
Springer	Copyright	Notice	
© Springer Nature Switzerland AG 2006
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Published	in:	Proceedings	of	the	ACM/IEEE	Model	Driven	Engineering	
Languages	and	Systems	(MODELS'06),	October	2006	

“Semantics Variations Among UML StateMachines”

Cite as:

BibTex:

DOI: http://dx.doi.org/10.1007/11880240_18

Ali Taleghani and Joanne M. Atlee. 2006. Semantic variations among UML StateMachines.
In Proceedings of the 9th international conference on Model Driven Engineering Languages
and Systems (MoDELS'06), Oscar Nierstrasz, Jon Whittle, David Harel, and Gianna Reggio
(Eds.). Springer-Verlag, Berlin, Heidelberg, 245-259.

@inproceedings{Taleghani:2006:SVU:2087202.2087228,
 author = {Taleghani, Ali and Atlee, Joanne M.},
 title = {Semantic Variations Among UML StateMachines},
 booktitle = {Proceedings of the 9th International Conference on Model Driven Engineering Languages
and Systems},
 series = {MoDELS'06},
 year = {2006},
 pages = {245--259}
}

Semantic Variations among UML StateMachines

Ali Taleghani and Joanne M. Atlee

David R. Cheriton School of Computer Science
University of Waterloo, Canada

Abstract. In this paper, we use template-semantics to express the ex-
ecution semantics of UML 2.0 StateMachines, resulting in a precise de-
scription that not only highlights the semantics decisions that have been
documented but also explicates the semantics choices that have been left
unspecified. We provide also the template semantics for StateMachines
as implemented in three UML CASE tools: Rational Rose RT, Rhap-
sody, and Bridgepoint. The result succinctly explicates (1) how each of
the tools refines the standard’s semantics and (2) which tools’ semantics
deviate from the standard.

1 Introduction

Unified Modeling Language (UML) Behavioral State Machines (hereafter called
StateMachines) are an object-based variant of Harel statecharts [6] that are
used primarily to describe the behaviour of class instances (objects) in a UML
model. Their semantics, as defined by the Object Management Group (OMG),
is described in a multi-hundred-page natural-language document [19] that is not
easy to use as a quick reference for precise queries about semantics. Moreover,
the OMG standard leaves unspecifed a number of details about the execution
semantics of UML 2.0 StateMachines. This underspecification means that users
can create a UML semantic variant that suits their modelling needs and yet still
complies with the OMG standard.

Template semantics [17] is a template-based approach for structuring the
operational semantics of a family of notations, such that semantic concepts that
are common among family members (e.g., enabled transitions) are expressed
as parameterized mathematical definitions. As a result, the task of specifying
a notation’s semantics is reduced to providing a collection of parameter values
that instantiate the template. And the task of comparing notations’ semantics
is reduced to comparing their respective template-parameter values.

In this paper, we extend the template-semantics templates and composition
operators to support notations that allow queue-based message passing among
concurrent objects. We then use the extended template semantics to document
concisely the semantics of UML 2.0 StateMachines, as defined in the OMG
standard [19]. Related efforts [7, 13, 12, 24] to provide a precise semantics for
UML StateMachines refine the standard’s semantics, so as to produce a com-
plete, formal semantics that is suitable for automated analysis. In contrast, our

template-semantics representation retains the semantics variation points that
are documented in the standard.

We also express the template semantics for StateMachines as implemented
in three UML CASE tools: Rational Rose RT [8], Rhapsody [5, 11], and Bridge-
point [1]. Related efforts [2] to compare UML StateMachine variants mention
some semantic distinctions, but they focus more on the differences in syntax and
in the language constructs supported. In contrast, our work formally compares
the variants’ execution semantics. As a side effect, the template-semantic de-
scription of a UML model can be used in configurable analysis tools, where the
template parameters provide the configurability.

The rest of the paper is organized as follows. Section 2 is a review of template
semantics, as used in this paper. Sections 3 and 4 provide the template semantics
for the OMG standard for UML 2.0 StateMachines. Section 5 compares this
semantics with the template semantics for StateMachines as implemented in
three UML CASE tools. The paper concludes with related work and conclusions.

2 Template Semantics

In this section, we review the template semantics and the template parameters
that we use to represent UML StateMachine semantics. A more comprehensive
description of template semantics can be found in [17, 18].

2.1 Computation Model

Template semantics are defined in terms of a computation model called a hierar-
chical transition system (HTS). An HTS is an extended StateMachine, adapted
from statecharts [6], that includes control states and state hierarchy, state transi-
tions, events, and typed variables, but not concurrency. Concurrency is achieved
by composing multiple HTSs. Transitions have the following form:� � � � � � �� � �	
 � �
 � � �
 � 	 � �
 � � � �
 � � � � �
whose elements are defined in Table 1. Each transition may have one or more
source states, may be triggered by zero or more events, and may have a guard
condition (a predicate on variable values). If a transition executes, it may lead
to one or more destination states, may generate events, and may assign new

Table 1. HTS accessor functions from state s or transition τ .

Function Signature Description

src(τ) T → 2S set of source states of τ

dest(τ) T → 2S set of destination states of τ

trig(τ) T → 2E events that trigger τ
cond(τ) T → exp τ ’s guard condition, where

exp is a (predicate) expres-
sion over V

Function Signature Description

prty(τ) T → N τ ’s priority value

ancest(s) S → 2S ancestor states of s
gen(τ) T → [E]∗ sequence of events

generated by τ
asn(τ) T → [V × exp]∗ sequence of variable

assignments made
by τ

values to variables. A transition may also have an explicitly defined priority
prty, which is an integer value. An HTS includes designation of initial states, of
default substates for hierarchical states, and of initial variable values.

We use helper functions to access static information about an HTS. The
functions used in this paper appear in Table 1. In the definitions, S is the HTS’s
set of control states, T is the set of state transitions, V is the set of variables,
and E is the set of events. The notation 2X refers to the powerset of X ; thus,
src maps a transition τ to its set of source states. The notation [X]∗ refers to a
sequence of zero or more elements of X .

2.2 Parameterized Execution Semantics

The execution of an HTS is defined in terms of sequences of snapshots. A snap-
shot is data that reflects the current status of the HTS’s execution. The basic
snapshot elements are

CS - the set of current states
IE - the set of current internally generated events
AV - the current variable-value assignments
O - the set of generated events to be communicated to other HTSs

In addition, the snapshot includes auxiliary elements that store history informa-
tion about the HTS’s execution:

CSa - data about states, like enabling states or history states
IEa - data about internal events, like enabling or nonenabling events
Ia - data about inputs I from the StateMachine’s environment
AVa - data about variable values, like old values

The types of information stored in the auxillary elements differ among modelling
notations. The expression ss.X (e.g. ss.CS) refers to element X in snapshot ss.

An execution of an HTS is a sequence of snapshots, starting from an ini-
tial snapshot of initial states and variable values. Template semantics defines a
notation’s execution semantics in terms of functions and relations on snapshots:

enabled trans(ss,T)⊂ T returns the subset of transitions in T that are enabled
in snapshot ss.

apply(ss,τ ,ss’) : bool holds if applying the effects of transition τ (e.g., variable
assignments, generated events) to snapshot ss results in next snapshot ss’.

Nmicro(ss,τ ,ss’) : bool is a micro execution step (a micro-step) representing the
execution of transition τ , such that τ is enabled in snapshot ss and its execution
results in next snapshot ss’.

reset(ss,I) : ssr resets snapshot ss with inputs I , producing snapshot ssr .

Nmacro(ss,I,ss’) : bool is a macro execution step (a macro-step) comprising a sequence
of zero or more micro-steps taken in response to inputs I . The macro-step starts
in snapshot reset(ss,I) and ends in snapshot ss’, in which the next inputs are
sensed.

We provide the definitions of enabled trans and apply below, as examples
of our template definitions. The other definitions can be found in [17].

Table 2. Template parameters provided by users

States Events Variables Outputs
Beginning of reset CS(ss, I): CSr reset IE(ss, I):IEr reset AV(ss, I) : AV r reset O(ss, I): Or

Macro-step reset CSa(ss, I): CSr
a reset IEa(ss, I):IEr

a reset AVa(ss, I) : AV r
a

reset Ia(ss, I):Ir
a

Micro-Step next CS(ss, τ, CS′) next IE(ss, τ, IE′) next AV(ss, τ, AV ′) next O(ss, τ, O′)
next CSa(ss, τ, CS′

a) next IEa(ss, τ, IE′
a) next AVa(ss, τ, AV ′

a)
next Ia(ss, τ, I′

a)
Enabledness en states(ss, τ) en events(ss, τ) en cond(ss, τ)

Others macro semantics

pri(T) : 2T

apply(ss, τ, ss′) ≡

let 〈CS′, IE′, AV ′, O′, CS′
a, IE′

a, AV ′
a, I′

a〉 ≡ ss′ in

next CS(ss, τ, CS′) ∧ next CSa(ss, τ, CS′
a) ∧ next IE(ss, τ, IE′) ∧ next IEa(ss, τ, IE′

a)∧

next AV(ss, τ, AV ′) ∧ next AVa(ss, τ, AV ′
a) ∧ next O(ss, τ, O′) ∧ next Ia(ss, τ, I′

a)

enabled trans(ss, T) ≡

{τ ∈ T | en states(ss, τ) ∧ en events(ss, τ) ∧ en cond(ss, τ)}

The small-caps font denotes a template definition, and bold font denotes a
template parameter. Thus, definition apply uses template parameters next X,
each of which specifies how a single snapshot element, X , is updated to reflect the
effects of executing transition τ . And definition enable trans uses template
parameters to determine whether a transition’s source states, triggering events,
and guard conditions are enabled in snapshot ss.

The template parameters are listed in Table 2. Functions reset X(ss, I) spec-
ify how inputs I are incorporated into each snapshot element ss.X at the start of
a macro-step, returning new value X ′. Predicates next X(ss, τ, X ′) specify how
the contents of each snapshot element ss.X is updated to new value X ′, due to
the execution of transition τ . Parameters en states, en events, and en cond

specify how the state-, event-, and variable-related snapshot elements are used to
determine the set of enabled transitions. Parameter macro semantics specifies
the type of HTS-level macro-step semantics (e.g., when new inputs are sensed).
Parameter pri specifies a priority scheme over a set of transitions. Each of the 21
parameters1 represents a distinct semantics decision, although the parameters
associated with the same construct are often related.

2.3 Composition Operators

So far, we have discussed the execution of a single HTS. Composition operators
specify how multiple HTSs execute concurrently, in terms of how the HTSs’
snapshots are collectively updated.

A Composed HTS (CHTS) is the composition of two or more operands
via some composition operator op. The operands may be HTSs or may them-
selves be composed HTSs. The snapshot of a CHTS is the collection of its
HTSs’ snapshots, and is denoted using vector notation, −→ss. Template defini-
tions and access functions are generalized to apply to collections of snapshots.

1 Template semantics has a 22nd parameter, resolve, that specifies how to resolve
concurrent assignments to shared variables. This parameter is not used in this paper.

N
interr

micro
((−→ss1,−→ss2), (−→τ1, −→τ2), (−→ss1

′,−→ss2
′)) Tinterr ≡

∨

∨

[

∧
−→τ1 ⊂

−→
T1 ∧ −→τ1 ⊂ pri(enabled trans(−→ss1,

−→
T1 ∪ Tinterr))

N
1

micro
(−→ss1,−→τ1,−→ss1

′) ∧ −→ss2
′ = −→ss2|

AV

assign(−→ss2 .AV,−→ss1
′.AV)

]

(* component 1
takes a step *)

∃
−→
iss.

[

∧

∧

−→τ1 ∈ Tinterr ∧ −→τ1 ∈ pri(enabled trans(−→ss1,
−→
T1 ∪ Tinterr))

apply(−→ss2,−→τ1,
−→
iss) ∧ −→ss2

′ =
−→
iss|CS

ent comp(−→ss2,−→τ1)
−→ss1

′ = −→ss1|
CS
∅

|AV

assign(−→ss1 .AV,−→ss2
′.AV)

]

(* transition

to
component 2 *)

(∗ symmetric cases of the above two cases, replacing 1 with 2 and 2 with 1 ∗)

Fig. 1. Micro-step for CHTS with interrupt operator

Thus, enabled trans(−→ss, T) returns all transitions in T that are enabled in
any snapshot in −→ss.

A micro-step for a CHTS that composes operands N1 and N2 via operation
op has the general form

Nop
micro((−→ss1,

−→ss2), (−→τ1 ,−→τ2), (−→ss1
′,−→ss2

′))

where operand N1 starts the micro-step in snapshots −→ss1, executes transitions
−→τ1 (at most one transition per HTS), and ends the micro-step in snapshots −→ss1

′.
Operand N2 executes in a similar manner, in the same micro-step.

What differentiates one composition operator from another are the conditions
under which it allows, or forces, its two operands to take a step. For example, a
composition operator may force its two operands to execute concurrently in lock
step, may allow its operands to execute nondeterministically, or may coordinate
the transfer of a single thread of control from one operand to the other. Operators
also differ in the assignments they make to their components’ snapshots. For
example, a composition operator may affect message passing by inserting each
operand’s set of generated events into the other operand’s event pool.

We use substitution notation to specify an operator-imposed override on
snapshot contents. Expression ss|xv is equal to snapshot ss, except for element
x, which has value v. Substitution over a collection of snapshots denotes sub-
stitutions to all of the snapshots. For example, substitution −→ss |CS

∅ is equal to
snapshots −→ss , except that all of the snapshots’ CS elements are empty.

Interleaving Composition operator interleaving, defined by template Nintl
micro,

specifies that one but not both of its operands executes in a micro-step:

N
intl

micro
((−→ss1,−→ss2), (−→τ1,−→τ2), (−→ss1

′,−→ss2
′)) ≡

N1
micro(−→ss1,−→τ1,−→ss1

′) ∧ −→ss2
′ = −→ss2|

AV

assign(−→ss2.AV,−→ss1
′.AV)∨

N2
micro(−→ss2,−→τ2,−→ss2

′) ∧ −→ss1
′ = −→ss1|

AV

assign(−→ss1.AV,−→ss2
′.AV)

In each micro-step, exactly one of the CHTS’s operands takes a micro-step.
The snapshot of the non-executing operand is overridden, to update its variable
values to reflect the executing transitions’ assignments to shared variables. (The
macro assign(X, Y) updates variable-value mappings in X with variable-value
mappings in Y , ignoring mappings for variables in Y that are not in X .)

Table 3. Mapping UML syntax to HTS syntax.

UML
Template

Semantics

simple state s ∈ S
event e ∈ E
simple attribute v ∈ V
state variable v ∈ V
pseudostate

s ∈ S
(except fork and join)
simple transition τ ∈ T

UML
Template

Semantics

transition segment
τ ∈ T

(except fork and join)
maximal composite state

HTS
with no orthogonal substate
orthogonal composite state CHTS (interleaving)
nonorthogonal composite state

CHTS (interrupt)
with orthogonal substates
fork, join transitions interrupt transitions

Interrupt Interrupt composition, shown in Figure 1, specifies how control is
passed between an CHTS’s two operands, via a provided set of interrupt tran-
sitions, Tinterr. In each micro-step, the operand that has control either takes a
micro-step or transfers control to the other operand. The first bracketed clause
in Figure 1 shows operand N1 taking a micro-step:

– Transitions −→τ1 in operand N1 have the highest priority (according to template
parameter pri) among enabled transitions, including interrupt transitions.

– Operand N1 takes a micro-step.
– The snapshot of N2 is updated to reflect assignments to shared variables.

The second bracketed clause shows a transition from operand N1 to operand N2:

– Interrupt transition −→τ1 has the highest priority among all enabled transitions.
– N2’s snapshots −→ss2 are updated by (1) applying the effects of the interrupt

transition −→τ1 and (2) overriding their CS elements with the sets of states
entered by the interrupt transition (as determined by macro ent comp).

– N1’s snapshots −→ss1 are updated by (1) emptying their CS elements (since
this operand no longer has control) and (2) updating their variable-value
elements AV to reflect −→τ1 ’s assignments to shared variables.

The cases in which operand N2 has control are symmetric.

3 Syntactic Mapping from UML to HTS

The first step in defining a template semantics for UML is to map UML mod-
elling constructs to our computational model, the HTS. This is essentially a
mapping from UML syntax to HTS syntax, and is summarized in Table 3. Most
of the mappings are straightforward: Simple states, events, variables, and simple
transitions in UML have corresponding constructs in HTS syntax. Pseudostates
in UML (except for fork and join) are mapped to simple states in HTS syntax,
and the pseudostates’ transition segments are mapped to transitions in HTS
syntax. As will be seen in the next section, a UML compound transition maps
to a sequence of HTS transitions that executes over several micro-steps.

Recall that an HTS is a state machine with no internal concurrency, and
that concurrency is introduced by composition operators. Thus, each highest-
level (maximal) nonorthogonal composite state that contains no orthogonal de-
scendant states is mapped to an HTS. A UML orthogonal state is mapped to

a CHTS whose operands are the orthogonal regions and whose operator is in-
terleaving composition. And a nonorthogonal composite state that has one or
more orthogonal descendant states is mapped to a CHTS, whose operands are
the state’s child substates, whose composition operator is interrupt, and whose
interrupt transitions transfer control between the operands. Fork and join tran-
sitions in UML, which enter or exit multiple regions of an orthogonal state, map
to interrupt transitions that enter or exit interleaved CHTSs (see Section 4.2).

We treat state entry/exit actions and submachines as syntactic macros that
are expanded by a preprocessor into transition actions and complete StateMa-
chines, respectively. Entry and exit pseudostates can be treated similarly if the
action language evaluates actions sequentially. To simplify our presentation, we
do not consider history states in this paper, but they can be handled [17]. State
activities and operations can be supported if their effects can be represented as
generated events and variable assignments. We have not attempted a template
semantics for object creation and termination and do not describe TimeEvents
in the current work.

4 Semantics of OMG UML

In this section, we describe the execution semantics of a UML StateMachine, in
terms of its corresponding HTS’s template parameters and composition opera-
tors. In what follows, we use OMG-UML to refer to the semantics of UML as
defined by the OMG [19]. In addition, we assume that a StateMachine describes
the behaviour of a UML object, and we use these two terms interchangeably.

4.1 Template parameters

The template-parameter values for OMG-UML are listed in the second column
of Table 4. To the right of each entry (i.e., the corresponding entry in the third
column) are the page numbers in the OML-UML documentation [19] that contain
the textual description of semantics that we used in formulating that entry’s
value. Unused parameters, IE and IEa are omitted from the table.

State-Related Parameters Rows 1-5 in Table 4 pertain to the semantics of
states. We use snapshot element CS to record the set of current states. This set
does not change at the start of a macro-step (i.e., reset CS does not modify CS).
When a transition τ executes, element CS is updated by template parameter
next CS to hold the states that are current, or that become current, whenever
τ ’s destination state is entered, including the destination state’s ancestors and
all relevant descendants’ default states.

We use snapshot element CSa to record the states that can enable transitions
(en states = (src(τ) ⊆ CSa)). In OMG-UML, only one compound transition
can execute per macro-step. To model this semantics, CSa is set to dest(τ) if
the destination state is a pseudostate, so that only the rest of the compound
transition may continue executing; otherwise, CSa is set to ∅, thereby ending
the macro-step.

Table 4. Template Parameter Values for Multiple UML Notations.

Parameter OMG-UML
[19]

RRT-UML
[9]

RH-UML
[5]

BP-UML
[23]

Page# Page# Page# Page#

reset CS(ss, I) = ss.CS - ss.CS - ss.CS - ss.CS - 1
next CS(ss, τ, CS′) CS′ = active(dest(τ)) 531 CS′ = active(dest(τ)) 52 CS′ = active(dest(τ)) 25 CS′ = dest(τ) 50, 101 2

S
t
a
t
e
s reset CSa(ss, I) = ss.CS - ss.CS - ss.CS - ss.CS - 3

next CSa(ss, τ, CS′
a) if pseudo(dest(τ)) then 523, if pseudo(dest(τ)) then 52, 60 CS′

a = active(dest(τ)) 3, 5, ∅ 50 4
CS′

a = dest(τ) 535, CS′
a = dest(τ) 26

else CS′
a = ∅ 547 else CS′

a = ∅
en states(ss, τ) src(τ) ⊆ ss.CSa 556 src(τ) ⊆ ss.CSa 52 src(τ) ⊆ ss.CSa 25 src(τ) ⊆ ss.CSa 50 5

E
v
e
n
t
s

reset Ia(ss, I) = I 546 I 54 I 25 I 103 6
next Ia(ss, τ, I′

a) I′
a = ∅ 546 I′

a = ∅ 54, 49 I′
a = ∅ 26 I′

a = ∅ 47, 107 7
en events(ss, τ) ss.Ia ⊆ trig(τ) 556 ss.Ia ⊆ trig(τ) 52 trig(τ) = ss.Ia 3, 25 trig(τ) = ss.Ia 50 8
reset O(ss, I) = ∅ - ∅ - ∅ - ∅ - 9
next O(ss, τ, O′) O′ = gen(τ) 557 O′ = gen(τ) 48, 49 O′ = gen(τ) 6 O′ = gen(τ) 47, 107 10

V
a
r
ia

b
le

s

reset AV (ss, I) = ss.AV - ss.AV - ss.AV - ss.AV - 11
next AV (ss, τ, AV ′) AV ′ = ss.AV ⊕? asn(τ) 557 AV ′ = assign(ss.AV, 47 AV ′ = assign(ss.AV, 7, 25 AV ′ = assign(ss.AV, 45, 111 12

seq eval(ss.AV, asn(τ))) seq eval(ss.AV, asn(τ))) seq eval(ss.AV, asn(τ)))
reset AVa = ss.AV - ss.AV - ss.AV - N/A - 13
next AVa(ss, τ, AV ′

a) if choice(dest(τ)) then 523 if choice(dest(τ)) then 47, 60 25 N/A - 14
AV ′

a = (ss.AV ⊕? asn(τ)) AV ′
a = assign(ss.AV , AV ′

a = ss.AVa

else AV ′
a = ss.AVa seq eval(ss.AV, asn(τ)))

else AV ′
a = ss.AVa

en cond(ss, τ) ss.AVa |= cond(τ) 556 ss.AVa |= cond(τ) 52 ss.AVa |= cond(τ) 25 TRUE - 15

macro semantics stable 546 stable 54, 57 stable 24 simple 50, 103 16
pri pri(Γ) ≡ {τ ∈ Γ |∀ t ∈ Γ. 547 pri(Γ) ≡ {τ ∈ Γ |∀ t ∈ Γ. 62 pri(Γ) ≡ {τ ∈ Γ |∀ t ∈ Γ. 22 N/A - 17

rank(src(τ)) ≥ rank(src(t))} rank(src(τ)) ≥ rank(src(t))} rank(src(τ)) ≥ rank(src(t))}

Composition INTERR, INTL, 523, 535, OBJECT, 50, 82 INTERR, INTL, 14, 24 OBJECT, MULTI-OBJECT 104, 107 18
OBJECT, MULTI-OBJECT 547, 555 MULTI-OBJECT 83 OBJECT, MULTI-OBJECT 26

Key
Semantics that refine a semantic variation point in the OMG standard
Semantics that deviate from the OMG standard

active(s) States that are active when state s becomes active, including s’s ancestors and relevant descendants’ default states
pseudo(s) Returns true if state s is a choice, junction or initial pseudostate
choice(s) Returns true if state s is a choice point.
assign(X,Y) Updates assignments X with the assignments Y , and ignores assignments in Y to variables that are not in X

seq eval(X,A)Sequentially evaluates assignment expressions in A, starting with variable values in X and updating these as assignments are processed;
returns updated variable-value assignments.

pri(Γ) Returns the subset of transitions Γ that have highest priority.
rank(s) Distance of state s from the root state. rank(root) = 0. rank(S) returns the rank of the state with the highest rank within set S.

Event-Related Parameters Rows 6-10 in Table 4 pertain to event semantics.
We use snapshot element Ia to hold the event that an HTS is currently process-
ing. At the start of a macro-step, an event I from the event pool is input to the
HTS and saved in Ia. A transition is enabled only if one of its triggers matches
this event (ss.Ia ⊆ trig(τ)). Ia is set to ∅ after the first transition executes; but
subsequent segments of a compound transitions may still be enabled, since they
have no triggers.

We use snapshot element O to hold an HTS’s outputs, which are the events
generated by the HTS’s executing transition. These events are output in the
same micro-step in which they are generated. Thus, element O need only record
the events generated by the most recent transition.

Variable-Related Parameters Rows 11-15 in Table 4 pertain to the seman-
tics of variables. We use snapshot element AV to record the current values of
variables. A transition may perform multiple variable assignments, and may even
perform multiple assignments to the same variable. OMG-UML [19] does not pin
down the action language, so the semantics of variable assignments, especially
with respect to evaluation order or execution subset, is a semantic variation
point. We use the symbol ⊕? to indicate that some of the assignments in τ ’s ac-
tions have an overriding effect on the variable values in AV , but that the exact
semantics of this effect is left open.

We use auxiliary snapshot element AVa to record the variable values that
are used when evaluating transition guards (ss.AVa |= cond(τ)) and assignment
expressions. In OMG-UML semantics, transition guards are evaluted with re-
spect to variables’ values at the start of a macro-step – unless the transition is
exiting a choice pseudostate. Thus, AVa records the variables’ current values at
the start of a macro-step, and is not updated during the macro-step unless an
executing transition enters a choice pseudostate.

Macro-Semantics and Priority Parameters OMG-UML has stable macro-
step semantics, meaning that an HTS processes an event to completion before
inputing the next event. With respect to priority among transitions, transitions
whose source states have the highest rank (i.e., are deepest in the state hierarchy)
have highest priority. Thus, substate behaviour overrides super-state behaviour.
The priority of a join transition is the priority of its highest-ranked segment.

4.2 Composition Operators

We use composition operators to compose HTSs into CHTSs that represent
UML StateMachines and collections of communicating StateMachines. We use
interleaving and interrupt operators for intra-object composition, to create or-
thogonal and composite states, respectively. We also introduce two inter-object
composition operators that define the behaviour of object-level composition: ob-
ject composition defines how a single object takes a micro-step with respect to
UML’s run-to-completion step semantics, and multi-object composition defines
how multiple objects execute concurrently and communicate via directed events.

Interleaving Composition We use interleaving composition, defined in Sec-
tion 2.3, to model orthogonal composite states. According to OMG-UML se-
mantics [19], each orthogonal region executes at most one compound transition
per run-to-completion step, and the order in which the regions’ transitions, or
transition segments, execute is not defined. This behaviour is captured by the
micro-step interleaving operator, which allows fine-grained interleaving of HTSs
and their transitions. The order in which the interleaved transitions’ generated
events or variable assignments occur is nondeterministic.

Interrupt Composition We use interrupt composition, defined in Figure 1, to
model nonorthogonal composite states that contain orthogonal substates. The
semantics of execution is as described in Section 2.3: Only one of the composite
state’s direct substates is ever active; and in each micro-step, either the active
substate executes internal transitions, or one of the interrupt transitions executes
and transfers control from the active substate to another substate.

In a typical case, interrupt composition models fork and join transitions that
enter or exit, respectively, an orthogonal composite state. We model forks and
joins as single HTS transitions that have multiple destination states (forks) or
multiple source states (joins). If a fork does not specify a destination state in
one of the orthogonal regions, the macro ent comp in the interrupt operator
determines the region’s implicit (default) destination states.

Object Composition In OMG-UML, each active object is modelled as a
StateMachine with its own event pool and thread of control2. An object exe-
cutes by performing run-to-completion steps, defined as follows:

1. An event is removed from the object’s event pool for the object to process.
2. A maximal set of non-conflicting enabled transitions are executed. Conflicts

are resolved using priorities (reflected in template parameter pri)
3. The events generated by these transitions are sent to the targeted objects.
4. Steps 2 and 3 are repeated, until no more transitions are enabled.

The object composition operator, shown in Figure 2, defines an allowable
micro-step taken by an object. Macro stable(−→ss) determines whether a run-to-
completion step has ended, meaning that no transitions are enabled. If so, then a
new event e is selected from the object’s event pool and is incorporated into the
object’s snapshots (reset(−→ss , e)). To effect a micro-step, the operator invokes
the micro-step operator for the object’s top-most hierarchical state: N

HTS

micro, if
the state represents an HTS; N

intl

micro, if the state is an interleaved CHTS; or
N

interr

micro , if the state is an interrupt CHTS.
In OMG-UML, the order in which events are removed or added to an event

pool is purposely left undefined. To model this semantics variation, we introduce
new template parameters reset Q and next Q to specify how an event pool

2 UML also has the notion of a passive object, which contains data only and which
executes only when an active object invokes one of its methods.

N
object

micro
(−→ss ,−→τ ,−→ss ′)(Q, Q′) ≡

if stable(−→ss) then

∃ −→ss r, e .

[

pick(−→ss , Q, e, Q′) ∧ −→ss r = reset(−→ss , e) ∧

(Nmicro(−→ss r,−→τ ,−→ss ′) ∨ (stable(−→ss r) ∧ −→ss r =−→ss ′))

]

else
Nmicro(−→ss ,−→τ ,−→ss ′) ∧ Q = Q′

N
multi-object

macro
((−→ss1, ...,−→ssn), I, (−→ss′

1, ...,−→ss′
n))(Q1...Qn, Q′

1...Q′
n) ≡

∃ k, −→τ , Q′′
k , Qr

1, ..., Qr
n ·





∀i . 1≤ i≤n . Qr
i = reset Q(Qi, directed events(I, i)) ∧

1≤k≤n ∧ N
object

micro
(−→ss k,−→τ ,−→ss ′

k)(Qr
k, Q′′

k) ∧

∀i . 1≤ i≤n . ((i = k → next Q(Q′′
k , directed events(−→ss ′

k.O, k), Q′
k) ∧

(i 6= k → next Q(Qr
i , directed events(−→ss ′

k.O, i), Q′
i))





Fig. 2. Multi-object and object composition

Q is updated with inputs from the environment or with events sent by other
objects, respectively; parameter pick specifies how an event is selected from an
event pool. The second column of Table 5 presents the parameter values for
OMG-UML. We use symbols +? and −?, to represent OMG-UML’s undefined
semantics for adding and removing events from an event pool. In addition, we
use macro ready ev(−→ss , Q, e) to help represent deferred events: it returns an event
e that either (1) is not deferred in any current state or (2) triggers a transition
whose source state has higher priority than the state(s) that defer e.

Multi-object composition Multi-object composition, shown in Figure 2, mod-
els the concurrent execution of n objects. It is a UML model’s top-most com-
position operator, and thus defines how input events I (e.g., user inputs) and
inter-object messages are handled. In each macro-step, (1) the inputs I are added
to the appropriate objects’ event pools, (2) some object is nondeterministically
chosen to execute a micro-step, and (3) the events generated in that micro-step
are added to the target objects’ event pools. Macro directed events filters events
by their target object, returning only the events destined for that object.

Table 5. Event-Pool Related Template-Parameter Values.
OMG-UML [19] RRT-UML [10] RH-UML [5] BP-UML [23]

pg. 546 pg. 79 pg. 25 pg. 107
pick(−→ss, Q, e, Q′) ready ev(−→ss, Q, e)∧ e = top(Q)∧ e = top(Q)∧ e = top(Q)∧

Q′ = Q −? e Q′ = pop(Q) Q′ = pop(Q) Q′ = pop(Q)
reset Q(Q, I) = Q +? I append(Q, I) append(Q, I) append(Q, I)
next Q(Q, I, Q′) Q′ = Q +? I Q′ = append(Q, I) Q′ = append(Q, I) Q′ = append(Q, I)

Key

Semantics that refine a semantic variation point in the OMG standard
Semantics that deviate from the OMG standard

ready ev(−→ss, Q, e) Select e such that deferred(e,−→ss.CS) = ∅ ∨
(rank(deferred(e, −→ss.CS)) ≤ rank(src(en trans(reset(−→ss, e),

−→
T))))

deferred(e, S) Returns the subset of the states S in which event e is deferred
X +? Y Undefined operator for adding element Y to container X
X −? Y Undefined operator for removing element Y from container X
append(Q, I) Appends the event sequence I to the end of Q, and returns the resulting queue
top(Q) Returns the front element of queue Q
pop(Q) Removes the front element from Q, and returns the resulting queue

5 Semantics of UML Tools

In this section, we present template-semantics descriptions for StateMachines
as implemented in three UML CASE tools: Rational Rose RealTime [8](RRT-
UML), Rhapsody [5, 11](RH-UML) and BridgePoint [1, 23](BP-UML). We then
evaluate how well each tool complies with UML 2.0 semantics by comparing how
well its template-parameter values match those for OMG-UML 2.0, which were
presented in the last section.

The template-parameter values for the three UML CASE tools are given in
Table 4, in columns 4, 6, and 8. The reference that we used in determining each
parameter value is given in the table entry to the right of the parameter value.

State-Related Parameters RRT-UML’s state semantics match exactly those
of OMG-UML. In RH-UML, the set of enabling states, CSa, is always equal to
the current set of states, CS. Thus, an HTS may execute multiple transitions in
a macro-step, but only the first transition can have a trigger. An HTS can even
get into an infinite loop if the states and variable values always enable a next
transition. In BP-UML, an HTS never executes more than one transition in a
macro-step, so CSa is always empty after the first transition executes.

Event-Related Parameters All three UML variants have similar event se-
mantics: an input event can trigger only the first transition of a macro-step,
and generated events are output (to the target objects’ event pools). The only
difference is that, in OMG-UML and RRT-UML, a transition may have multiple
triggers (ss.Ia ⊆ trig(τ)), whereas in RH-UML and BP-UML, a transition may
have only one trigger (trig(τ) = ss.Ia).

Variable-Related Parameters OMG-UML does not specify how variable val-
ues are updated due to transitions’ assignments. RRT-UML, RH-UML, and BP-
UML all refine OMG-UML’s semantics in the same way: variable values are
updated in the order, left to right, in which they appear in the transition label.

In RRT-UML and RH-UML, (non-choice-point) transition guards and assign-
ment expressions are always evaluated with respect to variable values from the
start of the macro-step (ss.AVa |= cond). In contrast, RH-UML does not support
dynamic choice points, so its next AVa variable values are never updated in
the middle of a macro-step. BP-UML does not support guard conditions, so its
predicate en cond is always true.

Macro-Semantics and Priority Parameters RRT-UML and RH-UML have
stable macro-semantics, to support compound transitions (in RRT-UML) or to
allow an HTS to execute multiple transitions in a macro-step (in RH-UML). In
contrast, BP-UML does not support compound transitions, and its semantics
allow an HTS to execute at most one transition per macro-step, so BP-UML
has simple macro-semantics. RRT-UML and RH-UML use the same transition
priority scheme as OMG-UML uses. BP-UML has no priority scheme.

Composition operators Neither RRT-UML nor BP-UML support orthogonal
composite states. Thus, a StateMachine in these notations maps to an HTS and
no intra-object composition is needed. RH-UML supports orthogonal composite
states, as well as join and fork pseudostates. Moreover, the order in which or-
thogonal regions execute, and thus the order in which their transitions’ actions
take effect, is nondeterministic [5]. As a result, the interleaving and interrupt
composition operators defined in Sections 2.3 apply also to RH-UML.

All three UML variants use the object and multi-object composition opera-
tors; their template-parameter values for these operators appear in columns 3-5
of Table 5. All three variants implement event pools as FIFO queues to ensure
that the order of events, as generated by a transition or as sensed by the envi-
ronment, is preserved during message passing. And they all deviate from OMG-
UML semantics by not supporting deferred events. In RRT-UML and RH-UML,
several objects may share a thread of control and an event pool for efficiency
reasons [4, 15, 21], but this has no effect on the semantics of execution.

6 Evaluation

Our template-semantics description of UML 2.0 is based on OMG documents [19],
supplemented by questions sent to the “Ask an Expert” facility on the OMG
Website. For RRT-UML, we used the Modeling Language Guide [9], our experi-
ences with Rational Rose RT [8], and e-mail correspondence with Bran Selic [21].
For RH-UML, we used conference papers [5], our experiences with Rhapsody [11],
and e-mail correspondence with David Harel [4]. For BP-UML, we used Shlaer
and Mellor’s text [23], our experiences with Nucleus Bridgepoint [1], and e-mail
correspondence with Campbell McCausland [15].

Because these sources are written in a combination of natural language, pseu-
docode, and examples, it is impossible for us to formally prove that our template-
semantics descriptions accurately represent the documented semantics. Instead,
we trace each of our template-semantics’ parameter values to statements in these
sources. We include this traceability information in Tables 4 and 5.

7 Related Work

There has been extensive work to formalize the semantics of statecharts [6, 20,
16] and to compare different semantics [22, 14]. Shankar et al. [22] describe a two-
dimensional temporal logic that could be used to describe semantic variations
of statecharts. Maggiolo-Schettini et al. [14] use structural operational seman-
tics and labeled transition systems to describe the semantics of two statechart
variants. In both cases, it could be argued that it would be somewhat harder to
use their logics to compare statecharts variants, because it would mean compar-
ing collections of free-form axioms rather than collections of specific template
parameters.

There have been several attempts at making the semantics of UML StateMa-
chines more precise [7, 12, 13, 24], usually to enable automated analysis. Fecher

et al. [3] outline 29 new unclarities in the semantics of UML 2.0 and provide in-
formal pointers as how to eliminate those ambiguities. To our knowledge, there
has not been any other attempt to formally define and compare the semantics
of different UML StateMachine variants.

Crane and Dingel [2] informally compare Rhapsody StateMachines against
the UML standard. Most of their results relate to syntax, language constructs,
and well-formedness constraints rather than the semantics of execution. In par-
ticular, little discussion is devoted to crucial aspects of the semantics, such as
orthogonal composite states, composition operators, and event pools. Also, the
differences are described using natural language, which makes an exact defini-
tion and comparison very difficult. In contrast, our work focuses on execution
semantics; we use a formalism that highlights semantics variation points; and
our work takes into consideration composition, concurrency, and event pools.

8 Conclusions

The contributions of this work are threefold. First, we add event-pool-related
template parameters to template semantics, to model message passing between
components. Second, we provide a template-semantics representation of the exe-
cution semantics of UML StateMachines, as defined by the OMG. Unlike similar
work, our approach does not result in a more precise semantics of UML, but
rather it results in a formal and concise description of UML semantics that
highlights the semantics variation points in the standard. Third, we provide
template-semantics representations for StateMachines as implemented in three
UML CASE tools, showing precisely how these tools address unspecified se-
mantics in the standard and how they deviate from specified semantics in the
standard.

One of our future goals is a more comprehensive comparison of UML StateMa-
chine variants and traditional statecharts variants, in the form of a formal version
of von der Beeck’s informal comparison of statechart variants [25]. In addition,
we are investigating the potential of automatically analyzing UML models using
tools that are semantically configured by template-parameter values.

Acknowledgments

We thank Bran Selic from IBM, David Harel from the Weizman Institute, and Camp-

bell McCausland and Stephen Mellor from Accelerated Technology for helping us to

understand the semantics details of UML StateMachines and of their respective tools.

References

1. Accelerated Technology. Bridgepoint. www.acceleratedtechnology.com/, 2005.
2. M. Crane and J. Dingel. UML vs. Classical vs. Rhapsody State machines: Not All

Models are Created Equal. In Proc. 8th Int. Conf. on Model Driven Eng. Lang.
and Sys. (MoDELS/UML 2005), Montego Bay, Jamaica, Oct. 2005.

3. H. Fecher, J. Schönborn, M. Kyas, and W. P. de Roever. 29 New Unclarities in
the Semantics of UML 2.0 State Machines. In ICFEM 2005, volume 3785, pages
52–65. Springer-Verlag, 2005.

4. D. Harel. Email disucssion. Email, July 2005.
5. D. Harel and H. Kugler. The RHAPSODY Semantics of Statecharts (or, On the

Executable Core of the UML). In Integration of Software Specification Techniques
for Appl. in Eng., volume 3147 of LNCS, pages 325–354. Springer-Verlag, 2004.

6. D. Harel, A. Pnueli, J. P. Schmidt, and R. Sherman. On the Formal Semantics of
State machines. In Logic in Comp. Sci., pages 54–64. IEEE Press, 1987.

7. Z. Hu and S. M. Shatz. Explicit Modeling of Semantics Associated with Composite
States in UML State machines. Intl. Jour. of Auto. Soft. Eng., 2005.

8. IBM Rational. Rational Rose RealTime. http://www.ibm.com/rational, 2002.
9. IBM Rational. Rational Rose RealTime - Modeling Language Guide, Version

2003.06.00. http://www.ibm.com/rational, 2002.
10. IBM Rational. Rational Rose RealTime - UML Services Library, Version

2003.06.00. http://www.ibm.com/rational, 2002.
11. ilogix, Inc. Rhapsody. http://www.ilogix.com, 2005.
12. Y. Jin, R. Esser, and J. W. Janneck. Describing the Syntax and Semantics of

UML State machines in a Heterogeneous Modelling Environment. In Proc. 2nd
Int. Conf. on Diag. Repr. and Infer. (DIAGRAMS ’02), pages 320–334, London,
UK, 2002. Springer-Verlag.

13. J. Jürjens. A UML State Machines Semantics with Message-passing. In Proc.
ACM Symp. on App. Comp.(SAC ’02), pages 1009–1013, 2002.

14. A. Maggiolo-Schettini, A. Peron, and S. Tini. A comparison of statecharts step
semantics. Theor. Comput. Sci., 290:465–498, 2003.

15. C. McCausland. Email disucssion. Email, July 2005.
16. E. Mikk, Y. Lakhnech, C. Petersohn, and M. Siegel. On Formal Semantics of

Statecharts as Supported by STATEMATE. In 2nd BCS-FACS Northern Formal
Methods Workshop. Springer-Verlag, 1997.

17. J. Niu, J. M. Atlee, and N. Day. Template Semantics for Model-Based Notations.
IEEE Trans. on Soft. Eng., 29(10):866–882, October 2003.

18. J. Niu, J. M. Atlee, and N. A. Day. Understanding and Comparing Model-Based
Specification Notations. In Proc. IEEE Intl. Req. Eng. Conf., pages 188–199, 2003.

19. OMG. Unified Modelling Language Specification: Version 2.0, Formal/05-07-04.
http://www.omg.org, 2003.

20. A. Pnueli and M. Shalev. What is a Step: On the Semantics of Statecharts. In
Proc. TACS, volume 526, pages 244–264. Springer-Verlag, 1991.

21. B. Selic. Email disucssion. Email, July 2005.
22. S. Shankar, S. Asa, V. Sipos, and X. Xu. Reasoning about Real-Time State ma-

chines in the Presence of Semantic Variations. In ASE, pages 243–252, 2005.
23. S. Shlaer and S. J. Mellor. Object Lifecycles: Modeling the World in States. Yourdon

Press, Upper Saddle River, NJ, USA, 1992.
24. A. Simons. On the Compositional Properties of UML State machine Diagrams. In

Proc. of Rigorous Object-Oriented Methods (ROOM2000), York, UK, 2000.
25. M. von der Beeck. A Comparison of State machines Variants. In Formal Techniques

in Real Time and Fault-Tolerant Systems, volume 863 of LNCS, pages 128–148.
Springer-Verlag, 1994.

	MODELS06.Copyright
	MODELS06

