
Springer	Copyright	Notice	
© Springer Nature Switzerland AG 2010
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Published	in:	Proceedings	of	the	ACM/IEEE	Model	Driven	Engineering	
Languages	and	Systems	(MODELS'10),	October	2010	

“A Common Framework for Synchronization in
Requirements Modelling Languages”

Cite as:

BibTex:

DOI: https://doi.org/ 10.1007/978-3-642-16129-2_15

Shahram Esmaeilsabzali, Nancy A. Day, and Joanne M. Atlee. 2010. A common framework
for synchronization in requirements modelling languages. In Proceedings of the 13th
international conference on Model driven engineering languages and systems: Part
II (MODELS'10), Dorina C. Petriu, Nicolas Rouquette, and Øystein Haugen (Eds.). Springer-
Verlag, Berlin, Heidelberg, 198-212.

@inproceedings{Esmaeilsabzali:2010:CFS:1929101.1929122,
 author = {Esmaeilsabzali, Shahram and Day, Nancy A. and Atlee, Joanne M.},
 title = {A Common Framework for Synchronization in Requirements Modelling Languages},
 booktitle = {Proceedings of the 13th International Conference on Model Driven Engineering
Languages and Systems: Part II},
 series = {MODELS'10},
 year = {2010},
 pages = {198--212}
}

A Common Framework for Synchronization in
Requirements Modelling Languages

Shahram Esmaeilsabzali and Nancy A. Day and Joanne M. Atlee

Cheriton School of Computer Science
University of Waterloo

Waterloo, Ontario, Canada, N2L 3G1
{sesmaeil,nday,jmatlee}@cs.uwaterloo.ca

Abstract. The ability to describe synchronization between the components of a
model is a fundamental primitive in modelling languages. After studying existing
modelling languages, we discovered that many synchronization mechanisms can
be organized into a common abstract framework. Our framework is based on a
notion of synchronization between transitions of complementary roles. It is pa-
rameterized by the number of interactions a transition can take part in, i.e., one
vs. many, and the arity of the interaction mechanisms, i.e.,exclusive vs. shared,
which are considered for the complementary roles to result in 16 synchronization
types. We describe how many modelling constructs, such as multi-source, multi-
destination transitions, many composition operators, andmany workflow patterns
are forms of synchronization. By generalizing and classifying synchronization
types independently of a particular language, our goal is toenable language de-
signers to adopt an appropriate synchronization type for a domain effectively.

1 Introduction

The ability to describe synchronization between the components of a model is a fun-
damental primitive in modelling languages. Process algebras, such as CSP [9] and
CCS [14], make synchronization the focus of the model. Requirements modelling lan-
guages, such as statecharts [8, 18], its variants [2], and UML StateMachines [16], have
generally been more centred around behaviour described using events, guards, and
actions on variables. The concurrency primitives includedin these languages usually
have little or no explicit synchronization mechanisms. In some cases, syntax such as
multi-source and multi-destination transitions hides a form of synchronization. How-
ever, models of systems can often be more precisely and concisely expressed when
using explicit synchronization mechanisms.

Inspired by the clean and useful synchronization mechanisms of process algebras,
our goal is to understand the role of synchronization in big-step modelling languages
(BSMLs). In previous work, we introduced the term BSMLs to describe a popular class
of requirements modelling languages, where the model’s reaction to an environmental
input is described as a big step consisting of a sequence of small steps each with possibly
multiple, concurrent transitions [4–6]. We found that while the BSML family has many
variations of ways in which generated events trigger transitions in subsequent small
steps, in general, they are lacking in the means to describe how transitions should be

2

synchronized togetherwithin a small step. In this paper, we extend the family of BSMLs
to support different types of synchronization.

In studying the potential use of synchronization mechanisms in BSMLs, we find
that there are many different possible synchronization types and that we can organize
the design space of these options using a language-independent, parameterized frame-
work. Our framework is based on a notion of synchronization between transitions of
complementary roles, analgeous to CCS [14]. Our framework is parameterized by the
number of interactions a transition can take part in, i.e., one vs. many, and the arity of the
interaction mechanisms, i.e., exclusive vs. shared, whichare considered for both com-
plementary roles to result in 16 types of synchronization. In this paper, we focus on the
applications of these synchronization types in requirements modelling languages. Our
framework allows us to show how many modelling constructs, such as multi-source,
multi-destination transitions [8, 18], many composition operators [15], many workflow
patterns [1], and a notion of signal [17] are forms of synchronization. Furthermore, our
framework gives us a vocabulary for including a variety of types of synchronization
in one model. Compared to previous work on classifying synchronization mechanisms,
our work describes a different (cf., [10]) or a larger (cf., [15]) set of synchronization
types; it allows multiple types to be used within one model; and it is focused on BSMLs.

Our contribution in this paper is threefold. First, we present a framework for classi-
fying synchronization types in a language-independent way. Second, we introduce the
family of synchronizing big-step modelling languages(SBSMLs) that combine existing
BSMLs with synchronization capabilities. Third, we demonstrate the usefulness and
generality of our framework by describing how many modelling constructs are forms
of synchronization that can be expressed using the synchronization types of SBSMLs.

By generalizing and classifying synchronization types independently of a particu-
lar language, our framework allows language designers to consider the synchronization
types appropriate for a domain in relation to other modelingconcepts found in the do-
main without historical syntactic and semantic dependencies found between language
constructs. Thus, a language designer can choose and adopt an appropriate synchro-
nization type for a language in a domain effectively.

The remainder of the paper is organized as follows. Section 2briefly describes the
syntax and the semantics of BSMLs. Section 3 presents our synchronization syntax in
SBSMLs, our framework of 16 synchronization types, and the role of these synchro-
nization types in the semantics of SBSMLs. Section 4 presents how synchronization
can describe the semantics of various modelling constructs. Section 5 considers related
work, including the comparison of our work with languages that are specialized for
specifying deterministic behaviour. Section 6 concludes the paper, laying out the direc-
tion of our future work.

2 Background: Big-Step Modelling Languages (BSMLs)

In this section, we present an overview of the common syntax and semantics of BSMLs
[4–6]. We adopt a few syntactic definitions from Pnueli and Shalev’s work [18].

A BSML model is a graphical, hierarchical, extended finite state machine, consist-
ing of: (i) a hierarchy treeof control states, and (ii) a set oftransitionsbetween them.

3

A control state has atype, which is one ofAnd, Or, or Basic. All Basic control
states of a model, and only they, appear at the leaves of the hierarchy tree of the model.
A control state iscompoundif its type is eitherAnd or Or. Each compound control
state has a set ofchild control states. A control state that is a child of another control
state through transitivity is itsdescendant. Similarly, theparentandancestorrelations
are defined with their usual meanings. In the graphical representation, the children of
an And control state are separated by dashed lines. Fig. 1 shows an SBSML model
that we use to describe the syntax and semantics of BSMLs and SBSMLs. The model
characterizes a set of simple synchronized ice skating programs. Initially, all skaters
are together, represented by theBasiccontrol stateTogether. During the program, the
skaters can split into three groups to perform theintersectionmaneuver, represented by
theAndcontrol stateIntersection.1 To avoid a clash, at each point of time, only one of
the three groups can initiate an intersection maneuver. Control statesGroup1, Group2,
andGroup3 areOr control states, and are the children of control stateIntersection. The
skaters can merge back into a group, but the program can only end by a transition to the
Endcontrol state, when the skaters are split. EachOr control state has adefaultcontrol
state, which is one of its children that is graphically signified by an arrow without a
source control state; e.g., the default control state of control stateGroup1 is G11. The
least common ancestorof a set of control states is the lowest (closest to the leaves)
control state in the hierarchy tree such that each of the control states is its descendant.
Two control states areorthogonalif neither is an ancestor of the other and their least
common ancestor is anAndcontrol state; e.g.,Group1 andGroup2 are orthogonal.

t14: Finish End

t3: Split

t4: Merge

Group2Group1 Group3

G11

G12

G21

G22

G31

G32

Intersection: {UUES(x)}

t5: {x}

t6: {x}

t8: {x} t11: {x}

t12: {x}
t7: {x} t13: {x}

t9: {x}
t10: {x}

t1: Line

t2: Circle

Together

Fig. 1. A model for a set of synchronized ice skating programs.

Each transition has asourcecontrol state and adestinationcontrol state. Addi-
tionally, a transition can have: (i) enabling conditions, in the form of anevent trigger,
which is the conjunction of a set of events and negations of events, and aguard condi-
tion, which is a boolean expression over variables; and (ii) a setof actions, in the form
of variable assignmentsandgenerated events. For example, in the model in Fig. 1, the
source and destination control states oft3 areTogetherandIntersection, respectively;
its event trigger isSplit. A transition is aself transitionif its source and destination con-
trol states are the same; e.g., transitionst1 andt2 are self transitions, which represent the

1 In the intersection maneuver, the skaters in one group skatebetween the skaters of another.

4

circle andline maneuvers, respectively.2 Two transitions areorthogonalif their source
control states are orthogonal, as well as, their destination control states; e.g.,t5 andt9.

A BSML semantics specifies how the reaction of a model to anenvironmental input
is computed as abig step. A big step is an alternating sequence ofsnapshotsandsmall
steps, which ends when there are no more enabled transitions. At a snapshot of a model,
there could exist multiplepotential small steps, each of which can be taken as the next
small step. Each small step is the execution of a maximal set of transitions that are
enabled and pairwise orthogonal. Each snapshot captures the information about the
state of the model, including the control states that the model resides in, the statuses
of events, etc., which determine theenablednessof a transition. If a model resides
in an And control state, it resides in all of its children. If a model resides in anOr
control state, it resides in one of its children. The execution of a small step of a model
updates the current snapshot of the model to a new snapshot that captures the effects of
executing the transitions in the small step. If the destination control state of a transition
in a small step is a compound control state, the default arrows are followed to determine
the control states of the next snapshot. As an example, when the model in Fig. 1 resides
in control stateTogetherand environmental input eventsCircle andSplit are received,
either of the two potential small steps{t2} and{t3} can be taken, arriving at control state
Togetheror Intersection, respectively. There are many variations in the semantics of
how a BSML determines the enabledness of a transition and itsexecution effects [4–6].

3 Synchronizing Big-Step Modelling Languages (SBSMLs)

In this section, first, we introduce our synchronization syntax for SBSMLs. We then
present our parametric classification of 16 synchronization types together with a de-
scription of their roles in the semantics of SBSMLs.

3.1 Synchronization Syntax

A compound control state of an SBSML (bothAnd andOr control states) can have a
set ofsynchronizers, which are graphically positioned at the top of the control state.
For example, the control stateIntersectionin the model in Fig. 1 has one synchronizer:
UUES(x). Each synchronizerY(L) has: (i) asynchronization type, Y; and (ii) alabel set,
L, surrounded by parentheses, instead of curly brackets. There are 16 synchronization
types, each of which is a string of four letters, where a letter represents an aspect of
the semantics of the synchronization type. The label set of asynchronizerdeclaresa
unique set ofidentifiers(labels) that areusedby transitions that are to be synchronized
by the synchronizer. In the model in Fig. 1, synchronizerUUES(x) has synchronization
typeUUES, and declares the identifierx in its label set{x}.

A transition in an SBSML model can have: (i) a set ofrole sets, and (ii) a set of
co-role sets. Each role set is a set oflabels, each of which is an identifier. Each co-
role set is a set ofco-labels, each of which is an over-lined identifier. For example, in
the model in Fig. 1, the set of role sets oft6 is {{x}} and the set of co-role set oft8 is

2 In these maneuvers, the skaters create a formation in a circle and a line pattern, respectively.

5

{{x}}. The well-formedness criteria of SBSMLs, summarized at theend of this section,
require that all of the labels (co-labels) of a role set (co-role set) are associated with the
identifiers of the same synchronizer. When the set of role sets or the set of co-role sets
of a transition is a singleton, its curly brackets are dropped. A role set is calleduni-role
if it is a singleton andpoly-roleotherwise. Similarly, a co-role set is calleduni-co–role
or poly-co–role. For example, the only role set oft6 is a uni-role. Transitionst6, t8, and
t11 can execute together because synchronizerUUES(x) match their role and co-role sets.

3.2 Synchronization Types and Semantics

A synchronization type consists of a sequence of four letters, each of which is a value
for one of the four parameters that together create the set of16 synchronization types.
Table 1 describes the role of each parameter and its corresponding two possible values,
when considered for an arbitrary synchronizerY(L). The “Index” column relates the
position of a letter in the synchronization type with its corresponding parameter. Next,
we describe the semantics of synchronization types in detail.

Table 1.Synchronization types and their parameters, when considered for synchronizerY(L).

Index Parameter Purpose Values for SynchronizerY(L)

1
How an identifier can be used in the role sets of
transitions

U: The identifiers inL can be used only
in uni-roles
P: The identifiers inL can be used in
poly-roles

2
How an identifier can be used in the co-role sets
of transitions

U: The identifiers inL can be used only
in uni-co-roles
P: The identifiers inL can be used in
poly-co-roles

3
How many instances of a label can appear in the
role sets of transitions in a small step

E: One, exclusively
S: Many, in a shared manner

4
How many instances of a co-label can appear in
the co-role sets of transitions in a small step

E: One, exclusively
S: Many, in a shared manner

From a set of enabled, orthogonal transitions,T, determined by the semantics of
BSMLs, a potential small step,X, X ⊆ T, must satisfy the constraints of all of the
synchronizers that control transitions inT.

In a synchronizerY(L), the first two letters of its synchronization type,Y, indicate
how the identifiers inL can be used in transitions within the scope ofY(L). A U in
the first position means that for all identifiersl ∈ L, all transitions inX that havel in
their role sets,l must belong to a uni-role (i.e., a singleton role set). AU in the second
position means that for all identifiersl ∈ L, all transitions inX that havel in their co-
role sets,l must belong to a uni-co-role set. AP in the first or second position of the
synchronization type places no such constraints but only has a different meaning from
a U if there are multiple identifers inL. The constraints of the first two indices in the
synchronization type can be checked syntactically by well-formedness constraints.

6

As in some process algebras, such as CCS [14], a label in a roleset, e.g.,m, is
matchedwith a co-label in a co-role set that has the same identifier, i.e.,m. For every
transition,t, included inX, the labels in all its role sets and the co-labels in all its
co-role setsmustparticipate in a match: For every label,m, in a role set, there must
be a matching co-label,m, from another transition included inX, and vice-versa for
every co-label,n, in its co-role sets. The third and fourth indices of the synchronization
type indicate how many transitions can participate in this match: Effectively, how many
labels,m, can match anm and vice-versa, amongst the role sets and co-role sets of the
transitions inX. For a synchronizer with label setL and a synchronization type whose
third letter isE, i.e., one of the**E* synchronization types, every identifier,l ∈ L, can
appear at most once in the role sets of all transitions inX. For synchronization types
***E, every over-lined identifier ofL, l, can appear at most once in the co-role sets of
all transitions inX. For synchronization types**S* (and***S), an identifierl ∈ L can
appear multiple times in the role sets (and co-role sets) of the transitions inX.

In summary, after collecting the role sets and co-role sets of all the transitions within
X that use identifiers ofL, we have a set of role sets and a set of co-role sets:

{{r1
1, r

2
1, · · ·}, {r

1
2, r

2
2, · · ·}, · · ·} and

{{c1
1, c

2
1, · · ·}, {c

1
2, c

2
2, · · ·}, · · ·}.

These sets should satisfy all of the following conditions:

- Every labelrv
u must have a corresponding co-labelcy

x = rv
u, and vice versa for every

co-label; and
- If the synchronization type is**E*, for every co-labelcy

x, there is exactly one cor-
responding labelrv

u, such that= cy
x = rv

u;
- If the synchronization type is***E, for every labelrv

u there is exactly one corre-
sponding co-labelcy

x, such thatrv
u = cy

x; and
- Finally, the setX must be maximal, i.e., it is not possible to add one or more tran-

sition in T and to satisfy the above constraints of the synchronizationtype.

Table 2 shows examples of synchronizing transitions according to 10 synchronizers
of distinct types. The transitions in each row are enabled, orthogonal transitions. Intu-
itively, the first two letters of a synchronization type specify the number of interactions,
i.e., the number of matchings over distinct identifiers, that a transition can take part in,
i.e., biparty vs. multiparty interaction. The last two letters of a synchronization type
specify the arity of the interaction mechanism, i.e.,exclusivevs.sharedinteraction.

In the model in Fig. 1, when the model resides inG11,G21, andG31, the set of tran-
sitions{t5, t9, t11} is a potential small step of the model, which satisfies the constraints
of synchronizerUUES(x): (1) only uni-roles usex; (2) only uni-co-roles usex; (3) only
t9 has a role set includingx; and (4) botht5 andt11 have co-role sets includingx. The
other two potential small steps are:{t6, t8, t11} and{t5, t8, t12}. The model neither permits
two groups to initiate an intersection maneuver simultaneously, nor a group to initiate
two intersection maneuvers consecutively.

Each pair of synchronization typesUPEE andPUEE,UUSE andUUES,UPSE andPUES,
PUSE andUPES, PPSE andPPES, andUPSS andPUSS are symmetric. A synchronizer
with one of these types can be replaced with a synchronizer with the same label set but
the symmetric type, with the role sets and co-role sets of transitions being swapped.

7

Table 2.Examples of synchronizing transitions.

Synchronizer Synchronizing Transitions
UUEE(m) t1: {m}, t2: {m}
UUSE(m) t1: {m}, t2: {m}, t3: {m}
UUSS(m) t1: {m}, t2: {m}, t3: {m}, t4: {m}
UPEE(m,n) t1: {m}, t2: {n}, t3: {m,n}}
UPSE(m,n) t1: {m}, t2: {m}, t3: {n}, t4: {n}, t5: {m, n}
UPES(m,n) t1: {m}, t2: {m}, t3: {m,n}, t4: {m,n}
UPSS(m,n) t1: {m}, t2: {m}, t3: {n}, t4: {n}, t5: {m, n}, t6: {m,n}
PPEE(m,n, p,q) t1: {m,n}, t2: {p,q}, t3: {m, p}, t4: {n,q}
PPSE(m,n, p,q) t1: {m,n, p,q}, t2: {m,n}, t3: {p,q}, t4: {m, p}, t5: {n,q}
PPSS(m,n, p,q) t1: {m,n, p,q}, t2: {m,n}, t3: {p,q}, t4: {m,n, p, q}, t5: {m, p}, t6: {n,q}

If a model has more than one synchronizer, the constraints oftheir corresponding
synchronization types should be considered together; i.e., the setX above should satisfy
the synchronization requirements of all of the synchronizers together.

Lastly, in the semantics described above, a few well-formedness conditions were
assumed. An SBSML model iswell-formedif all of the following five conditions hold,

i Each label uniquely belongs to the label set of exactly one synchronizer.
ii No two synchronizers of a control state have the same synchronization type.

iii For each labell of synchronizermand each transitiont, l is associated with at most
one of the role sets or co-role sets oft. Furthermore,m is associated with the lowest
control state that is an ancestor of the source and destination control states of the
transitions that use the labels ofm in their role sets or co-role sets.

iv Two labels that are associated with the same synchronization type do not belong to
two different role sets or two different co-role sets of the same transition.

v For each labell, if there is at least one transition with a poly-role that includesl,
then the synchronization type of its corresponding synchronizer should be a syn-
chronization type whose first letter isP (i.e.,P***), otherwise it must be one of the
U*** synchronization types. Similarly, the second letter of a synchronization type
is specified based on the characteristics of the co-role setsof transitions.

Hereafter, by an SBSML model, we mean a well-formed SBSML model.

4 Applications: Semantics of Modelling Constructs

Through examples, this section describes how the essence ofthe semantics of modelling
constructs such as asmulti-source, multi-destination transitions[8,18],composition op-
erators[15], andworkflow patterns[1] can be captured succinctly using synchroniza-
tion in SBSMLs. We also show how some of the semantic variations of BSMLs can
be modelled using synchronizers, thereby allowing multiple BSML semantics to exist
in different components of a model. Lastly, we show how a notion of asignaland the
negation of a signal used in some BSMLs can be modelled in SBSMLs.

8

4.1 Modelling Multi-source, Multi-destination Transitio ns

Multi-source, multi-destination transitions embody a form of concurrent, synchronized
execution: When a multi-source, multi-destination transition is executed, it exits all of
its source control states and enters all of its destination control states [8, 18]. A multi-
source, multi-destination transition of a model can be replaced with a set of regular tran-
sitions that are always taken together by synchronizing viaa synchronizer of typeUPEE.
As an example, the SBSML model in Fig. 2(b) is equivalent to the model in Fig. 2(a),
which has two multi-source, multi-destination transitions x andy. For example, tran-
sition x is replaced by transitionsx1, x2, andx3. One of the transitions,x1, adopts the
enabledness conditions, the actions, and the role sets and co-role sets ofx, along with a
new co-role set with co-labels for every other transitions.The other transitions each has
one singleton role set, to match the co-role set of the first transition. The number of con-
trol states in the source and destination of a multi-source,multi-destination transition
need not be the same, in which case new dummy control states are introduced to make
the number of source control states and destination controlstates equal. For example,
in the model in Fig. 2(b), control stateR4 is such a dummy control state.

(b)

(a)

R

R11 R12

R22

R32

R′

R′12

R′21 R′22

R′32

R4

M

M22

M31

M12

M21

M′

M′11

M′22

M′32

M′12

M

M11

M′21

R′11

R′31

x3: {a2}

y

M′31

R21

R31M32

y3: {b2}

y1: {b1,b2}

M1

R′2

R′3

M2

M3

M′1

x M′2

M′3

R1

R2

R3

R′1x1:

{a1,a2}

x2: {a1}

y2: {b1}

R: {UPEE(a1,a2,b1,b2)}

Fig. 2. Multi-source, multi-destination transitions using regular transitions.

4.2 Modelling BSML Semantic Variations

In previous work, we deconstructed the semantics of BSMLs into eight high-level,
mainly orthogonal,semantic aspectsand theirsemantic options[4–6]. These aspects
were divided into: (i) dynamic aspects, which determine theenabledness of a single
transition and the effect of its execution; and (ii) structural aspects, which specify the
possible small steps from a set of enabled transitions [4]. Using synchronization, we
show that the semantic options for the structural semantic aspects ofconcurrencyand
preemptionare not needed, thus a single SBSML can include a combinationof the
semantic options of these semantic aspects.

9

Concurrency: A dichotomy in the semantics of BSMLs is whether a small step can
include more than one transition or exactly one transition.Using the semantic option
that a maximal set of transitions can be taken together in a small step along with a
synchronizerUUEE(a), anAnd control state can be constrained to execute at most one
of its transitions at each small step: Every transition within the And control state is
modified to synchronize with a new self transition:t: {a}.3

Preemption: Some BSMLs supportpreemptivesemantics, in which aninterrupt tran-
sition can supersede another transition, whose scope is lower thanthe interrupt transi-
tion. Other BSMLs supportnon-preemptivesemantics, in which an interrupt transition
can be taken together with the interrupted transition. A BSML that supports the non-
preemptive semantics can model the preemptive semantics, by using synchronizers of
typePUEE. For example, in the model in Fig. 3(a), transitionst4, which is an interrupt
transition, can be taken together with transitionsst2 andst3 by the non-preemptive se-
mantics. Similarly, transitionst5 can be taken together with transitionsst1 andst2. In
the model in Fig. 3(b), which simulates the preemptive semantics, for each pair of tran-
sitions in which one is an interrupt and the other is interrupted, only one of them can
be taken in a small step. For example, transitionsdt4 anddt2 cannot be taken together
because only one of them can synchronize witht2.

(a) (b)

D4

t1: {a1}

t2: {a2}

D5

t3: {a3}

D6

D2

D1

D3

D′dt1:
{a1}

dt2:
{a2}

{a3}

D22

D12

dt3: D32D31

D21

D11

D′1

D′2

D

dt5: {a1,a2}

dt4: {a2,a3}

DES: {PUEE(a1,a2,a3)}

st5

S′1

S′2

S′
st4

S RC

st1

st3

st2

S

S1 S11 S12

S2 S21 S22

S3
S31 S32

Fig. 3. Deriving preemptive behaviour in a non-preemptive semantics.

4.3 Modelling Composition Operators

In our previous work on template semantics [15], a set of composition operators were
introduced, each of which represents a useful execution pattern in modelling. In this
section, we describe how the behaviour ofrendezvous, environmental synchronization,
andinterleavingcomposition operators can be modelled using synchronizers. For each
of the remaining composition operators in template semantics, there is a similarwork-
flow pattern[1], whose semantics we consider in the next section.

3 This mapping is analogues to the derivation ofasynchronyfrom synchronyin SCCS [13,14].

10

Rendezvous:The rendezvous binary composition operator, analogous to the CCS com-
position operator [14], requires one of the transitions of one of its operands to generate
a synchronization event and one of the transitions of the other operand that is triggered
with that event to consume it, in the same small step. The semantics of the rendezvous
composition operator is the synchronizer of typeUUEE.
Environmental Synchronization: The environmental synchronization composition op-
erator requires its two operands to synchronize over transitions that are triggered with
the same synchronization event received from the environment. At each snapshot, it is
possible that no, one, or more than one transition in each operand is enabled and trig-
gered with the synchronization event. When all concurrent parts of the operands have
enabled transitions that are triggered with the synchronization event, a synchronizer of
typePUEE can be used to execute all of them together in the same small step. Other-
wise, when there is an arbitrary number of enabled transitions that are triggered with
the synchronization event, additionally a synchronizer oftypeUUSS is needed to ensure
that a maximal set of such transitions are taken together in the same small step. As an
example, the model in Fig. 4(a) uses the environmental synchronization composition
operator over evente to coordinate the execution ofC1 andC2. Each of the transitions
in the model has a guard condition, enclosed by a “[]”, on a boolean variable that is
assigned a value by the environment. Fig. 4(b) is an SBSML model that has the same be-
haviour as the model in Fig. 4(a). Each control state of the model in Fig. 4(b) has a self
transition to accommodate for the execution of synchronization transitions when not all
of them are ready to execute. Self transitiont9 is necessary when executingdt1, dt2, dt3,
dt4 together in the same small step. Transitionsdt1, dt2, dt3, dt4 each synchronizes via
two synchronizers.

dt1:
e [b1]
{{u, v,w}, {r}}

C1

B2

A2A1

B1

e [b1]
st1: st2:

C2

A3

B3

A4

B4

st3: st4:
e [b3] e [b4]

env

C11 C12 C21 C22

e [b2] e

(a) Environmental synchronization composition operator.

Env: {PUEE(u, v,w), UUSS(r)}

E1

E11

E12 e

t1:

{{u, v,w}, {r}}

e [¬b1]

t2:
e

E2

E21

E22

e [¬b2]
{{u}, {r}}

dt2:
e [b2]

t3:

{{u}, {r}}

t4:
e

E3

E31

E32

e [¬b3]
{{v}, {r}}

dt3:
e [b3]

{{v}, {r}}

t5:

t6:
e

E4

E41

E42

e [¬b4]

dt4:

t7:

t8:

{{w}, {r}}

{{w}, {r}}

t9: {r}

E5

{u, v,w}, {r}

{r}, {u} {r}, {v}
e [b4]
{r}, {w}

(b) Equivalent SBSML model for the model in Fig 4(a).

Fig. 4. Modelling the environment synchronization operator in SBSMLs.

11

Interleaving: The interleaving composition operator requires that exactly one of its
operands to execute its transitions in each small step, exclusively. As an example, in the
model in Fig. 5(a), in each small step, either transitions ofC1 or those ofC2 should be
executed. The SBSML model in Fig. 5(b) uses a synchronizer ofsynchronization type
UUSE to enforce the interleaving semantics of the model in Fig. 5(a), by executing either
t1 or t2 in a small step, but not both.

int

B2

A2
t1: {a1}

t2: {a2}

I5

C22C12

C1

C11

A1

B1

st1

C21

C2

A3

B3

A4

B4

st1 st2 st3

(a) (b)

I1

I11

I12

I2

I21

I22

I31

I32

I41

I42

dt1:
{a1}

dt2:
{a1}

dt3:
{a2}

dt4:
{a2}

I3 I4

Int : {UUSE(a1,a2)}

Fig. 5.Modelling the interleaving composition operator in SBSMLs.

4.4 Modelling Workflow Patterns

There are fivebasic workflow patterns[1]: (i) sequence, which executes two activi-
ties sequentially: Once the first activity finishes, the second activity starts; (ii)parallel
split, which starts executing multiple activities in parallel; (iii) synchronization, which
merges multiple parallel activities into a single activity; (iv) exclusive choice, which
non-deterministically chooses to execute one activity from a set of possible activities;
and (v)simple merge, which requires exactly one of the alternative activities to finish
before a next activity starts. Fig. 6 shows examples of how each of the basic workflow
patterns can be modelled in SBSMLs. The model in Fig. 6(a) uses the first three pat-
terns. The model in Fig. 6(c) uses the last two patterns, together with the sequence pat-
tern. The circled operatorsseq, par, syn, xor, andmer represent the sequence, parallel
split, synchronization, exclusive choice, and simple merge workflow patterns, respec-
tively. Fig. 6(b) and Fig. 6(d), which use multi-source, multi-destination transitions, are
equivalent SBSML models for the models in Fig. 6(a) and Fig. 6(c), respectively. The
parallel split and synchronization workflow patterns are usually used together; e.g., as in
the fork & join construct in activity diagrams in UML [16]. For the sake of brevity, we
modelled only the basic workflow patterns, but it is not difficult to derive the semantics
of other patterns, especially the ones that do not involve instances of activities.

In interpreting and modelling the semantics of the sequencepattern above, an addi-
tional idle small step is introduced between the last small step of the first activity and the
first small step of the second activity. This extra small stepcan be avoided by using an
interrupt transition that transfers the control flow to the second activity simultaneously
when the last small step of the first activity is being executed.

12

(a)

(b)

(c)

(d)

mer

t5: {x1}

X1

t6: {x2}

A workflow model using sequence, parallel split, and synchronization workflow patterns.

Equivalent SBSML model for the model in Fig. 6(a).

st2

M12

M22

st1M1

M2 M21

M11 Q12

Q22

st5

st6

Q1 Q11

Q21
Q2

P1
P11 P12

P22

st3

st4

par syn seq
P2

P21

M Q

S RC1

seq

dt5

K

K1 K11 K12

K2 K21
dt6 K22

DES1

dt1

dt2

H

H11 H12

H2

H1

H21 H22

I

I1 I11 I12

I21
I2 I22

dt3

dt4
t1 t2

st1 st5

st6
seq

M

M1

M2

M11

M21

M12

st2 M22

Q

Q1 Q11 Q12

Q2 Q21 Q22

P12

P21 P22

P1

P2

xor

S RC2

P11
st3

st4

seq

dt1 dt5

K

K1 K11 K12

K2 K21
dt6 K22

dt2

t2:{x2}

H

H11 H12

H21
H2

H1

H22

I1
I12

I2
I21 I22 t4

DES2 : {UUEE(x1, x2)}

I11
dt3

dt4

t1:{x1} t3

A workflow model using sequence, exclusive choice, simple merge workflow patterns.

Equivalent SBSML model for the model in Fig. 6(c).

Fig. 6. Modelling workflow patterns in SBSMLs.

S1

S11

S12

b∧ c)
¬a ∧
st1: (I ∧

S21

S22

S2

st2: (I ∧

¬b∧ c)
a ∧

S4

S41

S42

S3

S31

S32

̂{a, c}
st3:

{v,w}

dt1: I

D11

D12

D1

{x′}
dt2: I

D21

D22

{u,w}

D2

{y′}

D31

D32

D3

dt3:
{{u,w},
{x, z}}

dt4:

{y, z}}
{{v,w},

D4

D41

D42

t2: {x}

D5

t1: {x′}

D6

t3: {y′} t4: {y}

D7

t5: {z′} t6: {z}

S RC

(a)

st4:
̂{b, c}

(b)

DES: {PPSS(u, v,w), PUSE(x, y, z, x′, y′, z′)}

Fig. 7.Modelling the semantics of a notion ofsignal in SBSMLs.

13

4.5 Modelling Signals and Negations of Signals

Some BSMLs, such asµ-Charts [17], support a notion of asignalthat when generated in
a small step of a model can be sensed as present by all of the transitions of the model in
the same small step.4 The semantics of such signals can be modelled by synchronizers
of type PPSS. A set of signals generated by a transition corresponds to a poly-role.
The conjunction of signals in the trigger of a transition corresponds to a poly-co-role.
To model the negation of a signal, a synchronizer of typePUSE and two labels can
be used to disallow both a signal to be generated by a transition and its negation to
be the trigger of a transition, in the same small step. As an example, in the model
in Fig. 7(a), on page 12, when the model is initialized and input signalI is received
from the environment, either of the potential small steps{st1, st4} and{st2, st3} can be
taken, non-deterministically. (In the model in Fig. 7(a), the set of generated signals of a
transition is prefixed with a “̂ ”). The model in Fig. 7(b) has the same behaviour as the
one in Fig. 7(a). Labelsu, v, andw correspond to signalsa, b, andc, respectively. Input
signalI is maintained in the model in Fig. 7(b). Labelsx, y, z, together with labelsx′,
y′, z′, ensure that each of the signalsa, b, andc can be exclusively either generated or
its negation can trigger a transition, respectively. For example, transitionsdt1 anddt3
cannot be taken together becauset1 andt2 cannot be taken together.

5 Related Work

Our classification of synchronization types overlaps with the classification ofmultiparty
interaction mechanismsby Joung and Smolka [10]. They present a novel classification
for synchronization mechanisms based on four criteria, which, in our terminology, can
be described as: (i) whether or not the role sets and co-role sets of all transitions are
singletons; (ii) whether or not a transition, in addition tospecifying its role sets and
co-role sets, can specify a particular transition (or transitions in a part of the hierarchy
tree) with which it wishes to synchronize; (iii-a) whether or not the number of role
sets and co-role sets of a transition together can be more than one; (iii-b) whether or
not a control state can be the source control state of more than one transitions that can
synchronize; and (iv) whether only a minimal set of synchronizing transitions are taken
at each small step or a maximal set of all synchronizing transitions should be taken at
each small step. Criterion (i) corresponds to the first two letters of our synchronization
types, with our criteria being more distinguishing. Criterion (ii) is not relevant for us
since it can be modelled by a naming convention for labels (cf., [10, p. 85]). Criterion
(iii), calledconjunctive vs. disjunctive parallelism[10], is meant to distinguish between
process algebras such as SCCS (synchronous CCS) [13], whichcan perform multiple
handshakes in one small step, and CCS, which can do at most onehandshake; this
criterion is closely related to the criterion (i) [10, p.83]. Part (a) of the criterion is not
relevant in our framework since multiple role sets, or multiple co-role sets, related to
the same synchronizer are merged into one. Part (b) of the criterion corresponds to a

4 In previous work [5, 6], we have categorized this semantics of signals as thesamesemantic
variation forevents.

14

syntactic constraint in our framework. Lastly, we do not consider criterion (iv), focusing
on semantics in which a maximal set of synchronizing transitions is always taken.

Compared to Joung and Smolka’s taxonomy, our framework additionally considers
the role of the third and fourth letters of our synchronization types. Also, additionally,
our framework permits multiple synchronization types in one language. In general, the
taxonomy of Joung and Smolka “is based on issues that may affect the complexity of
scheduling multiparty interaction” [10, p.78], where as our framework is based on issues
relevant for designing suitable modelling languages for requirements specification.

Our synchronizer syntax is inspired by theencapsulation operatorin Argos [12].
The encapsulation operator specifies the scope in which a signal can be used. Our syntax
is different in that multiple synchronizers can be attached to the same control state.

A class of BSMLs called synchronous languages [7], which includes languages such
as Esterel [3] and Argos [12], have been successful in the specification of determinis-
tic behaviour: “In contrast with traditional thread- or event-based concurrency mod-
els that embed no precise or deterministic scheduling policy in the design formalism,
synchronous language semantics take care of all schedulingdecisions.” [20] The main
characteristic of the synchronous languages is that the statuses ofsignalsof a model are
constant throughout a big step, which, in turn, introduces semantic difficulties such as
non-causality and global inconsistency [3,7,12,18]. Using the synchronization capabil-
ity of SBSMLs, it is possible to simulate the subset of the responsibilities of signals in
synchronous languages that deal with the coordination of the simultaneous execution of
transitions. As such, when using signal-like artifacts is not an option in a domain, e.g.,
UML StateMachines [16], synchronization could be used to achieve determinism in a
model, by constructing the model such that each snapshot yields a unique small step.

SBSMLs, however, as opposed to synchronous languages, do not guarantee deter-
minism as an inherent property of their semantics.5 When a deterministic behaviour is
desired in an SBSML model, care should be taken when using a synchronizer that has
a synchronization type with its third and/or fourth letter beingS, which permits syn-
chronization with an arbitrary number of transitions. Similarly, care should be taken
when using multiple synchronizers in a model, which could allow multiple sets of tran-
sitions to synchronize, according to different synchronizers, thereby creating different
potential small steps. As an example, in the model in Fig. 7(b), if we remove labelsx,
y, andz from the model and replacex, y, andz in the co-role sets oft2, t4, t6 with u,
v, andw, respectively, the model can create a wrong small step that would includedt1,
dt2, dt3, anddt4. The wrong small step is possible because labelx′ in dt1 can match its
corresponding label int1, while labelu of dt3 can match its corresponding label indt2.
Similarly, dt2 anddt4 can match their corresponding labels int3 anddt1, respectively.

6 Conclusion and Future Work

We presented a framework of 16 synchronization types based on criteria relevant for
requirements modelling languages. We described how the class of big-step modelling

5 A model in a synchronous language with a possible nondeterministic behaviour is conserva-
tively rejected at compile time.

15

languages (BSMLs) can be enhanced with these synchronization types creating the fam-
ily of synchronizing big-step modelling languages (SBSMLs). We validated the useful-
ness and generality of our framework by describing how underlying the semantics of
many modelling constructs, there is a notion of synchronization that can be modelled
in SBSMLs. Similar to our framework for BSMLs [4], we are working on a paramet-
ric framework to give formal semantics to the family of SBSMLs. Using the results of
Joung and Smolka [10], we plan to analyze the complexity of implementing a set of
synchronization types in an SBSML, to provide measures for alanguage designer or
a software engineer to choose one SBSML over another. Lastly, we plan to provide a
parametric tool support for SBSMLs, in the same style as in our previous work [11,19].

References

1. Aalst, W., Hofstede, A., Kiepuszewski, B., Barros, A.P.:Workflow patterns. Distributed and
Parallel Databases 14(1), 5–51 (2003)

2. von der Beeck, M.: A comparison of Statecharts variants. In: FTRTFT 1994 and ProCoS
1994. LNCS, vol. 863, pp. 128–148. Springer (1994)

3. Berry, G., Gonthier, G.: The Esterel synchronous programming language: Design, semantics,
implementation. Science Computer Programming 19(2), 87–152 (1992)

4. Esmaeilsabzali, S., Day, N.A.: Prescriptive semantics for big-step modelling languages. In:
FASE 2010. LNCS, vol. 6013, pp. 158–172. Springer Verlag (2010)

5. Esmaeilsabzali, S., Day, N.A., Atlee, J.M., Niu, J.: Semantic criteria for choosing a language
for big-step models. In: RE 2009. pp. 181–190. IEEE ComputerSociety Press (2009)

6. Esmaeilsabzali, S., Day, N.A., Atlee, J.M., Niu, J.: Deconstructing the semantics of big-step
modelling languages. Requirements Engineering 15(2), 235–265 (2010)

7. Halbwachs, N.: Synchronous Programming of Reactive Systems. Kluwer (1993)
8. Harel, D.: Statecharts: A visual formalism for complex systems. Science of Computer Pro-

gramming 8(3), 231–274 (1987)
9. Hoare, T.: Communicating Sequential Processes. Prentice Hall (1985)

10. Joung, Y.J., Smolka, S.A.: A comprehensive study of the complexity of multiparty interac-
tion. Journal of the ACM 43(1), 75–115 (1996)

11. Lu, Y., Atlee, J.M., Day, N.A., Niu, J.: Mapping templatesemantics to SMV. In: ASE 2004.
pp. 320–325 (2004)

12. Maraninchi, F., Rémond, Y.: Argos: an automaton-basedsynchronous language. Computer
Languages 27(1/3), 61–92 (2001)

13. Milner, R.: Calculi for synchrony and asynchrony. Theoretical Computer Science 25(3), 267–
310 (1983)

14. Milner, R.: Communication and Concurrency. Prentice Hall (1989)
15. Niu, J., Atlee, J.M., Day, N.A.: Template semantics for model-based notations. IEEE TSE

29(10), 866–882 (2003)
16. OMG: OMG Unified Modeling Language (OMG UML), Superstructure, v2.1.2 (2007),

formal/2007-11-01
17. Philips, J., Scholz, P.: Compositional specification ofembedded systems with statecharts. In:

TAPSOFT 1997. LNCS, vol. 1214, pp. 637–651. Springer-Verlag (1997)
18. Pnueli, A., Shalev, M.: What is in a step: On the semanticsof statecharts. In: TACS 1991.

LNCS, vol. 526, pp. 244–264 (1991)
19. Prout, A., Atlee, J.M., Day, N.A., Shaker, P.: Semantically configurable code generation. In:

MoDELS 2008. LNCS, vol. 5301, pp. 705–720 (2008)
20. Tardieu, O.: A deterministic logical semantics for pureEsterel. ACM TOPLAS 29(2), 8:1–

8:26 (2007)

	A Common Framework for Synchronization in Requirements Modelling Languages
	Introduction
	Background: Big-Step Modelling Languages (BSMLs)
	Synchronizing Big-Step Modelling Languages (SBSMLs)
	Synchronization Syntax
	Synchronization Types and Semantics

	Applications: Semantics of Modelling Constructs
	Modelling Multi-source, Multi-destination Transitions
	Modelling BSML Semantic Variations
	Modelling Composition Operators
	Modelling Workflow Patterns
	Modelling Signals and Negations of Signals

	Related Work
	Conclusion and Future Work

