not belong to
two different role sets or two flerent co-role sets of the same transition.

if there is at least one transition with a poly-role thatlimtesl,

then the synchronization type of its corresponding synaizey should be a syn-

chronization type whose first letteriqi.e.,P***), otherwise it must be one of the

U=** synchronization types. Similarly, the second letter of mcéyonization type

v For each label,

is specified based on the characteristics of the co-role$#tansitions.

Hereafter, by an SBSML model, we mean a well-formed SBSML ehod

4 Applications: Semantics of Modelling Constructs

Through examples, this section describes how the essettoe ggmantics of modelling
constructs such as aaulti-source, multi-destination transitiof[18], composition op-
erators[15], andworkflow patterng1] can be captured succinctly using synchroniza-
tion in SBSMLs. We also show how some of the semantic vanatiof BSMLs can
be modelled using synchronizers, thereby allowing m@tlBEML semantics to exist
in different components of a model. Lastly, we show how a notionsifiaal and the

negation of a signhal used in some BSMLs can be modelled in SBSM




4.1 Modelling Multi-source, Multi-destination Transitio ns

Multi-source, multi-destination transitions embody anficof concurrent, synchronized
execution: When a multi-source, multi-destination tréasiis executed, it exits all of
its source control states and enters all of its destinatiorirol states[[8, 18]. A multi-
source, multi-destination transition of a model can beaegd with a set of regular tran-
sitions that are always taken together by synchronizingggnchronizer of typdPEE.
As an example, the SBSML model in Fig. 2(b) is equivalent sriodel in Fig[R2(a),
which has two multi-source, multi-destination transisonandy. For example, tran-
sition x is replaced by transitiong;, x;, andxs. One of the transitions;, adopts the
enabledness conditions, the actions, and the role setsoarodecsets ok, along with a
new co-role set with co-labels for every other transitiditse other transitions each has
one singleton role set, to match the co-role set of the fizsisition. The number of con-
trol states in the source and destination of a multi-souradti-destination transition
need not be the same, in which case new dummy control staestesduced to make
the number of source control states and destination costsitds equal. For example,
in the model in Fig[R(b), control stak® is such a dummy control state.

R:{UPEE(ag, ap, by, bo)}

y1: {by, bp)

(@

(b)

Fig. 2. Multi-source, multi-destination transitions using regufransitions.

4.2 Modelling BSML Semantic Variations

In previous work, we deconstructed the semantics of BSMits @ight high-level,
mainly orthogonalsemantic aspectand theirsemantic option§4-6]. These aspects
were divided into: (i) dynamic aspects, which determine éhabledness of a single
transition and theféect of its execution; and (ii) structural aspects, whichcéfgehe
possible small steps from a set of enabled transitibhs [4indJsynchronization, we
show that the semantic options for the structural semaspiees ofconcurrencyand
preemptionare not needed, thus a single SBSML can include a combinafidhe
semantic options of these semantic aspects.



Concurrency: A dichotomy in the semantics of BSMLs is whether a small step c
include more than one transition or exactly one transitidsing the semantic option
that a maximal set of transitions can be taken together in @l step along with a
synchronizetUUEE(a), anAnd control state can be constrained to execute at most one
of its transitions at each small step: Every transition imitthe And control state is
modified to synchronize with a new self transitidmﬁ}E

Preemption: Some BSMLs suppogireemptivesemantics, in which aimterrupt tran-
sition can supersede another transition, whose scope is lowethkanterrupt transi-
tion. Other BSMLs supporton-preemptiveemantics, in which an interrupt transition
can be taken together with the interrupted transition. A BNkt supports the non-
preemptive semantics can model the preemptive semanyiassibg synchronizers of
type PUEE. For example, in the model in Figl 3(a), transitisty, which is an interrupt
transition, can be taken together with transitiesandst; by the non-preemptive se-
mantics. Similarly, transitiorsts can be taken together with transitiosis and st. In
the model in FigiB(b), which simulates the preemptive seaiosfor each pair of tran-
sitions in which one is an interrupt and the other is intetedponly one of them can
be taken in a small step. For example, transitidsanddt, cannot be taken together
because only one of them can synchronize wgth

DES:{PUEE(ay, &, ag)}

D .
{as}

(@) (b)

Fig. 3. Deriving preemptive behaviour in a non-preemptive sencanti

4.3 Modelling Composition Operators

In our previous work on template semantics|[15], a set of ausitipn operators were
introduced, each of which represents a useful executicenpain modelling. In this
section, we describe how the behaviouraridezvousenvironmental synchronization
andinterleavingcomposition operators can be modelled using synchronigerssach
of the remaining composition operators in template serogstnere is a similawvork-
flow pattern[1], whose semantics we consider in the next section.

3 This mapping is analogues to the derivatiorasjnchronyfrom synchronyin SCCS[[13, 14].
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RendezvousThe rendezvous binary composition operator, analogot®t€CS com-
position operatoii[14], requires one of the transitionsrod of its operands to generate
a synchronization event and one of the transitions of theraiperand that is triggered
with that event to consume it, in the same small step. The stesaf the rendezvous
composition operator is the synchronizer of tyfiE.

Environmental Synchronization: The environmental synchronization composition op-
erator requires its two operands to synchronize over tiiansithat are triggered with
the same synchronization event received from the envirathnd¢ each snapshot, it is
possible that no, one, or more than one transition in eacheagés enabled and trig-
gered with the synchronization event. When all concurrantspof the operands have
enabled transitions that are triggered with the synchadium event, a synchronizer of
type PUEE can be used to execute all of them together in the same srapll Gther-
wise, when there is an arbitrary number of enabled tramsittbat are triggered with
the synchronization event, additionally a synchronizeyp&Uuss is needed to ensure
that a maximal set of such transitions are taken togethdreisame small step. As an
example, the model in Fif] 4(a) uses the environmental spnitation composition
operator over evergto coordinate the execution @ andC,. Each of the transitions
in the model has a guard condition, enclosed by a “[ ]", on aldamw variable that is
assigned a value by the environment. Elg. 4(b) is an SBSMLattbdt has the same be-
haviour as the model in Fig] 4(a). Each control state of thdehim Fig.[4(b) has a self
transition to accommodate for the execution of synchrdidndransitions when not all
of them are ready to execute. Self transitigis necessary when executidg, dt,, dts,
dty together in the same small step. Transitidis dt, dts, dt; each synchronizes via
two synchronizers.

G ]

Cu 3 Ci2

:

st 3 Sb: \
elb:l] + telb]

(a) Environmental synchronization composition operator.

| Env: {PUEE(u. v, w), UUSS(r)} |

(b) Equivalent SBSML model for the model in Hig 4(a).

Fig. 4. Modelling the environment synchronization operator in S&S.
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Interleaving: The interleaving composition operator requires that dyamte of its
operands to execute its transitions in each small stepygixely. As an example, in the
model in Fig[b(a), in each small step, either transition€pbr those ofC, should be
executed. The SBSML model in Fig. 5(b) uses a synchronizey¢hronization type
UUSE to enforce the interleaving semantics of the model in[Hig), 3y executing either
t; ortp in a small step, but not both.

Cy Cy Int: {UUSE(ay, &)}
Cy Gy Cy Gy lh 2 Hls Hla |
st 1 |sb @ st | |sk dt: | | - .
! - ! far} ! ap} ! lazll
i i 12 ls2 |

il=)il=) ) e

@ (b)

Fig. 5. Modelling the interleaving composition operator in SBSMLs

4.4 Modelling Workflow Patterns

There are fivebasic workflow patterngl]: (i) sequencewhich executes two activi-
ties sequentially: Once the first activity finishes, the selcactivity starts; (iiparallel
split, which starts executing multiple activities in paralleii) (synchronizationwhich
merges multiple parallel activities into a single actiyifyw) exclusive choicewhich
non-deterministically chooses to execute one activitynfinset of possible activities;
and (v)simple mergewhich requires exactly one of the alternative activitiesinish
before a next activity starts. Figl 6 shows examples of havh edithe basic workflow
patterns can be modelled in SBSMLs. The model in Eig. 6(a3 tise first three pat-
terns. The model in Fi§] 6(c) uses the last two patternstiegevith the sequence pat-
tern. The circled operatoseq par, syn, xor, andmer represent the sequence, parallel
split, synchronization, exclusive choice, and simple reesgrkflow patterns, respec-
tively. Fig.[8(b) and Fid.J6(d), which use multi-source, trdestination transitions, are
equivalent SBSML models for the models in Higj. 6(a) and [Hg),Gespectively. The
parallel split and synchronization workflow patterns anealiy used together; e.g., asin
the fork & join construct in activity diagrams in UMILT16]. Fahe sake of brevity, we
modelled only the basic workflow patterns, but it is ndfidult to derive the semantics
of other patterns, especially the ones that do not involstinces of activities.

In interpreting and modelling the semantics of the sequeatiern above, an addi-
tional idle small step is introduced between the last snigjfl of the first activity and the
first small step of the second activity. This extra small step be avoided by using an
interrupt transition that transfers the control flow to tke@nd activity simultaneously
when the last small step of the first activity is being exedute
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(c) A workflow model using sequence, exclusive choice, simplegmesorkflow patterns.

DES;: {UUEE(xy, X2)}

K

* fefefe

(d) Equivalent SBSML model for the model in Fg. 6(c).

Fig. 6. Modelling workflow patterns in SBSMLs.

Fig. 7.Modelling the semantics of a notion signalin SBSMLs.
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4.5 Modelling Signals and Negations of Signals

Some BSMLs, such asCharts[[17], support a notion ofsignalthat when generated in

a small step of a model can be sensed as present by all of tsi#timas of the model in
the same small st&The semantics of such signals can be modelled by synchrsnize
of type PPSS. A set of signals generated by a transition corresponds tolyarple.
The conjunction of signals in the trigger of a transitionresponds to a poly-co-role.
To model the negation of a signal, a synchronizer of tpp8E and two labels can
be used to disallow both a signal to be generated by a transtid its negation to
be the trigger of a transition, in the same small step. As amge, in the model

in Fig.[d(a), on pagE_12, when the model is initialized andutrgignall is received
from the environment, either of the potential small stegig st} and{st, sts} can be
taken, non-deterministically. (In the model in Hi¢j. 7(&) set of generated signals of a
transition is prefixed with a™”). The model in Fig[7(b) has the same behaviour as the
one in Fig[¥(a). Labels, v, andw correspond to signaks b, andc, respectively. Input
signall is maintained in the model in Fif] 7(b). Labedsy, z together with labelsx’,

Y, Z, ensure that each of the signald, andc can be exclusively either generated or
its negation can trigger a transition, respectively. Farmsgle, transitionslt; anddts
cannot be taken together becatisandt, cannot be taken together.

5 Related Work

Our classification of synchronization types overlaps with¢lassification ofnultiparty
interaction mechanisntsy Joung and Smolka[10]. They present a novel classification
for synchronization mechanisms based on four criteriackyhin our terminology, can
be described as: (i) whether or not the role sets and co-etded$ all transitions are
singletons; (ii) whether or not a transition, in additionsjpecifying its role sets and
co-role sets, can specify a particular transition (or titeorss in a part of the hierarchy
tree) with which it wishes to synchronize; (iii-a) whethar ot the number of role
sets and co-role sets of a transition together can be moneathe; (iii-b) whether or
not a control state can be the source control state of moredhe transitions that can
synchronize; and (iv) whether only a minimal set of syncliinig transitions are taken
at each small step or a maximal set of all synchronizing ttians should be taken at
each small step. Criterion (i) corresponds to the first twiete of our synchronization
types, with our criteria being more distinguishing. Ciitber (i) is not relevant for us
since it can be modelled by a naming convention for labels [8, p. 85]). Criterion
(iii), called conjunctive vs. disjunctive parallelisfh0], is meant to distinguish between
process algebras such as SCCS (synchronous CCS) [13], wdnicherform multiple
handshakes in one small step, and CCS, which can do at modtasushake; this
criterion is closely related to the criterion (i)_[10, p.8®art (a) of the criterion is not
relevant in our framework since multiple role sets, or nplético-role sets, related to
the same synchronizer are merged into one. Part (b) of therion corresponds to a

4 In previous work[[5, 5], we have categorized this semantfcsignals as thesamesemantic
variation forevents



14

syntactic constraint in our framework. Lastly, we do notsider criterion (iv), focusing
on semantics in which a maximal set of synchronizing tréovsitis always taken.

Compared to Joung and Smolka’s taxonomy, our frameworkiaddily considers
the role of the third and fourth letters of our synchroniaatiypes. Also, additionally,
our framework permits multiple synchronization types ire éanguage. In general, the
taxonomy of Joung and Smolka “is based on issues that ifiegtahe complexity of
scheduling multiparty interaction”[10, p.78], where as samework is based on issues
relevant for designing suitable modelling languages fquieements specification.

Our synchronizer syntax is inspired by thecapsulation operatoin Argos [12].
The encapsulation operator specifies the scope in whictalsign be used. Our syntax
is different in that multiple synchronizers can be attached todheesontrol state.

A class of BSMLs called synchronous languadés [7], whichuites languages such
as Esterel[[3] and Argo$§[12], have been successful in theifspation of determinis-
tic behaviour: “In contrast with traditional thread- or etédased concurrency mod-
els that embed no precise or deterministic scheduling paliche design formalism,
synchronous language semantics take care of all schedigitigions.”[[20] The main
characteristic of the synchronous languages is that thesstaokignalsof a model are
constant throughout a big step, which, in turn, introduegsantic dfficulties such as
non-causality and global inconsistency [8,7[12, 18]. gsire synchronization capabil-
ity of SBSMLs, it is possible to simulate the subset of th@oesibilities of signals in
synchronous languages that deal with the coordinationsdditihhultaneous execution of
transitions. As such, when using signal-like artifactsasan option in a domain, e.g.,
UML StateMachines[16], synchronization could be used tie® determinism in a
model, by constructing the model such that each snapshdsyaaunique small step.

SBSMLs, however, as opposed to synchronous languages,tdpuamntee deter-
minism as an inherent property of their semarfiiv¥hen a deterministic behaviour is
desired in an SBSML model, care should be taken when usingehsynizer that has
a synchronization type with its third afut fourth letter beings, which permits syn-
chronization with an arbitrary number of transitions. Sarly, care should be taken
when using multiple synchronizers in a model, which couldvaimultiple sets of tran-
sitions to synchronize, according toff@girent synchronizers, thereby creatinfefient
potential small steps. As an example, in the model in[Hig), 7{lve remove labelx,

y, andz from the model and replace y, andzin the co-role sets af, t4, tg with u,
v, andw, respectively, the model can create a wrong small step thatdincludedt;,
dty, dtz, anddty. The wrong small step is possible because lab@i dt; can match its
corresponding label ity, while labelu of dt; can match its corresponding labeldi.
Similarly, dt, anddty can match their corresponding labelgdranddt;, respectively.

6 Conclusion and Future Work

We presented a framework of 16 synchronization types basettiteria relevant for
requirements modelling languages. We described how ttss dfbig-step modelling

5 A model in a synchronous language with a possible nondetéstid behaviour is conserva-
tively rejected at compile time.
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languages (BSMLs) can be enhanced with these synchramizgpies creating the fam-
ily of synchronizing big-step modelling languages (SBS) Mk validated the useful-
ness and generality of our framework by describing how ugthey the semantics of
many modelling constructs, there is a notion of synchrdionahat can be modelled
in SBSMLs. Similar to our framework for BSML§][4], we are wamg on a paramet-
ric framework to give formal semantics to the family of SBS#/lUsing the results of
Joung and Smolka [10], we plan to analyze the complexity gflé@menting a set of
synchronization types in an SBSML, to provide measures flanguage designer or
a software engineer to choose one SBSML over another. |.agtlylan to provide a
parametric tool support for SBSMLSs, in the same style as irpoevious work([111, 19].
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