Elsevier Copyright Notice

Copyright © 2012 Elsevier Inc. All rights reserved. Elsevier has partnered with Copyright Clearance
Center's RightsLink service to offer a variety of options for reusing this content. To request permission for
a type of use not listed, please contact Elsevier Global Rights Department.

Published in: Journal of Systems and Software, August 2012

“Ordering Features by Category”

Cite as:

P. Ann Zimmer, Joanne M. Atlee, “Ordering features by category,” Journal of Systems and
Software, Volume 85, Issue 8, 2012, Pages 1782-1800,

BibTex:

@article{ZIMMER20121782,

title = "Ordering features by category",
journal = "Journal of Systems and Software",
volume ="85",

number ="8",
pages = "1782 -1800",
year = "2012"}

DOI: https://doi.org/10.1016/].js5.2012.03.025

Except where otherwise noted, content on this site is licensed under a Creative
Commons Attribution-NonCommercial-NoDeratives 4.0 International (CC-BY-NC-ND
4.0) license



Ordering Features by Category

P Ann Zimmer and Joanne M Atlee

David R. Cheriton School of Computer Science, University of Waterloo,
Waterloo, Ontario N2L 3G1, Canada

Abstract. Thousands of telephony features exist and combining them creates a
multitude of feature interactions. Ordering these features is a costly process but is
necessary to prevent undesirable interactions and ensure proper system behaviour.
This paper introduces feature categorization as a means of significantly reducing
the cost of determining an ideal set of feature orderings based on a set of princi-
ples used to identify acceptable category orderings. We conclude with a case study
showing a savings af — 10155 % over traditional methods. This paper also presents
theorems that prove the resulting orderings determined by the category theory hold
inside single and multiple address zones.

1. Introduction

Modern telecommunications systems are structured to enable the rapid development of
newfeatures Eachfeature is an independent enhancement to the system that provides
some new end-user functionality. Unfortunately, seemingly unrelated features may have
hidden dependencies that cause them to interact with each other. As such, the naive addi-
tion of a new feature may disrupt the correct workings of existing features. In general, a
feature interactioroccurs whenever the presence of one feature affects the behaviour of
another feature [4]. As a classic example of an interaction among telephony features, a
CallerID feature, which displays information about the origin of an incoming call, might
use the callee’s Personal Directory feature to lookup and displayaimeof the caller,

if known, rather than his phone number. As can be seen from this example, feature in-
teractions are not necessarily bad. The problem is that many interactions are unexpected
and can result in undesired or unpredictable behaviour.

The key to ensuring interoperability among features lies in generic architectures, de-
sign rules, and protocols that constrain and control how features interact with each other.
For example, a number of approaches, such as AT&T’s Distributed Feature Composition
(DFC)’s pipe-and-filter architecture [12], precedence rules for dispatching input events
to features [28], call filters [6], and patterns [26] resolve interactions by serializing fea-
tures’ reactions to events. In each case, the system’s architecture imposes a serial order
on features’ executions, such that when multiple features are enabled by an event or a
call situation, the features respond sequentially. An important side effect of serial exe-
cution is that, as a feature executes, it may or may not leave the system in a state where
subsequent features are still enabled. Consider what happens when a user subscribes to
both Return Call and Voice Mail - Do Not Disturb. Both features react to incoming calls
to their subscriber: Voice Mail asks the caller to leave a recorded message for the sub-
scriber; whereas Return Call records the number of the incoming call, so that the sub-
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scriber can return the call at a later time. If the featuresoadered such that Voice Malil
reacts first, then the system automatically offers to reeondessage, and Return Call
does not record the number of the incoming call. If insteatiReCall is the first feature
to react, then Return Call can record the number of the inegroall, then the call is
presented to the Voice Mail feature and the caller gets thiempf leaving a voice mail
for the subscriber.

Of course, the success of these serialization-based ag@eaepends on our abil-
ity to devise a feature order such that sequential execuofidine features results in de-
sired system behaviour; and there are a large number oféeatders to consider. A set
of n features has! possible orderings, and many telephone switches have adsdif
features. Even if we consider only the problem of placingw feature into an existing
feature set, the existing set most likely induces a partiddioon features, rather than a
single serialization. Thus, ordering a new feature meaam@xng the possible place-
ments of that feature within every feature sequence thaffisastthe partial order. As a
result, the time to integrate a new feature into the systawgas the number of features
increase. This affects not only development costs but alsengial revenue streams and
market share.

This paper presents a three-step process to serializingrésa (1) each feature is
categorized based on its goals and functionality, (2) th&ufe categories are serialized,
and (3) the features within each category are serialized.r&sults of the various intra-
category serializations (from step 3) can then be conctdriagether according to the
inter-category serialization (from step 2) to produce glgifieature sequence.

The primary benefit of this approach is that it separatesasieaf resolving (via se-
rialization) expectedeature interactions from that of resolvingexpectedhteractions.
Features within the same category are related to one antttiegrrealize similar goals,
or they perform similar functionality. It is not surprisitigat intra-category features in-
teract (e.g., that two Redirect features want to reroutellaaaifferent destinations).
Moreover, because the goals and actions of such featuree ammilar, it would be diffi-
cult to determine automatically that one resolution isdrdtian another. We believe that
only a human expert can decide how to order the featuresmatlsategory.

In contrast, features that belong to different categoriesaasumed to provide or-
thogonal functionality and are expectadt to interact. We can take advantage of the
fact that feature categories have distinct goals by fortmgacorrectness criteria that ex-
pressprinciplesof proper system behaviour and feature behaviour. Theseiplés can
then be used to evaluate possible category orderings. émesswe rank serializations
of feature categories by the degrees to which they satigfyctiirectness criteria. The
evaluation and ranking is done automatically. The end tésal serialization of feature
categories that effectively provides worked-out resolui to unexpected interactions
between categories of features.

A secondary benefit of this approach is that we reduce thaathesist of serializing
features by decomposing the serialization problem intersgdgmaller problems. As long
as the number of feature categories is significantly sm#ilem the number of features,
and the features are roughly distributed among the categdhie total number of feature
orders that need to be analyzed, and the sizes of those gedgigmificantly smaller. We
show by way of a case study that large collections of telepHeatures can indeed be
classified into a small set of feature categories. Althougihexperience in categorizing
features is limited to telephony features, there is no re&sdelieve that our findings
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Figure 1. Multiple Active Calls

would not generalize to other domains where families of related features are common,
such as in banking, insurance, and web services.

This paper is an extension of [30], which introduced the notion of feature cate-
gories and the serialization of categories based on principles of proper system behaviour.
That paper also reported on a manual analysis of 11 feature categories and suggested a
feature-category ordering that best adhered to the principles. In this paper, we extend that
work by proving that feature-category ordering produces an optimal ordering, even in the
presence of address-translation features, and by automating the serialization of feature
categories. The remainder of this paper is organized as follows. Section 2 summarizes
background terminology and AT&T’s Distributed Feature Composition (DFC) architec-
ture [12], on which we base our telephony model. Section 3 introduces the telephony
case study that we use to evaluate our work. Section 4 describes the feature categories
and principles originally presented in [30], and Section 5 presents arguments for why
ordering features by categories works. In Section 6, we introduce our Prolog model for
exhaustively exploring and evaluating possible orderings of feature categories. Specifi-
cally, the Prolog program takes as input a set of feature categories and a set of principles
of correct behaviour, and it outputs a partial order of feature categories that best adheres
to the principles. The program also produces a number of other outputs (lists of interac-
tions, call trees, signal tables) that can help the analyst understand the cause of detected
interactions. Section 7 describes optimizations that reduce the number of category order-
ings that the Prolog program considers. We revisit the case study in Section 8, review
related work in Section 9, and conclude in Section 10.

2. Background and Terminology

In this section, we review the telephony model and terminology that is used throughout
the rest of the paper. We base our telephony model on AT&T’s Distributed Feature Com-
position (DFC) architecture because it supports modular feature development and be-
cause it resolves many feature interactions by serializing features’ actions. Consequently,
much of our terminology is based on publications on DFC.

A feature is some add-on functionality that enhances a user’s telephone service.
Example features include Call Waiting, Call Forwarding, Caller ID, and Voice Mail. A
feature is implemented as one or more modules. We use the terms feature and feature
module interchangeably. Each feature module is modelled as a communicating finite state
machine (CFSM) that sends and receives signals through two or more communication
ports. A signal may be any inter-feature communication, such as a message, an event, a
method invocation, and so forth.

A call path (or simply call) is a sequence of interconnected features, as shown in
Figure 1. The feature modules are connected via communication channels between their
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respective ports. An end point of a call is normallyiser communicating via dele-
phone device(although it could be a feature acting on behalf of a user)didenguish
between thecaller, the user who initiates or whose features initiate the eait] the
callee the user who receives or whose features receive the caltsldse identified by
their telephone numbers, which we calldresses An address may have a number of
feature subscriptions associated with it. We use the trscriber to refer to the user
who registers for and pays for a feature subscription.

When a call is made from one address to another, all of thertalind callee’s
subscribed features are included in the call path, regssdiéwhether the features are
invoked during the call. The modules are added to the cadll pae at a time as the call
is being set up. When all of the caller’s subscribed feathaes been successfully added
to the call path, tha@etwork routes the call through the switching system to the callee’s
address. Then the callee’s features are added one-by-+onécall path. The callee’s
telephone rings, notifying the callee of the incoming calie call becomesstablished
once the callee answers the call and a voice connectiorséxétveen the call’'s end
points. Acall attempt is an incomplete call that is in the process of being set up; it
consists of a partial sequence of feature modules. We afsetioes refer to aubcall,
which is a subsequence of modules in a call or call attémpt.

Normally, a whenever a feature is included in the call, a nevdute instance for
that feature is spawned and added to the call path. Howehwene tare a few special
multi-user features that coordinate calls between threeaye users (e.g., Call Waiting,
Three-Way Calling). These features need access to alllsipeang sent to and from the
subscriber, regardless of which call they affect. Suchufest are modelled asound
features for which there is one static instance of the feature moéthieach user. In
Figure 1,fb;3 is a bound feature that coordinates two calls: one betwelnaBal Tina,
and another between Sally and Tom. The presence of a bounildea a call changes
the traditional linear structure of the call path, as thecslitbetween the bound feature
and its subscriber, Sally, is shared by all calls involviradiys From the bound feature,
the call path branches out to each of the other users invatv8dlly’s calls.

Figure 2 shows another call in more detail. Using DFC teraigp[12,27], we say
that each call is partitioned intosource region which comprises the caller’s part of
the call (e.g., the caller's end device and features) aiaggget region, which comprises
the callee’s part of the call. Similarly, a feature is desigl asource feature(target
feature) if the feature’s functionality affects the caller’s (adls) call experience. We
use the informal termsutgoing call andincoming call to refer to a call attempt in
the context of its source region or target region, respelstiOne might think that we
could be efficient and restrict a call to just the caller'sreeufeatures and the callee’s
target features. However, an end-user can simultaneoastydaller and a callee if he
is involved in multiple calls. For example, a user Tom migfitiate a call to Alice, and
then via Call Waiting accept an incoming call from Dave. Ipigecisely because a user
may be both a caller and callee that each call compeBes the subscribed features of
all the end users.

Features that redirect and forward calls to new addressksoatie complexity of
call paths. A call may be routed through many different lanet (e.g., telephones, user

1The above terminology differs from that used in DFC paper<DCF terminology, a call or call attempt
is called ausage[12] or arequest chairf27], and the subcall from one module to the next module ieda
call [12] or arequest27].
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Figure 2. An established call, starting with an initial source address s1 and target address ¢1. The arrows be-
tween modules are annotated with the current source (above) and target (below) addresses. Feature f3 redirects
the call to a second source address s2. Feature jo redirects the call to a second target address £2.
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addresses, trunk switches, network routers, PBX devices) before a connection is estab-
lished. Each of these locations, can add features appropriate to the location. For exam-
ple, device-specific features include Speed Dialing and Redial; service-provided features
include Call Waiting, Call Forwarding, and Caller ID; and PBX features include Hunt
Group (whereby calls to a single number are distributed among a group of phone lines,
such as at call centres) and logging of call information for billing purposes.

To represent these different sets of features, we partition the source and target regions
of a call path into address zones, where each address zone has its own feature set. For
example, if the initial call request to one target address is redirected to another target
address, then there will be multiple address zones in the target region. In such a case,
the features ji, ..., j,, associated with the initial target address are included in the call
path, but only up to the feature that, like jo in Figure 2, redirects the call to a new
target address; after that, the features ky, ..., k,, associated with the new target address
are incorporated into the call path. Similarly, there will be multiple address zones in the
source region if the caller routes her call through different originating addresses - such
as routing a call from home through a work address. Such a call incorporates the features
f1, ..., fp associated with the home number only up to the feature that, like f3 in Figure 2,
redirects the call; after that, the features gy, ..., g, subscribed to by the work number are
incorporated.2 In our telephony model, we abstractly represent network/routing address
zones as singleton network modules. This decision simplifies our call model without
affecting our feature-ordering results.

Incorporating multiple address zones into a call path introduces an additional layer of
complexity because each address zone contributes its own set of features that need to be
ordered and included in the call path. Zave [27] introduces Ideal Address Translation
(IAT), which is a set of design conventions that enable features in different address spaces
to work together. IAT categorizes addresses according to how abstract the address value
is, where the most concrete addresses identify specific physical telephone devices, a more
abstract address might be a location (serviced perhaps by multiple telephone devices), an
even more abstract address might be a personal address (regardless of where the person
is or what telephone devices are nearby), and an even more abstract address might be a
role-based address (e.g., the president of a corporation, whomever that might be). IAT
places constraints on features’ ability to redirect a call: for example, a source feature
cannot redirect a call to a more concrete source address, and a target feature cannot

2If neighbouring address zones use different communication protocols, then an interface module can be
added to the call path to translate the signals as they cross between the address zones.
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redirect a call to a more abstract target address. The rigsauitall path that starts with
the most concrete source address zone, passes througle salshess zones that are
progressively more abstract, transitions to the most attstarget address zone, passes
through target address zones that are progressively mooeate, and ends with the most
concrete target address zone. This ordering of address poiogitizes the zones so that
the features closest to a subscriber have top priority dgeats sent by the subscriber,
and features closest to the network have top priority ograds received from a remote
party. Zave proves that IAT guarantees a humber of desigataperties of calls and
users, such as privacy of address information, authentifitisers, and reversibility of
calls [27].

IAT does not completely solve the problem of ordering feasuit deals with how
address zones should be ordered in a call path, but not haurésashould be ordered
within an address zone. This paper focuses on the orderifegtfres within an address
zone. In Section 5, we show not only that our orderings safisinciples of correct
feature behaviour within an address zone but that our argemvork together with IAT
to produce a satisfactory ordering of features over theenéll path.

3. Telephony Case Study

As part of this work, we study the precedence ordering ofgelaollection of telephony

features drawn from a variety of sources: the feature iotemabenchmark [5], the sec-
ond feature interaction contest [16], and from industrizdwiments, such as Nortel and
3Com reference guides to business services [1,19]. Wedemall user-based features
that would be associated with a single telephone addressdisingle subscriber), and
exclude from the case study only data-services and catecégatures. The result is a
collection of 352 user-based telephony features to be osizegl and ordered.

4. Categorizing and Prioritizing Features

In this section, we present the steps of our category-bggaach to ordering features,
drawing examples from the telephony case study. We firsudssthe classification of
features into distinct categories, according to their gaald functionality. We then iden-
tify principles for proper system behaviour. The princgége used to determine whether
one feature ordering is more acceptable than another.

4.1. Feature Categories

The first step of the process is to cluster features into oaieg)based on their goals
and essential functionality. A featurgjsalsare user-defined or service-provider-defined
objectives to be achieved by the feature. A featufergctionality is its behaviour as
manifest by its possible executions. For example, we altis¢eether in a singlR®edirect
category all features that re-route a call to another addvébout changing the intended
participants of the call.

We clustered the case study’s features into a total of 14ifeatategories, listed
in Figure 3. (As will be explained below, three entries inig 3 each represent two
distinct categories.) The largest category is X, which aorgt over Y features. Most of
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Authentication — a source (target) feature that verifies whether the cadieg) is authorized
to initiate (receive) a call from a particular source (tdygeldress.

Blocking (S/T) — a source (target) feature that prevents the completiom afuagoing (in-
coming) call if the target (source) address is found on théufe’s blocking list.

Filter — a target feature that selectively blocks or redirectsnmiog calls that are not meant
for the callee.

Set Outcome — a target feature that asserts the outcome of a call atteyripsting a signal,
usually acall-attempt-failedsignal, on behalf of the callee regardless of the calleats tall
state.

Redirect (S/T) — a source (target) feature that re-routes a call attemptdthar source (tar-
get) address without changing the intended call parti¢gpan

Delegate — a target feature that redirects an incoming call to an agetimg on the sub-
scriber’s behalf (e.g., a voice mail server or a secretary).

Redial (S/T) — a source or target feature that places a call to a previdoggied address.

Alias — a source (target) feature that allows the user to employias, such as a name or ja
Speed Dial code, to refer to a callee’s (caller's) address.

Presentation — a source or target feature that presents information @liaisplay, ringtones,
etc.) about the call to a user.

Multiplex — a source or target feature that allows the subscriber tonavied in multiple
calls simultaneously (i.e., Conference Calling).

Billing — a source or target feature that records billing informmafar a subcall between ad
jacent address zones. Alternately, Billing features, @ialect Call, may change which user
(address) is billed for a call.

Figure 3. The feature categories from the case study.

the categories are self-explanatory, although a couphlarth discussing in more detail,
such as the difference between categoBéxking and Filter. Filter features handle
misdirected or to-be-directed calls, whereas Bhecking features terminate undesired
calls. Another important distinction is thBtiter features may reveal callee information
to help the caller complete her call appropriately. For epi@yaFilter feature can notify
the caller when the person called has switched jobs, and ekndirect the caller to
either the originapersoncalled or to the new person who has taken overjtfie The
difference betweeiDelegate and Redirect features is also rather subtle. Features in
both of these categories reroute a call to a new address. &imedifference is the reason
for the rerouting: aDelegate feature reroutes the call to agentof the callee (i.e.,
voice mail, assistant), whereas tRedirect feature is trying to reach thealleeat an
alternate location. The distinction is important becadigbe call isredirectedto the
callee, then the callee will expect to have access to all ofdatures regardless of his
location; whereas if the call idelegatedto another agent, there is no assumption of
features subscribed to by the original callee. This disitimcwas identified during our
original manual serialization of the case study featur@} [3

If source and target features have similar goals and funality then we normally
combine those features in the same category. However, éinelefew categories whose
goals and behaviours depend on whether they representesmgion or target-region
features. These categories are designated in Figure 3 Isyffie"(S/T)". For example,
Source Blocking features prevent the caller from making certain outgoirits ¢a.g.,
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calls that incur long-distance charges), wherEaget Blocking features prevent certain
incoming calls from reaching the subscriber. As anothergta, the goal ofSource
Redial features is to make it easier to repeatedly call the targataevious call or call
attempt, whereas the goalTdrget Redial features is to facilitate callbacks to the callers
of unsuccessful call attempts. As a special caseRidirect category is also decom-
posed into separate source- and target-region categaéssibe thdarget Redirect
features (only) must authenticate the callee. In genAtghentication features should
always be located closest to the subscriber, so that theshésmust verify his identify
before he can access any of the rest of his features in thessldone. Whenever an
incoming call is redirected, thEarget Redirect feature is the last feature in the address
zone to be added to the call path (i.e., closest to the suesgriso it is responsible for
authenticating the callee’s access to that address zone.

Clustering is a somewhat iterative process, starting coateely with just a few
goal-based categories and splitting categories when deédmategory is typically split
when it cannot be placed into a category sequence, but ®gurags can be sequenced.
For example, Redirect Source and Redirect Target featuees wriginally together in
the same category. The category was split when it becameapphat the features
required both concrete addresses and aliasing informadgiomake the appropriate call
routing decision. Thus, the Redirect feature needs to caiter the Alias feature based
on the direction of the incoming call signal, so the categmgded to be split. Through-
out the categorization process, it is important to mainkégh cohesion among the fea-
tures in each category and loose coupling between the eliffeategories. Low coupling
between categories reduces the risk of interactions bettreecategories, while high
cohesion within each category ensures that during analysasegory can be represented
by very few abstract features.

4.1.1. Multiple-Purpose Features

It is possible for a feature to have several purposes anélilgdall into more than one
feature category. For example, Call Forwarding (CF) isgtessil to forward an incoming
call to another address either automatically or as a fath@estment. When CF forwards
a call to thesubscriber at an alternate locatio€F behaves asRedirect feature; how-
ever, when CF forwards a call to agent such as an administrative assistant, then CF
behaves as Belegate feature. We recommend that sudlultiple Purpose features be
cloned and presented as distinct features, one to perfacmpmapose. In the above ex-
ample, two CF feature clones are created: CF-Self as a hm&tibscriber feature, and
CF-Delegate as a Delegate-Call-to-Agent feature.

Alternatively, a feature that performs multiple types afétionality may be placed
in the feature category that matches the feature’s morertmmhpurpose, as long as this
placement does not violate any category-ordering reginstimposed by the feature’s
other purposes. For example, every “pay-per-use” featroeiges some end-user func-
tionality plus some billing actions. In this case, “pay-oese” features are categorized
according to their end-user functionality. This categatian works because billing is
modeled by sending call and feature charges directly toithegodatabase; the charges
are commutative and associative, and thus are not affegttrgblorder in which they are
received by the database.
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4.1.2. Special Cases

All of the feature categories discussed so far represetirfesthat would be associated
with the address (telephone number) of the subscriber antthbe modules in the same
address zone of a call. In addition, there are a few featuhexsgvclassification defies
the above categorization scheme, either because they ptenmanted within existing
features or because they introduce new special address.zone

A Disabling feature stops another feature in the address zone fromlifgfilts
purpose. For example, Cancel CallWaiting (CCW) allows thlessriber to temporarily
disable Call Waiting (CW) for the duration of a call.Bisabling feature is subscribable
and offers a distinct service, but it is most easily modellgaxtending the feature that
it disables to respond to a feature-specific disabling sigrtds extension of a feature
does not affect its categorization or its serial orderiregguse the fact that a feature can
be disabled has no effect on its purpose or its interactiatisather categories. Hence,
Disabling is not a distinct feature category.

A Remote-Control Invoking feature allows the subscriber to give the remote user
temporary access to an unsubscribed-to feature. For erathplcaller can invoke Call
Waiting Originator (CWO) to give the callee use of the feat@all Waiting (CW) for
the duration of the call. EadRemote-Control Invoking feature is implemented as two
feature modules: a Remote-Control Invoking module, whéalsied to invoke the feature,
and a Remote-Control Action module, which provides the fiomality associated with
the feature. The Remote-Control Action module resides ipegial address zone in the
remote user’s region of the call, and thus is not ordered witipect to the subscriber’s
features; we rely on Ideal Address Translation [27] to ottiés special address zone
with respect to the call’'s other address zones. The Remoier@ Invoking module is
the only part of the feature that resides in the subscrilaeitsess zone, and it poses no
serialization constraints.

A Remote-Control Override feature allows the subscriber to disable a remote
user’s feature. For example, the feature Make Set Busy @eeflSBO) can override
the reported unavailability of the callee, if the unavailiapis due to the callee’s Make
Set Busy (MSB) feature. Remote-Control Override feature can be thought of as a
combinedRemote-Control Invoking andDisabling feature, where the remote-control
command is a disabling signal and the remote action modale éxtended feature mod-
ule that responds to the disabling signal. Hence, &aimote-Control Override fea-
ture is composed of two modules: a Remote-Control Overriddute that resides in
the subscriber’s address zone and that sends a featurifiespsable signal, and an ex-
tended version of the remote-user’s feature module, whasides in the remote user’s
address zone. As with the previous categ®gmote-Control Override features pose
no serialization constraints.

4.2. Principles of Proper System Behaviour

There are certain principles of proper system behavioumtust be upheld so that the
system executes in the manner that the users expect. Thesplas reflect both system
and feature requirements: the system requirements spgloibal properties of a cor-
rectly working system, and feature requirements specibperties that the users expect
of correctly working features. Using these requirementsetaof hard and soft princi-
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Abortion: — Calls made to or from numbers that appear on the caller'sltees blocking
list should be aborted.

Authorization: — A user’s identity must be verified before the user can icterdth any of
his features. A call is not established until the users atieeauticated.

Invoicing: — The cost of each subcall from one address zone to anothkaiged to some
user.

Network: — When a call attempt is routed to a new address zone, if theznew is denoted

by analias, the alias is resolved into a netwoakldressbefore the call attempt reaches the
Network.

Figure 4. Hard principles from the case study

Accessibility: — All of the features associated with each end users’ ad@®swill be in-
cluded in every established call. Each end user expecthénditill set of features is accessi
ble to her for the duration of the call.

Failure: — Any feature that is triggered by the receipt afadl-attempt-failedsignal is ordered
with respect to other features such that it will intercepsacth failure signals before they are
propagated to the next address zone in the call path.

Logging: — Information about all successful and unsuccessful chdisigl be recorded, with
the exception of blocked or delegated calls. Blocked cakisteeated as if they never og
curred, and delegated calls are treated as if they had nexavéd the subscriber.

Personalization: — Aliases should be usable whenever they exist, so that huisens can
work as much as possible with aliases rather than networkeades. In particular, feature
that record network addresses or that initiate calls on Ibefizthe subscriber should alsp
record and use aliases, to take advantage of changes imsdigmments.

Presentation: — When a presentation feature is subscribed to, the cakeelsdevice will
present information about each and every call that reatieesrtd device, but will not presern
information about calls that are blocked, redirected, deglted before reaching the en
device.

Concretization: — Any feature that affects call routing (i.e., change diadethber, redirect to
another source region) requires a concrete address assailyaavailable alias information
relating to that address. This allows either the concretieess or the alias information to by
used to determine how the call should be routed (i.e., bihokentinued, forwarded).

n

o —~

(¢

Figure 5. Soft principles from the case study.

ples are identified that express the expected behaviour of thie besphony system,
as well as properties imposed by feature categoHasd principles express behaviour
that must always hold, whilsoft principles express properties that should hold when-
ever possible. Figures 4 and 5 describe the hard and sofiijpleés identified in our case
study from Section 3.

Principles are correctness criteria, and they can be usadhtoate potential feature-
category orderings on the basis of how well the resultingesysbehaviour adheres to
these principles. Because hard principles are requiredith b feature-category order-
ing must satisfy all hard principles to be acceptable. Saftgiples, on the other hand,
are properties to be optimized. Thus, an optimal featutegoay ordering is one that
satisfies all hard principles and violates a minimal numibeoit principles.

SHard and soft principles are referred to as constraint aitetier principles in [30] and [29].
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Recall the feature interaction example given in the papati®duction in which
the ordering of features Voice Mail and Return Call detessiwhether Return Call is
even activated. The Logging principle can be used to diatsilgbetween acceptable
and unacceptable orderings of the Delegate and TargetIRedégories: by placing the
Return Call before the Voice Mail feature the logging infation about the incoming
call is recorded.

The example in Section 1 shows of how features from the D&degyad Multiplex
categories can interact and be correctly resolved usingiantaof the Personalization
principle. Below are some other examples of how the primsigian be used to deduce
the correct ordering(s) of pairs of feature categories:

Example 4.1 Source Redirect versus Alias

A Source Redirect feature allows a caller to redirect an outgoing call through
another source address zone (e.g., to redirect a call pldiwed home through an address
at work, so that his work address is billed for the subcalhe target address). Aflias
feature allows the user to employ an alias, such as a name oda,dnstead of dialing
a full address. If a caller dials an alias and the call attengtedirected by th&ource
Redirect feature before the dialed alias is translated into an addiagtheAlias feature,
then theNetwork principle is violated because the network does not know bagé¢ the
alias to route the call. Thug\lias features must be added to the call path befdoairce
Redirect features are added.

Example 4.2 Redial versus Set Outcome

A Redial feature can be used to call the originator of the last incagnimanswered
call. ASet Outcome feature can be used to reject all incoming calls. If an incogrgall
attempt reaches th8et Outcome feature and is rejected before it reaches Redial
feature, then th®edial feature never has a chance to log the call information so tihat
subscriber can later return the call. This is a violation b&t_ogging principle. Thus,
Redial features must be added to the call path befée¢ Outcome features are added.

We have decided to only consider feature interactions tbatowithin the same re-
gion, since there are no defined set of accepted desirabéioein for most interactions
that occur between a feature in the target region and a featuhe source region of
the same call. Thus, the above principles will be appliedhiwia single call region to
determine the ideal ordering of feature categories.

Using the feature categories and the principles for prop&tes behaviour we ana-
lyze how the system works when the feature categories aidized. Our analysis gen-
erates a set of best orderings for feature categories, las nlat consider how features
should be individually ordered within each feature catggor

4.3. Category Based Orderings

The principles of proper system behaviour are used to déterifrone category ordering
is more acceptable than another. To determine the accéfytabcategory orderings, we
create a Category Representative FeatGad€gory Representative FeaturdCRF)), a
set of feature transitions rules, that represent the egddmthaviour of each category.
A CRFis designed to model the goals and functionality of ##sogiated category. We
assume that the application of a set of non-interferingfestwithin a category is rep-
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resented the category’s CRF. This assumption means thatsbbsed goals of a set of
features in a category is represented by a CRF, otherwistedteres in the category
form an interaction feature sét.

Using the principles and the CRFs, we apply the CRFs in alsgdaring and check
for principle violations. A sequence of CRFs is considemedgatimal ordering if no hard
principle violations occur and the minimum number of softipiple are violated.

5. Correctness of Ordering Categories

Our theory thus far has used principles to evaluate and rateigory orderings, applying
these principles generates an optimal ordering of categolm this section, we address
how optimal category orderings can be used to find optimalifearderings. We prove
this theory, beginning with a proof of correctness with exgyio features found in differ-
ent categories and follow-up with a proof of correctneswétspect to features found
in different address zones. As previously mentioned, we atacansider feature inter-
actions that occur between source and target features sathe call, because there are
few principles that indicate how these regions should belth respect to one another.
Due to space restrictions, we provide only sketches of ooofgr More formal proofs,
which rely on precise definitions of multiple concepts, amspnted in [29].

Theorem: Correctness of Category Prioritization

Given an optimal category orderin@,= [C; ... C,], for a set of categorig3 of sizeu,
any sequence of features that adheres to this categoryraydealso an optimal ordering
with respect to the principles used to derive

Proof sketch: Proof by contradiction
Let f be the smallest sequence of featUtgs. . . f¥], such that

e eachf} is a sequence of zero or more features from categpry C
e there exists an execution of the feature sequgrtbtat violates some principl
e there is no subsequence of featureg iwhose execution violates principle

Case 1:f contains more than one feature from the same categgry

Given that no smaller set of features violates princiBlehe violation depends on the
presence of multiple features from the same categ6ty (n the presence of features
from other categoriesWe know from Section 4.3 that the application of multiple-fea
tures within a category will either leave the category in aFB#presentative state or an
interaction been the intra-category features has beewtddtdn the first case, the ap-
plication of the features exit the sequence with the samewietr as a single feature,
however given that no smaller subsets of feature are knowausecthis interaction, this
is impossible. In the second case, the sequence of featiitfeis ¥he category do not
adhere to the expected CRFbehaviour for the category anatrandategory interaction
is detected. Since intra-category interactions are oatid scope of the theory on cat-

4We would like to explore this assumption more in future wdsicidentifying features within a category
that do not conform to the a CRF transition rule, we identifgttires at a higher chance for feature interactions.

5/f only one category is involved, then this is clearly an @atategory interaction and outside the scope of
the theory on category orderings.
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egory orderings, this interaction has no effect on whethfelature ordering is optimal
with respect to the category-based principles used to elériv

Case 2:f contains at most one feature from each categoy.in
We construct the feature sequenfefrom f, by replacing each featurg in f with
the Category Representative Feature (CRF)ffar category. Recall that a CRFmodels
the goals and essential functionality of its associateelgmaty, and that principles reflect
the expected behaviour of the feature categories. Thysyiblates some principlé
about the behaviour of categories, then its correspondiggence of CRFg;, also vi-
olates principleP. Given thatf adheres to the optimal orderidigj we know thaty is a
subsequence of the CRFsequence that was used to evaluatiegéal

Because&) is an optimal ordering, we know also thatis either violation free or it
violates a minimum number of soft principles:

Case 2a0 is violation free.
If O is violation free, then its sequence of CRFs does not vighaitgciple P, which
means that the subsequencghould also not violat®’, which leads to a contradiction.

Case 2b0 is known to violate a minimum number of soft principles, @diclg P.
If the sequence of CRFs used to evaluate ordefirdpes not violate principlé, then
the subsequengeshould also not violat®, which leads to a contradiction.

Case 2¢O is known to violate a minimum number of soft principles,udahg P.

C is an overly constrained set of feature categories. Thetial of principleP is a
known and accepted solution to resolve interacti@ssategories. Thus, although fea-
ture orderingf violates P, it is still an optimal ordering with respect to the prin@pl
used to derive. [

5.1. Correctness Across Address Zone

In the work presented thus far, we have ordered categoribgwva single address zone,
in this section, we expand our focus across address zonalisétsssed, Ideal Address
Translation (IAT) [27] is a theory used to order entire adgdreones with respect to other
address zones in the call path. IAT also imposes an orderirthefeatures in the call
path. We combine IAT and our principles of category ordetingrder features, the
results are the features in different address zones maydhetrato an optimal ordering
(according to our principles) but the ordering is accepahle to IAT orderings and
principles.

IAT principles were developed by AT&T for DFC-based telepiisystems to deter-
mine how features should behave in the presence of multgdecas zones. These IAT
principles work by considering the purpose of each address and how this purpose
should effect when a feature is implemented and how to aledefault behaviours.

Our category-based approach generates the ordering ftardsawithin a single ad-
dress zone, we combine address zones into our approachtimgtbs feature categories
inside each address zone, so that as each new address zddedst@the call path the
features subscribed to by that address zone are added ba#sel arder determined by
our feature category prioritization.

Nesting feature categories within several different assimnes can potentially in-
troduce undesirable interactions. The undesirable iotierss include the presence of
features which are out of order with respect to the categaigrings due to their pres-
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ence in different address zones or due to the presence aptaultstances of the same
feature in different address zones. Given these situgtibagjuestion arises: When are
two features subscribed to in different address zones eddewrrectly with respect to
one another?

We claim that the nested combination of feature categorgrardgs within multiple
address zones results in an acceptable ordering that ttgnesolves feature interactions
based on the combined set of IAT principles and our propstesy behaviour principles,
where |IAT principles have priority over proper-system habar principles.

Theorem: Correctness of Combined Address Zones and Category Pradidins

Given a prioritized set of feature categori€s;, and a set of address zones ordered
according to IAT principles, the resulting serial compiasitof all feature categories
within all address zones inside a DFC-based architecturecity resolves interactions
with respect to our category-based principles and IAT ppies.

Proof sketch: Proof by case analysis

The proof of this theorem is accomplished by decomposingtbef into different cases.
We need to consider each category ordering that is knownusecan interaction within
the single address zone and show that when present acroessadones the interac-
tion between the categories is acceptable. There are tadlyninany cases to consider,
however these the cases can be reduced to 4 types: optinesingyds maintained; no
proper-system behaviour principle is violated; a propestesm behaviour principle is vi-
olated and IAT design conventions indicate that orderirgpigect; and a proper-system
behaviour principle is violated and IAT design conventidasiot resolve the interaction.
A proof for each of these sub-cases will be sketched belowllXdrmal proof for this
theorem can be found in [29].

Case 1:0ptimal Ordering Maintained.

The ordering of the pair of feature categories in the difitaddress zone matches the
optimal ordering. The ordering of the feature categoriegptimal and no further analysis
is needed.

Case 2:Optimal Ordering Violated.
The ordering of the pair of feature categories in differeddrass zones does not match
the optimal ordering. The ordering is not optimal, hencéferr analysis is required.

Case 2aNo proper-system behaviour principle is violated.
Analysis does not detect any violations, hence orderingiisral.

Case 2biAT design conventions indicate that ordering is correct.

One or more of the proper-system principles are violatedvéver, this violation is
deemed acceptable due to IAT design conventions, which i@eedence over proper-
system principles. IAT design conventions state that fanfees in different address zone,
the more abstract (concrete) category has priority witpeesto incoming (outgoing)
signals in the target (source) region. Since the categ@phecedence due to the place-
ment of its address zone, it is expected to respond to thaldigfore features in other
categories have the opportunity to respond, and hencesthis acceptable violation.

Case 2clAT design conventions do not resolve the interaction.
One or more of the proper-system principles are violatedthisdviolation is not cor-
rectly resolved using the IAT design conventions. IAT dagignventions do not resolve
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all interactions that occur between different address gotieis the IAT solution was
extended to allow these special cases to be correctly edbWhe interactions that fall
into this category can be resolved using IAT design coneergblution ]

6. Generating Feature-Category Orderings Automatically

The task of serializing a set of feature categories entddntifying a category ordering
that satisfies all of the identified principles of proper systand feature behaviour. To
do a thorough job, one would evaluate all possible featategory orderings — a time-
consuming and error prone activity, if done manually. Thus,formulate this search
problem as a Prolog program. The Prolog model evaluateafliple category order-
ings, simulates all possible call scenarios, and outpetséh of orderings that satisfy all
of the principles. If no such ordering exists, then it ougpalt orderings that satisfy all
hard principles and violate the smallest number of softqgipies.

6.1. General Design Overview

Prolog, short for Programming in Logic, is a declarativegreanming language based
on predicate calculus [23]. A Prolog program comprises alztege of facts, relations,
and inference rules plus a set of queries over the databaseprbgram executes by
evaluating a query. The query is also expressed a relatiofingding a solution to the
guery means finding a set of variable values that cause thg,queen instantiated with
those values, to be a true statement about the databasééntorThe Prolog engine
uses resolution, backtracking, term rewriting, and patteatching to find an answer to
a query. If there is more than one solution to a query, therPtidog engine can be
configured to return all solutions.

We chose to model our serialization problem in Prolog besthere is a clear corre-
lation between our telephony model and the database ofdadtselations that make up
a Prolog program: our feature data can be represented agyPaats, our feature transi-
tion rules can be represented as Prolog inference rulegamgkinciples can be repre-
sented as Prolog assertions. We refer to the encoding ottmpttony model in Prolog
as theTelephony Prolog Model (TP Model). A query in our TP Model is designed to
return, for a given set of categories and principles, a fistderings of feature categories
that exhibit the fewest principle violations.

The TP Model takes as input the feature categories to beitant and the princi-
ples that define acceptable system and feature behaviairf&ature category is repre-
sented by &ategory Representative Featurd CRF) that is encoded as a set of transi-
tion rules that mimic the CRF’s behaviour of reacting to ingignals. Each principle is
expressed as an assertion over variables representingrieaicstate of a call or call at-
tempt. Whenever an assertion evaluates to false, the pomdig principle is violated,
indicating an undesired feature interaction.

The five main concepts used in simulating the execution oflattampt in the TP
Model arecall path, call segment call state, feature transition rules, andprinciple
assertions A call path, in a variation of the definition given in Section 2, is a setpe

5The extended IAT solution involves the use of a special $igeat between the address zones to override
default behaviour of the conflicting features.
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of CRFmodules, ordered according to some feature-categoigring. The TP Model
simulates communication between the CRFmodules by mapipégutput signals from
one module to the input(s) of its neighbouring modules. Hidmath includes Multiplex
CRF, then it is decomposed into sevearall segmentswhere each segment is delimited
by an end device or ®lultiplex CRF [13]. Call segments simplify the modelling when
there are sections of the call path that are shared by sessdisl as shown in Figure 1.
A call staterepresents the current execution state of one call attentptiee associated
call information in the database. One or méeature transition rules are defined for
each feature and simulate the feature’s reactions to irignals. Principle assertions
represent feature interactions, or the absence of a ddsiatute interaction, in the TP
Model. In Subsection 6.3 and 6.4, we discuss the latter twaepts in more detail.

The TP Model performs an exhaustive simulation of all pdesibature-category
orderings. A category ordering is combined with a specificafdeature data (e.g., a
redirect address, Personal Directory data, Blockingtisfprm a distinctcall scenaria
For each call scenario, all potential outcomes are gertrateere eacleall outcome
represents one possible execution path of a call. A callovaécdepends not only on
the call scenario, but also on input from the call’'s enviremin(e.g., whether the callee
answers the call). For example, the callee may either anaveail, not answer a call,
or not be available (already on the phone) when she receivéscaming call. These
different environmental situations result in the creatidrthree call outcomes, and the
TP Model explores all possibilities.

6.2. Modelling Abstractions

In this section, we identify and describe some of the date&csires used to model our
DFC-based telephony model in Prolog. The data structurswvbstore dynamic or
static data, wherestatic dataare information that persist after a call is torndown, whsere
dynamic dataare information that pertain to the current structure of lharad are re-
moved when the call is terminated.

e Call Database(CallDB) contains dynamic call-specific information logged by
CRFmodules in the call segments and call outcomes curreeilyg explored.
When a call segment (outcome) terminates, any related ralirhation is re-
moved fromCallDB. Examples of call database information include the compo-
sition of the call path, the list of CRFmodules still to be apged to the call path
(if the call path is still under construction), as well asttga-related data such as
the caller ID presented to the callee and the dialled alias.

e System DatabasgSysDB holds static database information, recorded or re-
quired by the CRFmodules and the main telephony systenpéhnsitst beyond the
life of a call. Examples of system database informationudelbilling data, the
last number dialled, and call-blocking listSysDB information is permanently
retained until explicitly removed or updated by a CRF.

e Call List (CList) is the list of all active and complete call segments thatiftre
call paths for the calls currently being explored.

e Call Stateis the current execution state of the call outcome beingaeegl It
includes the stage of the call (e.g., under constructiciabéshed, ending), the
current signal being processed, and the current state afalie environment.
Although our approach refers to the call state as if it werereceete entity, it is
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BlockS_trans1(CallState, InputSig)
% Block call if target address of call attempt is on the blocklist

1 % Check preconditions

2 CallState.stage is under construction

3 CallState is in the source region

4 Source Block is the last module added to the call path
5 InputSig =setup

6 % Preconditions satisfied; check target address

7 target ;= CallState.target

8 subscriber := CallState.source

9 blocking list ;= SysDB(subscriber, BlockS_list)
10 if targete blocking list

11 then % block the call

12 OutputPort := reverse

13 OutputSig := callBlocked

14 CallState.stage := ending

15 else% continue the call

16 OutputPort := forward

17 OutputSig := InputSig

18 endif

19 endif

Figure 6. Transition rule for Source Block CRF.

in fact a derived entity comprised of information distriedtin CallDB, SysDB
andClList accessible via the call8all Identifier (CalllD).

6.3. Feature-Transition Rules

In the TP Model, each category is represented using a CRF. Ri€RBncoded as a set
of feature-transition rules that model the essential biehaof a feature category with
respect to the signals it receives.

Information extracted from the TP Model databases aredesgainst the precon-
ditions of each transition rule to determine whether the isltriggered in the current
call state. A triggered transition rule can extract furtbetails from a database, such
as feature data values, to determine the appropriate actiohe applied by the rule.
The actions of a transition rule can modify the call statépatsignals to neighbouring
features, and update information stored in@#/DB andSysDBdatabases.

An example feature transition rule is shown in Figure 6. Haelture transition rule
is designed with a set of pre-conditions (lines 2-5): a femisi enable when all the pre-
conditions are satisfied. If the feature is enable, then teary variables are used to ex-
tract information from the database (lines 7-9) and thisrimfation is used to determine
the feature’s post-condition (lines 10-18). The post-dtionks reflect the feature actions
and requests in changes to the call state and call database.

Example 6.1 Source Blocking CRF

In this example, we consider tB®urce Blocking transition rule that executes when
the CRFis added to the call path’s source region. This tramsiexecutes only if (1) the
call path is under construction, (2) the part of the call pathder construction is the
source region, (3) the most recently added CR&a@irce Blocking, and (4) the input
signal to be processed is setup. These constraints ard listéines 1-4 of Figure 6, and
comprise the rule’s preconditions.
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Network_Principle(CallState)

% Check Network Principle
% Check preconditions
CallState.stage is linking
% Preconditions satisfied; check target address
CallState.target is not formatted as a network address
% process hard-assertion violation
hardVioDetected(CallState)

U WNBRE

Figure 7. Two principle assertions.

On lines 6-9, the rule checks ti8ystem Database (SysDB) to see if the subscriber
blocks outgoing calls to the intended target address. Ifdaléshould be blocked, then
an error message is sent back along the established call paththe stage of the call
changes to ending (lines 11-13). Otherwise, the featurabehas if it were transparent
(i.e., as if the module had no effect on the call) and simpbppgates the input signal
on to the next (future) feature in the call path (lines 15:1&)other rule adds the next
module to the call path.

6.4. Principle Assertions

Whether a feature-category ordering is deemed acceptabknds on whether the call
outcomes for all of its call scenarios satisfy the systemaqiples (see Section 4.2). In
the TP Model, principle violations are expressed as Proksgiions. If an assertion
holds in the TP Model, then a feature interaction can occlworanthe modelled feature
categories.

An example principle assertion is shown in Figure 7. Eachqgiple assertion is
designed with a set of pre-conditions (line 2) and a set of-posditions (line 4). If the
pre- and post-conditions are all satisfied, then the priadias been violated and we
capture the interaction (line 6) as either a hard or sofiatioh.

A hard violation is a Prolog assertion that when true indicates a hard pteap
violated. A hard principle expresses required or prohdditehaviour. So if the simulation
reaches a call state that violates a hard principle, thercdkegory ordering currently
being explored is unacceptable and further exploratioh@btrdering is terminated. The
explored prefix of the category ordering, which was sufficterrealize the violation, is
added to thédard-Assertion Violation List (HardVioList ).

A soft violation is a Prolog assertion that when true indicates a soft pri@dg
violated. Because a soft principle expresses desiraberdhan required properties,
the presence of a soft violation is not as severe as a hardtigioland is treated more
like a warning. If the simulation reaches a call state thatates a soft principle, the
category ordering being explored is not immediately deemwatceptable — if, in the
end, no category ordering is violation free, then orderithgs violate the least number
of soft principle violations will be the optimal orderingBhus, soft principle violations
are noted by adding the explored prefix of the category anddo theSoft-Assertion
Violation List (SoftVioList), and exploration of the call scenario continues.

Example 6.2 Network Principle: Hard Violation
The Network Principle can be violated only when a call atterepches the network
before the dialed alias is translated into a network addrédsus, the corresponding
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setup billing
auth(Tina) |
endDevice(addr#, device#)
redirectS avalil
‘redirection
NETWOSIF;pFI:eR?NCIPLE answer(device#) answer(device#)
VIOLATED answer ringTO
| no constraint violations no constraint violations
| |
Outcome 1 Outcome 2 Outcome 3
(a) Call Tree with Hard-Assertion Violation (b) Partial Call Tree

Figure 8. (a) A complete call tree that terminates after a hard-assextiolation is detected. (b) A small
portion of the end of a call attempt, in which the incomingl cabches the end device, finds it available to
accept the call, and explores both tmeswerandring-timeoutoutcomes for this call.

Prolog assertion, outlined in Figure 7, need only be checkbdnever the stage of the
simulated call is linking, meaning that the call is being ted to a new address zone
(line 2); and the property to check is that the target addiss®t formatted as a network
address (line 4). If all of the assertion’s statements auetrthen the Prolog program
reaches line 6, indicating that the principle has been vieta

6.5. Execution Model

This section briefly explores the different steps of simuotathe TP Model: selecting

the next feature transition rule to be applied, updating-tilbstate based on the applied
rule’s actions, and testing the updated call state for placviolations. The process
repeats until all possible execution paths have been egblor

1. Initialize the call state.
2. Select a unique ordering of feature categories.

(a) Identify feature transition rules whose pre-conditiane enabled.

(b) Select an enabled feature transition rule, instanpatsibility for any re-
quired but currently undetermined variations on the cathseio or call out-
come (i.e., membership in blocking list, caller availai)liand update the call
state.

(c) Test for principle violation.

(d) Continue call exploration by: 1) continuing from stepvé}h the new call
state until a principle violation is found or no unexploredble features tran-
sition rules remain. Once option 1 is exhausted, backtra¢kd most recent
instance of b) with an unexplored feature transition rule @all scenario com-
bination and continue call exploration.

3. Explore next possible ordering of feature categoriesrapdat above sub-steps.
6.6. Model Output

After simulating all of the possible call scenarios and tifging acceptable feature-
category orderings, the TP Model simulation outputs:
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1. Violation-Free Orderings (VioFreeOrder) - a list of feature orderings that are
violation free.

2. Optimal Orderings (OptimalOrders) - this list is output only ifVioFreeOrder
is empty (i.e., there are no violation-free orderings)iditsl the feature orderings
that violate no hard principles and violate the least nundfesoft principles.
These are the optimal orderings.

3. SoftVioList - a list of orderings that violate some hard principle

4. HardViolList - a list of feature orderings that violate some soft prireipl

In the aboveVioFreeOrder, or OptimalOrders, is the simulation’s recommendation
for how to order feature categories to minimize undesiraitkractions between inter-
category features.

The latter two lists, of feature orderings that violate pijres, are output for infor-
mation only. To help feature designers to better understdnda particular ordering of
feature categories violates a principle, the TP Model satioth can output at the user’s
discretion the set afall treesand correspondingignal tablesA call tree is created for
each call scenario of each call segment, and represent®fsife call outcomes that
could execute in that scenario. Figure 8(a) shows a calltterse path violates tHéet-
work principle, which is a hard-assertion. The tree begins withreceipt of thesetup
signal. The caller is authenticated and dials an alias chide, The call then passes to a
redirectS feature, which in this call scenario instantly redirects¢hll to another source
region. When the redirection occurs, a violation of Metwork principle is detected: the
dialed alias was not translated into a network address édfercall is routed to the new
call region. Figure 8(b) shows a small portion of a call tie&t thas multiple outcomes:
one for each possible callee response to an incoming call.

A signal table (not shown) can also be output for each call tree. The talsidaljs
all of the signals that are generated by the features in thegatcomes, the order in
which the signals occur, the direction that they flow amormféfatures in the call tree.

7. Optimizations

The previous section describes the TP Model simulationiaséfarches all possible call
outcomes. In this section, we introduce several optinoratthat significantly reduce the
search problem by avoiding exploration of orderings thaitam a subordering known
to result in a violation.

7.1. Optimizations For Hard Violations

A feature-category ordering that can result in a hard ppiloriolation isunacceptable
Moreover, a larger ordering is unacceptable if includestessguence of categories that
is unacceptable. Theard-Violation optimization method (HardVio) is designed to
avoid the simulation of feature-category orderings thattaim an unacceptable subse-
guence. There are two aspects of this optimization: (1) Whena hard-assertion is de-
tected (found to be true) during exploration of a categoeadng, the categories ex-
plored before the violation, which may be a prefix of the catggrdering under ex-
ploration, is rejected: this prefix is addedHardVioList and the simulation of all ac-
tive call paths ends. Simulation resumes with the next categrdering to be explored.
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softVioDetected(CallState)
% called when a soft violation is detected during simulatiéiCategoryOrdering

if CallState.SoftVioCount == CallDB.MinViolations
then % violation count exceeds minimum; ordering rejected
add CallState.callpath ®oftVioList
end simulation of CallState.ordering
else% continue simulation
inc(CallState.SoftVioCount)
continue simulation of CallState.ordering
endif

©CoO~NODWNPE

softVioOptimization(CallState)
% called when simulation of category ordering finishes

if CallState.SoftVioCount < CallDB.MinViolations
then % we have a new minimal number of violations
CallDB.MinViolations = CallState.SoftVioCount
forall entrieso € OptimalOrders
removeo from OptimalOrders
addo to SoftVioList
endforall
endif
add CallState.ordering ©ptimalOrders

O©CoO~NOUIAWNPE

Figure 9. Two SoftVio optimization routines.

(2) Before the simulation of a new category ordering, theeard) is checked to see if
it includes an unacceptable subsequence (listddardVioList ). If so, the simulation
rejects the ordering outright and instead starts explaimgther ordering.

The optimization benefits primarily from avoiding the exaition of entire feature-
category orderings. The reduction in search time dependh@number and sizes of
the prefixes reported as being unacceptable: the smallerdfig, the larger the number
of full category orderings that can be rejected without exation. There is also some
reductionin search time that comes from prematurely enti@gimulation of a category
ordering. The size of this reduction depends on what peagerf the ordering’s search
space remains unexplored when the violation is detected.

If every ordering of feature categories results in a hardation, then there are no
acceptable category orderings. In this case, the systeneisconstrained. System de-
signers must either relax one of the hard principles (i@mate a hard principle to a soft
principle) or must disallow some feature-category comtiames.

7.2. Optimizations For Soft Violations

Soft violations are not as serious as hard violations, texaoft assertions are consid-
ered to bedesirablerather tharrequired properties. As such, when a soft-assertion is
detected (found to be true), the acceptability of the categadering being explored is
diminished but not necessarily rejected. The goal of Slod-Violation optimization
method (SoftVio)is to explore only category orderings that have a chance iofylan
optimal ordering. An optimal ordering is one that exhibite minimumnumber of soft-
principle violations. In the ideal case, an optimal ordgmxhibits no violations.

The method works by keeping track of the minimum number of wolations de-
tected within any of the already-explored category ordgsitkeeping a list of the order-
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ings that have only this number of violatior@timalOrders), and keeping a list of the
orderings that exceed the minimum number of soft violatig@wftVioList). There are
three aspects of this optimization method. Figure 9 show/fiitst two aspects: (1) When-
ever a soft violation is detected during simulation, thegoam increments the count of
violations associated with the category ordering beindaeg; if the new count exceeds
the minimum number of violations (lines 1-4 of softVioDetett), then the category or-
dering is rejected: simulation of all active call paths eraisd the categories explored
(possibly a prefix of the category ordering) is adde&aodtVioList. Simulation resumes
with a new category ordering. (2) Whenever the exploratioa category ordering fin-
ishes successfully, its count of soft violations is comgadeethe current minimum num-
ber of soft violations known for any ordering. If the countsimaller, then it becomes
the new known minimum number of soft violations (lines 1-8oftVioOptimization).
OptimalOrders all have higher than the (hew) minimum number of violaticsts,its
contents are moved ®oftVioList. The category ordering just explored becomes the first
element of a nevDptimalOrders. Simulation resumes with a new category ordering.
(3) Before the simulation of a new category ordering, theedrd) is checked to see if

it includes a subsequence known to exceed the number ofistdtions (listed inSoft-
VioList); if so, the simulation rejects the ordering outright anstéad starts exploring
another ordering.

7.3. Pairwise Optimizations

Most feature interactions are interactions between pdifeaiures. Thus, we can sig-
nificantly reduce the search space by first analyzing alsp#ifeature categories; pop-
ulating HardVioList and SoftVioList with category pairs that exhibit hard- and soft-
principles violations, respectively; and then exploriatgler category orderings. The vi-
olations detected during the analysis of pairs of categane used by the HardVio and
SoftVio optimization methods to reduce the number of figkscategory orderings that
are explored. We refer to this search strategiaiswise Optimization.

Given a set ofi feature categories, the cost of performing the pairwisdyaisais
quadraticn x (n — 1) analyses of category pairs. But if a single violation is fdduring
this analysis, then the number of full category orderingedgiced by half! /2 analyses
of n-category orderings are eliminated because exactly hatfeobrderings contain the
subordering that exhibits the violation. The HardVio andt@o optimization methods
reject these orderings before their simulation even stadsh additional violation re-
duces again the number of full orderings that need to be sited) usually by half. Thus
for sets of feature categories of size> 3, the cost of the pairwise analysis is small
compared to the savings realized by avoiding the searchlediie orderings.

8. Evaluation

To evaluate how well our approach works for decomposingifeatinto categories and
to evaluate the effort of prioritizing these feature catézg) we constructed a case study
using home-based telephony features from several diffecarces. As shown in Table
1, we surveyed over 350 features taken from sources induthie feature interaction
benchmark [5], the second feature interaction contest A&l from industry sources,
such as Nortel and 3Com [1,19].
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Table 1. Total Feature Count broken down by Category for differenirges.
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2| Features 58 59 35 171 17 12 352
-}
8| Total
Features 64 62 41 199 17 12 395
Percent
Uncategorized 14% 23% 14% 32% 6% 0%
Uncategorized 8 14 5 56 1 0 84
Alias 6 3 3 13 1 1 27
Authenticate | 4 0 0 2 0 0 6
Billing 7 2 2 2 5 2 20
>| Block (S,T) 2(00,2)| 2(2,0)| 5(2,3) | 4(0,4) 2(1,1)| 1(0,1)| 16
S| Delegate 5 9 5 36 2 2 59
g Filter 2 0 0 2 0 1 5
Multiplex 7 4 4 24 2 3 44
Presentation | 6 12 1 26 1 0 46
Redial (S,T) | 72,5 |54,1)| 7(4,3)| 2(1,1) 2(1,1)| 1(1,0)| 24
Redirect (S,T)| 5(0,5) | 6(2,4)| 4(0,4) | 24(0,24)| 1(0,1)| 1(0,2) | 41
Set Outcome | 1 2 1 5 0 0 9

Of the initial 352 features, we were able to categorize 26& 84 uncategorized
features fell into three categories: emergency featuned;device features, which are
implemented in the physical end device, such as hands-fatiagi[19]; and adminis-
trative features, such as the ability to add and remove ffleafuom a user’s subscription
list. We excluded emergency features from our study becthesemust be manually
evaluated and serialized to ensure that they adhere to tlessery local and national
regulations. The end-device and administrative featunegat covered because they re-
side in their own special address zones, and this paper ceooed with the ordering of
end-user features. Our category-based approach couldedgafind suitable orderings
of the end-device and administrative features within thespective address zones; this
may require the identification of new categories and prilesifor these special address
zones.

Table 1 shows how the remaining features are clusteredufesafrom different
sources often have overlapping functionalities or defong (e.g., every source de-
scribes at least one Call Waiting Feature), although eaatuife has a different imple-
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mentation. Note that the total number of features is highan 268 because many fea-
tures have multiple goals and are thus cloned into two or rfeatires, as described in
Section 4.1.1. For example, some features that redirdicaitampts can be botRedi-
rect and Delegate features, and some features that block call attempts cdfiltee
features as well aBlocking features.

Altogether, this clustering results in 14 feature categgrirhis list of categories is
not promoted as being complete. In fact, it is not possibtad¢ate a complete list, as new
features are continuously being added to the base systeneover, determining cate-
gories is a subjective process, and there may be other atdeptays of clustering fea-
tures into categories. The effect of decomposing featuegoaies coarsely is that there
may be fewer (or no) category orderings are interaction ffae effect of decomposing
feature categories finely is reduced savings from using at@gory-based approach.

In the first case study, all possible call scenarios invatmo users were simulated.
In the second case study, the call scenarios were expandezude three users, where
after a traditional two user connection is establishddudtiplex feature (i.e., three way
calling, call waiting) is used to join a third party into theigting connection.

We compared the results of our case studies against thésre$olur manual analy-
sis [30]. Figure 10 shows both the original manual analyesssilits, the updated manual
analysis results and the partial ordering formed by mertiiegoptimal orderings from
our case studies. The updated manual analysis results waddied after discovering
the need for extra principles while implementing the TP Motlmte that the updated
manual ordering and the case study-based ordering areiwgtgrawvith only the interac-
tion between th®elegate andFilter categories not being found by the Prolog analysis.
This ordering is not found because the restriction usedamthnual ordering allows for
the fact that calls to the subscriber should only be deledayeheDelegated feature,
if the call is intended for the subscriber as determined leyHilter feature. While this
is a good reason for ordering these features, no principlereereated to satisfy this
restriction (it could be added) hence the ordering was natdo

8.1. Performance Analysis

To evaluate the TP Model, we used the 14 features categoeesified by categoriz-
ing the features found in the different sources identifiedable 1. The results in this
section discuss the optimizations resulting from runnifgModel with the following
simulations:

1. Test all category pairs in target region for a single daligation.
2. Test all category pairs in source region for a single ¢adlation.
3. Test all full-sized category orderings in target regiond single call simulation.
4. Test all full-sized category orderings in source regmref single call simulation.

We calculated the cost of our category-based prioritiratéchnique and compared
it against the cost of traditional prioritization methodsere the number of feature or-
derings evaluated is used to measure the cost. The traaliigproach to prioritizing
features is the brute force approach that involves the géinerof f! features orderings,
wheref is the number of features to be prioritized. Therefore, thditional cost to pri-
oritize 268 features is 268!. This number is too large to heeffectively in our discus-
sions; consequently, we use the size of the Nortel featwf@8p(third column of Table
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Figure 10. The top figure shows the original partial ordering identified during our manual analysis and as
presented in [30]. The middle figure shows the updated manual analysis after adjusting the ordering based on
the new principles discovered during our implementation of the Prolog model. The bottom figure shows the
partial ordering determined using the results output by our Prolog Model after running both case studies.

1) for comparison purposes, so our "full set of" features is of size 58 and the traditional
costis 58! ~ 2.3 x 1078,

This traditional ordering approach has some inherent limitations and is never fully
explored in practice. When using this traditional approach, or close variants of this ap-
proach, the system designer will stop all exploration of possible call paths once one ac-
ceptable feature ordering is found. This means that when a new feature is added to the
system, if this feature does not fit in the existing acceptable feature ordering, then the
system designer must start again with the comparison of full feature orderings. This is
a direct contrast to our method, where all successful partial category orderings are de-
termined and insertion of a new feature will usually only need comparison against other
features within its category; unless the new feature results in the creation of a new cat-
egory. When a new category is created, the comparison needs to be explored first the
pairwise level (new category against all existing categories) and then with respect to any
acceptable full partial orderings not eliminated by the pairwise analysis. Another advan-
tage of our method over the traditional approach is that it separates expected interactions
(intra-category) from unexpected interactions (cross-category) and allows the system de-
signer to focus on a small set when resolving the expected interactions, resulting in fewer
comparisons of full orderings and less work for the system designer.

In practice, the traditional method is more likely carried out as a set of pairwise fea-

ture comparisons followed by full category analysis until one acceptable full ordering is
|

found. For our analysis, this would result in comparing 58 features at a cost of W ,
n—2)!

where n is the number of features plus the additional cost to determine one acceptable
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full feature ordering. If we assume the system designerdgyland finds an acceptable
ordering quickly then the cost of the full feature orderimglysis is significantly smaller

than the pairwise analysis and we s& x 10* as our cost for the modified traditional
approach.

To compute the cost of our category approach; we determiaedkt to categorize
the features plus the cost of the pairwise analysis of theat®gories, followed by the
cost to analysis the remaining acceptable full CRFsets aatlyfithe cost of analyzing
the features within each category. For the intra-categeayure orderings, we use the
same assumptions as the modified traditional approach @ngytem designer stops
looking after the first acceptable intra-category orderafpund. In our case study, the
number of full CRF’s analyzed was reduced fragi to 399 after the pairwise analysis
eliminated many potential orderings. Thus our cost to asislg:

=pairwise CRFs+ full CRFs + cost to categorize featuresfeature orderings

12

=121/(12-2)! +399 +58 + Y _insignificant "
- 1
=1

=132 + 399+ =~ 58+ = insigni ficant
==~59%10°

This is a savings of ove30%: a significant reduction in cost. For larger feature sets
the savings would be significantly higher. The cost to explhie feature pairs in the
modified traditional approach increases dramatically wilech new feature added, but
has not affect on the cost of our categorization approacloygpas not no categories are
added.

9. Related Work

Previous work on the using priorities to resolve featureriattions has studied partial
and full priority orderings as means to resolve featureratgons. Below, we explore
various methodologies that determine the correct primiterings by considering ar-
chitectural design, run-time evaluations, design pastestc.

Nejati et al work with design patterns, in [18], is the moshisar to our approach.
Their technique similarly compares features in a DFC-basetitecture to determine
feature orderings that do not violate a set of “safety” prtips. The approach uses design
patterns to represent features, which are composed toseqrieature composition and
the results are tested for violation of safety propertiesjahl et al work formalizes the
notation that the presence of a pairwise interaction isifggmt reason to reject any
larger ordering containing the feature pair in the sametivelardering’ The notable
differences between our techniques are 1) the feature ai@iuis limited to a single
address zone, 2) only features that are “different” can b&ieted, otherwise the analysis
results are not useful 3) only a small case study of six featwas performed and 4)

"This result is proven through the existence of transpassttfe behaviour, which is also modelled by each
of the feature categories in our analysis.
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while the safety properties used to identify invalid ordgs are similar to our set of
hard-assertions, they have no method of representedss#ttans, especially if a set of
mutually-exclusive soft-assertions exists.

Tsang and Magill's technique in [25] determines featurenities dynamically by
employing a run-time feature-interaction manager. Whenavtrigger event that acti-
vates the feature’s main functionality is received, thdueainteraction manager ana-
lyzes the different feature orderings to predict/detecttivbr an interaction is about to
occur. If there exists a feature ordering that does not r@salny interactions, then this
ordering is chosen and the features are prioritized aceglgiHowever, if all feature
orderings result in an interaction, then the ordering whit fewest number of constraint
conflicts is chosen, with a static priority scheme used taltées. The notable differ-
ence between Tsang and Magill's technique and our appraach) ahe concept of fea-
ture privacy (only observable actions are used to detegtdntions, to allow combining
features from different service providers) and 2) theihtéque was only tested on fea-
ture sets of at most size four, while our category-basedcgupris capable of ordering
much larger sets.

Architectural approaches to the feature-interaction lgrotinvolve using the struc-
ture of the underlying service as a method to reduce the nuaflfeature interactions.
In some situations, such as AT&T'’s Distributed Feature Cositipn (DFC) architecture
for telephony systems [12], these architectures are degditgwork in combination with
a priority-based resolution scheme. In other architestute architectural design itself
imposes a priority scheme. By redesigning the call architecinto a call-processing
model that broke a call into different roles and subroleglmshich features are applied,
Cattrall et al. [6] separated users from end devices and algeeto avoid/correctly re-
solve interactions as roles and subroles asserting theritgrto control the call and de-
termine which features executed during the call attemptlémepresents a user, a group
of users, or, even more specifically, the life-role of a ugeg.( work role, family role,
team captain role); and a subrole represents the diswitofia call (e.g., the end device
used, a specific user within a group). This concept of rolessaibroles is closely related
to the Ideal Address Translation principles [27] that we usthis paper to combine
different address zones as the call attempt progresseggthdifferent user feature sets,
either through normal call progress or via a call rediractids another architectural ex-
ample, Zibman et al. [28] use precedence rules togetheramittgent-based architecture
to resolve interactions using priorities. This architeetdistinguishes between various
roles within the telephony system. For example, a user iara¢g from his end device:
multiple users (e.g., family, technical support groups) aacess the same end device,
and a single user may access several end devices (e.g., mme, pvork phone, cell
phone). This rule-based architecture is combined with agssing model that monitors
for feature interactions that occur as violations of feator service assumptions (e.g.,
new hardware services remove the need for existing assomsptr due to role confu-
sion. Feature interactions are detected and resolvedghrhe use of precedence rules
by determining which events or messages have priority.

In design-stage approaches to feature-interaction detgecesearchers use various
techniques to identify feature interactions and then uatufe priorities to resolve these
interactions. In Elfe et al. [10], feature priorities argatenined as part of their detec-
tion and resolution algorithm, which tests for constraiialations. Pairs of features are
tested, and when a constraint violation is found, the featudering is reversed and
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retested. If the alternate ordering does not result in atimh, this ordering is selected
and the feature pair is prioritized accordingly. When bathtéire orderings cause con-
straint violations, the decision is referred to the featlgsigner who is asked to choose
the correct ordering. Nakamure and Tsuboi [17] use a framéemavhich is a theory
that uses data structures to represent and construct kigevibout features during the
design stage, for the purposes of detecting and elimind¢iagire interactions. In this
work, each feature is expressed as a frame that contaissisédthold (or will hold) val-
ues relating to attributes (e.g., source and target addubssit that feature and call. The
modelled features are then composed, analyzed, and ex@dlwih respect to three types
of feature interactionexclusive interactions which are equivalent to shared-variable
interactions; andonnective and recursive interactionswhich are both similar to data-
modification interactions where a variable assignmentezatise execution of another
feature or modifies the expected output of an already exegdgiature, respectively.
When an interaction is found, the feature designer is preohfa eliminate the interac-
tion by choosing the most appropriate ordering and the systeres this solution as a
feature priority to be enforced.

Other examples of design-time solutions involve the usdafi&rd Transition Rule
(STR) and Supervisory Control Theory (SCT) to help priagtfeatures. Harada et al.
[11] and Kawauchi and Ohta [14] use STR in their work. Haraidal enodel features
as both a description rule and a set of implementations testribes the feature’s be-
haviour. A feature interaction (aka service interactienjétected between a pair of fea-
tures when the implementation of the feature’s behavicsulte in contradicting transi-
tions (i.e., they are both able to execute but have conftjatisults). Resolution of the
interaction is performed by the designer who can prioritiee conflicting transitions,
or use another technique to resolve the interaction. Kahiaared Ohta [14] also used
STR when they created a mechanism for three-way interactind proposed a detection
system to identify feature interactions among sets of tfeatures. The authors analyze
cases of three-way interactions where two of the three featio interact, but this inter-
action is not apparent until the third feature is added (samne functionality of the two
interacting features is blocked unless a third featuregsgmt). The features are modelled
as a set of three rules: application rules, which define teataand pre-conditions neces-
sary to trigger this feature’s functionality; precederées,) which are used to determine
the feature that is executed when multiple applicationsrake satisfied; and state change
rules, which simulate the execution of the feature. Thisraagh uses prioritization in
two ways: all feature pairs are assumed to be correctly ettieia a priority ordering,
and the precedence rules give different features prioritgmdetermining execution.

In the area of SCT, Thistle et al. [24] compose supervisagsttrer to form the be-
haviour of the system by controlling the actions of featutashis work, the authors
add a reporter map to the supervisory control theory, whith as a filter to erase event
streams that are observed by the supervisor: the erasetkoedilevent is not disabled
within the supervisor. When the supervisors are joinedréperter maps are placed be-
tween the source of events and the supervisor, which efédgtiveakens each supervi-
sor’s control of its feature, because the erased event ipassted through the reporter
map to the supervisor. Consequently, some supervisorshvelould have reacted to the
event do not notify the controller, are not considered wihencontroller makes its deci-
sion as to which supervisor will respond to the event. Thusyéporter map can impose
a priority ordering between the supervisors with respeevents. Another example pri-
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oritization in SCT is Chen et al.’s [7], which uses functidaglynamically determine a
partial ordering among supervisors to prevent blockinge @hthors consider modular
feature development and represent feature requiremefitstasstate machines, where
the supervisors for each feature are composed to form thersy#\ priority function
is associated with each individual supervisor and is userbtirol the actions of the
supervisor in case of interactions. This scheme is calledutam control with priorities.
After introducing this scheme, the authors describe fogorthms that can be used to
assign priority values to the supervisors’ priority fuocts. The first two algorithms are
for mixed priority functions that are designed to prevemtchking in live-lock free sys-
tems (i.e., the execution can always reach a stable statsgée supervisors. The last
two algorithms focus on designing the priority function feegthe dominant supervisor
priority over the other supervisor whenever a conflict oscur

10. Conclusion

Feature interactions pose a large problem in feature-richains, so much so that an
entire research community (i.e., centered around therlat®mal Conference on Fea-
ture Interactions) has evolved to address this issue [28,3,22]. In this paper, we ex-
plore methods to reduce the cost of prioritizing a set ofifiest for use in priority-based
techniques for resolving feature interactions.

The categorization of features is a critical step that mastayefully considered as it
affects the success of our category-based approach. Omcatigories are selected, the
principles for proper system behaviour are created, suattlle principles hold regard-
less of which features are active in the system. In our egpes, it is easier to identify
the principles after the categories have been determiimex; the categories give insight
into what the system and features are trying to accomplibb.gFinciples presented in
Section 4.2 represent the standard set of subscriber-beetedes.

By decomposing the prioritization problem into two phad@st ordering a set of
categories and then ordering the intra-category featwesgeduce the problem signif-
icantly, to the point where we can automatically generageptiorities for the feature
categories. We showed that the automatically generateidlpardering is nearly equiv-
alent to the partial-ordering identified by our manual asilyin fact, when generating
the results, we discovered the need for two new principleesé principles were then
added and the results of our manual analysis were updatefi¢otrthese two new prin-
ciples. Furthermore, our evaluation shows that as long asittmber of categories is
significantly smaller than the number of features to be @dgethen the cost reduction
to determine priority orderings is significant. Our casealgtimplemented using an op-
timized Prolog model, showed the cost was reduced to Iessqgga% of the traditional
cost. Given this significant reduction in the cost and thditglnf our model to accu-
rately reproduce the manually identified partial-orderimg can confidently argue that
our category-based approach was successful.
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