
Elsevier	Copyright	Notice	
Copyright © 2012 Elsevier Inc. All rights reserved. Elsevier has partnered with Copyright Clearance
Center's RightsLink service to offer a variety of options for reusing this content. To request permission for
a type of use not listed, please contact Elsevier Global Rights Department.

Published	in:	Journal	of	Systems	and	Software,	August	2012	

“Ordering Features by Category”

Cite as:

BibTex:

DOI: https://doi.org/10.1016/j.jss.2012.03.025

Except where otherwise noted, content on this site is licensed under a Creative
Commons Attribution-NonCommercial-NoDeratives 4.0 International (CC-BY-NC-ND
4.0) license

P. Ann Zimmer, Joanne M. Atlee, “Ordering features by category,” Journal of Systems and
Software, Volume 85, Issue 8, 2012, Pages 1782-1800,

@article{ZIMMER20121782,
title = "Ordering features by category",
journal = "Journal of Systems and Software",
volume = "85",
number = "8",
pages = "1782 -1800",
year = "2012"}

1

Ordering Features by Category

P Ann Zimmer and Joanne M Atlee
David R. Cheriton School of Computer Science, University of Waterloo,

Waterloo, Ontario N2L 3G1, Canada

Abstract. Thousands of telephony features exist and combining them creates a
multitude of feature interactions. Ordering these features is a costly process but is
necessary to prevent undesirable interactions and ensure proper system behaviour.
This paper introduces feature categorization as a means of significantly reducing
the cost of determining an ideal set of feature orderings based on a set of princi-
ples used to identify acceptable category orderings. We conclude with a case study
showing a savings of1− 1

1055
% over traditional methods. This paper also presents

theorems that prove the resulting orderings determined by the category theory hold
inside single and multiple address zones.

1. Introduction

Modern telecommunications systems are structured to enable the rapid development of
new features. Eachfeature is an independent enhancement to the system that provides
some new end-user functionality. Unfortunately, seemingly unrelated features may have
hidden dependencies that cause them to interact with each other. As such, the naïve addi-
tion of a new feature may disrupt the correct workings of existing features. In general, a
feature interactionoccurs whenever the presence of one feature affects the behaviour of
another feature [4]. As a classic example of an interaction among telephony features, a
CallerID feature, which displays information about the origin of an incoming call, might
use the callee’s Personal Directory feature to lookup and display thenameof the caller,
if known, rather than his phone number. As can be seen from this example, feature in-
teractions are not necessarily bad. The problem is that many interactions are unexpected
and can result in undesired or unpredictable behaviour.

The key to ensuring interoperability among features lies in generic architectures, de-
sign rules, and protocols that constrain and control how features interact with each other.
For example, a number of approaches, such as AT&T’s Distributed Feature Composition
(DFC)’s pipe-and-filter architecture [12], precedence rules for dispatching input events
to features [28], call filters [6], and patterns [26] resolve interactions by serializing fea-
tures’ reactions to events. In each case, the system’s architecture imposes a serial order
on features’ executions, such that when multiple features are enabled by an event or a
call situation, the features respond sequentially. An important side effect of serial exe-
cution is that, as a feature executes, it may or may not leave the system in a state where
subsequent features are still enabled. Consider what happens when a user subscribes to
both Return Call and Voice Mail - Do Not Disturb. Both features react to incoming calls
to their subscriber: Voice Mail asks the caller to leave a recorded message for the sub-
scriber; whereas Return Call records the number of the incoming call, so that the sub-

2 P. Ann Zimmer and Joanne M. Atlee / Ordering Features by Category

scriber can return the call at a later time. If the features are ordered such that Voice Mail
reacts first, then the system automatically offers to recorda message, and Return Call
does not record the number of the incoming call. If instead Return Call is the first feature
to react, then Return Call can record the number of the incoming call, then the call is
presented to the Voice Mail feature and the caller gets the option of leaving a voice mail
for the subscriber.

Of course, the success of these serialization-based approaches depends on our abil-
ity to devise a feature order such that sequential executionof the features results in de-
sired system behaviour; and there are a large number of feature orders to consider. A set
of n features hasn! possible orderings, and many telephone switches have hundreds of
features. Even if we consider only the problem of placing a new feature into an existing
feature set, the existing set most likely induces a partial order on features, rather than a
single serialization. Thus, ordering a new feature means examining the possible place-
ments of that feature within every feature sequence that satisfies the partial order. As a
result, the time to integrate a new feature into the system grows as the number of features
increase. This affects not only development costs but also potential revenue streams and
market share.

This paper presents a three-step process to serializing features: (1) each feature is
categorized based on its goals and functionality, (2) the feature categories are serialized,
and (3) the features within each category are serialized. The results of the various intra-
category serializations (from step 3) can then be concatenated together according to the
inter-category serialization (from step 2) to produce a single feature sequence.

The primary benefit of this approach is that it separates the task of resolving (via se-
rialization)expectedfeature interactions from that of resolvingunexpectedinteractions.
Features within the same category are related to one another: they realize similar goals,
or they perform similar functionality. It is not surprisingthat intra-category features in-
teract (e.g., that two Redirect features want to reroute a call to different destinations).
Moreover, because the goals and actions of such features areso similar, it would be diffi-
cult to determine automatically that one resolution is better than another. We believe that
only a human expert can decide how to order the features within a category.

In contrast, features that belong to different categories are assumed to provide or-
thogonal functionality and are expectednot to interact. We can take advantage of the
fact that feature categories have distinct goals by formulating correctness criteria that ex-
pressprinciplesof proper system behaviour and feature behaviour. These principles can
then be used to evaluate possible category orderings. In essence, we rank serializations
of feature categories by the degrees to which they satisfy the correctness criteria. The
evaluation and ranking is done automatically. The end result is a serialization of feature
categories that effectively provides worked-out resolutions to unexpected interactions
between categories of features.

A secondary benefit of this approach is that we reduce the overall cost of serializing
features by decomposing the serialization problem into several smaller problems. As long
as the number of feature categories is significantly smallerthan the number of features,
and the features are roughly distributed among the categories, the total number of feature
orders that need to be analyzed, and the sizes of those orders, is significantly smaller. We
show by way of a case study that large collections of telephone features can indeed be
classified into a small set of feature categories. Although our experience in categorizing
features is limited to telephony features, there is no reason to believe that our findings

4 P. Ann Zimmer and Joanne M. Atlee / Ordering Features by Category

respective ports. An end point of a call is normally auser communicating via atele-
phone device(although it could be a feature acting on behalf of a user). Wedistinguish
between thecaller, the user who initiates or whose features initiate the call,and the
callee, the user who receives or whose features receive the call. Users are identified by
their telephone numbers, which we calladdresses. An address may have a number of
feature subscriptions associated with it. We use the termsubscriber to refer to the user
who registers for and pays for a feature subscription.

When a call is made from one address to another, all of the caller’s and callee’s
subscribed features are included in the call path, regardless of whether the features are
invoked during the call. The modules are added to the call path one at a time as the call
is being set up. When all of the caller’s subscribed featureshave been successfully added
to the call path, thenetwork routes the call through the switching system to the callee’s
address. Then the callee’s features are added one-by-one into the call path. The callee’s
telephone rings, notifying the callee of the incoming call.The call becomesestablished
once the callee answers the call and a voice connection exists between the call’s end
points. A call attempt is an incomplete call that is in the process of being set up; it
consists of a partial sequence of feature modules. We also sometimes refer to asubcall,
which is a subsequence of modules in a call or call attempt.1

Normally, a whenever a feature is included in the call, a new module instance for
that feature is spawned and added to the call path. However, there are a few special
multi-user features that coordinate calls between three ormore users (e.g., Call Waiting,
Three-Way Calling). These features need access to all signals being sent to and from the
subscriber, regardless of which call they affect. Such features are modelled asbound
features, for which there is one static instance of the feature modulefor each user. In
Figure 1,fbj3 is a bound feature that coordinates two calls: one between Sally and Tina,
and another between Sally and Tom. The presence of a bound feature in a call changes
the traditional linear structure of the call path, as the subcall between the bound feature
and its subscriber, Sally, is shared by all calls involving Sally. From the bound feature,
the call path branches out to each of the other users involvedin Sally’s calls.

Figure 2 shows another call in more detail. Using DFC terminology [12,27], we say
that each call is partitioned into asource region, which comprises the caller’s part of
the call (e.g., the caller’s end device and features) and atarget region, which comprises
the callee’s part of the call. Similarly, a feature is designated asource feature(target
feature) if the feature’s functionality affects the caller’s (callee’s) call experience. We
use the informal termsoutgoing call and incoming call to refer to a call attempt in
the context of its source region or target region, respectively. One might think that we
could be efficient and restrict a call to just the caller’s source features and the callee’s
target features. However, an end-user can simultaneously be a caller and a callee if he
is involved in multiple calls. For example, a user Tom might initiate a call to Alice, and
then via Call Waiting accept an incoming call from Dave. It isprecisely because a user
may be both a caller and callee that each call comprisesall of the subscribed features of
all the end users.

Features that redirect and forward calls to new addresses add to the complexity of
call paths. A call may be routed through many different locations (e.g., telephones, user

1The above terminology differs from that used in DFC papers. In DCF terminology, a call or call attempt
is called ausage[12] or a request chain[27], and the subcall from one module to the next module is called a
call [12] or arequest[27].

6 P. Ann Zimmer and Joanne M. Atlee / Ordering Features by Category

redirect a call to a more abstract target address. The resultis a call path that starts with
the most concrete source address zone, passes through source address zones that are
progressively more abstract, transitions to the most abstract target address zone, passes
through target address zones that are progressively more concrete, and ends with the most
concrete target address zone. This ordering of address zones prioritizes the zones so that
the features closest to a subscriber have top priority over signals sent by the subscriber,
and features closest to the network have top priority over signals received from a remote
party. Zave proves that IAT guarantees a number of desirableproperties of calls and
users, such as privacy of address information, authenticity of users, and reversibility of
calls [27].

IAT does not completely solve the problem of ordering features. It deals with how
address zones should be ordered in a call path, but not how features should be ordered
within an address zone. This paper focuses on the ordering offeatures within an address
zone. In Section 5, we show not only that our orderings satisfy principles of correct
feature behaviour within an address zone but that our orderings work together with IAT
to produce a satisfactory ordering of features over the entire call path.

3. Telephony Case Study

As part of this work, we study the precedence ordering of a large collection of telephony
features drawn from a variety of sources: the feature interaction benchmark [5], the sec-
ond feature interaction contest [16], and from industrial documents, such as Nortel and
3Com reference guides to business services [1,19]. We consider all user-based features
that would be associated with a single telephone address (i.e., a single subscriber), and
exclude from the case study only data-services and call-center features. The result is a
collection of 352 user-based telephony features to be categorized and ordered.

4. Categorizing and Prioritizing Features

In this section, we present the steps of our category-based approach to ordering features,
drawing examples from the telephony case study. We first discuss the classification of
features into distinct categories, according to their goals and functionality. We then iden-
tify principles for proper system behaviour. The principles are used to determine whether
one feature ordering is more acceptable than another.

4.1. Feature Categories

The first step of the process is to cluster features into categories based on their goals
and essential functionality. A feature’sgoalsare user-defined or service-provider-defined
objectives to be achieved by the feature. A feature’sfunctionality is its behaviour as
manifest by its possible executions. For example, we cluster together in a singleRedirect
category all features that re-route a call to another address without changing the intended
participants of the call.

We clustered the case study’s features into a total of 14 feature categories, listed
in Figure 3. (As will be explained below, three entries in Figure 3 each represent two
distinct categories.) The largest category is X, which contains over Y features. Most of

P. Ann Zimmer and Joanne M. Atlee / Ordering Features by Category 7

Authentication – a source (target) feature that verifies whether the caller (callee) is authorized
to initiate (receive) a call from a particular source (target) address.

Blocking (S/T) – a source (target) feature that prevents the completion of an outgoing (in-
coming) call if the target (source) address is found on the feature’s blocking list.

Filter – a target feature that selectively blocks or redirects incoming calls that are not meant
for the callee.

Set Outcome – a target feature that asserts the outcome of a call attempt by issuing a signal,
usually acall-attempt-failedsignal, on behalf of the callee regardless of the callee’s true call
state.

Redirect (S/T) – a source (target) feature that re-routes a call attempt to another source (tar-
get) address without changing the intended call participants.

Delegate – a target feature that redirects an incoming call to an agentacting on the sub-
scriber’s behalf (e.g., a voice mail server or a secretary).

Redial (S/T) – a source or target feature that places a call to a previouslylogged address.

Alias – a source (target) feature that allows the user to employ an alias, such as a name or a
Speed Dial code, to refer to a callee’s (caller’s) address.

Presentation – a source or target feature that presents information (via call display, ringtones,
etc.) about the call to a user.

Multiplex – a source or target feature that allows the subscriber to be involved in multiple
calls simultaneously (i.e., Conference Calling).

Billing – a source or target feature that records billing information for a subcall between ad-
jacent address zones. Alternately, Billing features, likeCollect Call, may change which user
(address) is billed for a call.

Figure 3. The feature categories from the case study.

the categories are self-explanatory, although a couple areworth discussing in more detail,
such as the difference between categoriesBlocking andFilter. Filter features handle
misdirected or to-be-directed calls, whereas theBlocking features terminate undesired
calls. Another important distinction is thatFilter features may reveal callee information
to help the caller complete her call appropriately. For example, aFilter feature can notify
the caller when the person called has switched jobs, and can help direct the caller to
either the originalpersoncalled or to the new person who has taken over thejob. The
difference betweenDelegate andRedirect features is also rather subtle. Features in
both of these categories reroute a call to a new address. The main difference is the reason
for the rerouting: aDelegate feature reroutes the call to anagentof the callee (i.e.,
voice mail, assistant), whereas theRedirect feature is trying to reach thecalleeat an
alternate location. The distinction is important because if the call is redirectedto the
callee, then the callee will expect to have access to all of his features regardless of his
location; whereas if the call isdelegatedto another agent, there is no assumption of
features subscribed to by the original callee. This distinction was identified during our
original manual serialization of the case study features [30].

If source and target features have similar goals and functionality then we normally
combine those features in the same category. However, thereare a few categories whose
goals and behaviours depend on whether they represent source-region or target-region
features. These categories are designated in Figure 3 by thesuffix "(S/T)". For example,
Source Blocking features prevent the caller from making certain outgoing calls (e.g.,

8 P. Ann Zimmer and Joanne M. Atlee / Ordering Features by Category

calls that incur long-distance charges), whereasTarget Blocking features prevent certain
incoming calls from reaching the subscriber. As another example, the goal ofSource
Redial features is to make it easier to repeatedly call the target ofa previous call or call
attempt, whereas the goal ofTarget Redial features is to facilitate callbacks to the callers
of unsuccessful call attempts. As a special case, theRedirect category is also decom-
posed into separate source- and target-region categories because theTarget Redirect
features (only) must authenticate the callee. In general,Authentication features should
always be located closest to the subscriber, so that the subscriber must verify his identify
before he can access any of the rest of his features in the address zone. Whenever an
incoming call is redirected, theTarget Redirect feature is the last feature in the address
zone to be added to the call path (i.e., closest to the subscriber), so it is responsible for
authenticating the callee’s access to that address zone.

Clustering is a somewhat iterative process, starting conservatively with just a few
goal-based categories and splitting categories when needed. A category is typically split
when it cannot be placed into a category sequence, but subcategories can be sequenced.
For example, Redirect Source and Redirect Target features were originally together in
the same category. The category was split when it became apparent that the features
required both concrete addresses and aliasing informationto make the appropriate call
routing decision. Thus, the Redirect feature needs to occurafter the Alias feature based
on the direction of the incoming call signal, so the categoryneeded to be split. Through-
out the categorization process, it is important to maintainhigh cohesion among the fea-
tures in each category and loose coupling between the different categories. Low coupling
between categories reduces the risk of interactions between the categories, while high
cohesion within each category ensures that during analysisa category can be represented
by very few abstract features.

4.1.1. Multiple-Purpose Features

It is possible for a feature to have several purposes and thereby fall into more than one
feature category. For example, Call Forwarding (CF) is designed to forward an incoming
call to another address either automatically or as a failuretreatment. When CF forwards
a call to thesubscriber at an alternate location, CF behaves as aRedirect feature; how-
ever, when CF forwards a call to anagent, such as an administrative assistant, then CF
behaves as aDelegate feature. We recommend that suchMultiple Purpose features be
cloned and presented as distinct features, one to perform each purpose. In the above ex-
ample, two CF feature clones are created: CF-Self as a Find-the-Subscriber feature, and
CF-Delegate as a Delegate-Call-to-Agent feature.

Alternatively, a feature that performs multiple types of functionality may be placed
in the feature category that matches the feature’s more dominant purpose, as long as this
placement does not violate any category-ordering restrictions imposed by the feature’s
other purposes. For example, every “pay-per-use” feature provides some end-user func-
tionality plus some billing actions. In this case, “pay-per-use” features are categorized
according to their end-user functionality. This categorization works because billing is
modeled by sending call and feature charges directly to the billing database; the charges
are commutative and associative, and thus are not affected by the order in which they are
received by the database.

P. Ann Zimmer and Joanne M. Atlee / Ordering Features by Category 9

4.1.2. Special Cases

All of the feature categories discussed so far represent features that would be associated
with the address (telephone number) of the subscriber and would be modules in the same
address zone of a call. In addition, there are a few features whose classification defies
the above categorization scheme, either because they are implemented within existing
features or because they introduce new special address zones.

A Disabling feature stops another feature in the address zone from fulfilling its
purpose. For example, Cancel CallWaiting (CCW) allows the subscriber to temporarily
disable Call Waiting (CW) for the duration of a call. ADisabling feature is subscribable
and offers a distinct service, but it is most easily modelledby extending the feature that
it disables to respond to a feature-specific disabling signal. This extension of a feature
does not affect its categorization or its serial ordering, because the fact that a feature can
be disabled has no effect on its purpose or its interactions with other categories. Hence,
Disabling is not a distinct feature category.

A Remote-Control Invoking feature allows the subscriber to give the remote user
temporary access to an unsubscribed-to feature. For example, the caller can invoke Call
Waiting Originator (CWO) to give the callee use of the feature Call Waiting (CW) for
the duration of the call. EachRemote-Control Invoking feature is implemented as two
feature modules: a Remote-Control Invoking module, which is used to invoke the feature,
and a Remote-Control Action module, which provides the functionality associated with
the feature. The Remote-Control Action module resides in a special address zone in the
remote user’s region of the call, and thus is not ordered withrespect to the subscriber’s
features; we rely on Ideal Address Translation [27] to orderthis special address zone
with respect to the call’s other address zones. The Remote-Control Invoking module is
the only part of the feature that resides in the subscriber’saddress zone, and it poses no
serialization constraints.

A Remote-Control Override feature allows the subscriber to disable a remote
user’s feature. For example, the feature Make Set Busy Override (MSBO) can override
the reported unavailability of the callee, if the unavailability is due to the callee’s Make
Set Busy (MSB) feature. ARemote-Control Override feature can be thought of as a
combinedRemote-Control Invoking andDisabling feature, where the remote-control
command is a disabling signal and the remote action module isan extended feature mod-
ule that responds to the disabling signal. Hence, eachRemote-Control Override fea-
ture is composed of two modules: a Remote-Control Override module that resides in
the subscriber’s address zone and that sends a feature-specific disable signal, and an ex-
tended version of the remote-user’s feature module, which resides in the remote user’s
address zone. As with the previous category,Remote-Control Override features pose
no serialization constraints.

4.2. Principles of Proper System Behaviour

There are certain principles of proper system behaviour that must be upheld so that the
system executes in the manner that the users expect. These principles reflect both system
and feature requirements: the system requirements specifyglobal properties of a cor-
rectly working system, and feature requirements specify properties that the users expect
of correctly working features. Using these requirements, aset of hard and soft princi-

10 P. Ann Zimmer and Joanne M. Atlee / Ordering Features by Category

Abortion: – Calls made to or from numbers that appear on the caller’s or callee’s blocking
list should be aborted.

Authorization: – A user’s identity must be verified before the user can interact with any of
his features. A call is not established until the users are authenticated.

Invoicing: – The cost of each subcall from one address zone to another is charged to some
user.

Network: – When a call attempt is routed to a new address zone, if the newzone is denoted
by analias, the alias is resolved into a networkaddressbefore the call attempt reaches the
Network.

Figure 4. Hard principles from the case study

Accessibility: – All of the features associated with each end users’ address(es) will be in-
cluded in every established call. Each end user expects thather full set of features is accessi-
ble to her for the duration of the call.

Failure: – Any feature that is triggered by the receipt of acall-attempt-failedsignal is ordered
with respect to other features such that it will intercept all such failure signals before they are
propagated to the next address zone in the call path.

Logging: – Information about all successful and unsuccessful calls should be recorded, with
the exception of blocked or delegated calls. Blocked calls are treated as if they never oc-
curred, and delegated calls are treated as if they had never involved the subscriber.

Personalization: – Aliases should be usable whenever they exist, so that humanusers can
work as much as possible with aliases rather than network addresses. In particular, features
that record network addresses or that initiate calls on behalf of the subscriber should also
record and use aliases, to take advantage of changes in aliasassignments.

Presentation: – When a presentation feature is subscribed to, the callee’send device will
present information about each and every call that reaches the end device, but will not present
information about calls that are blocked, redirected, or delegated before reaching the end
device.

Concretization: – Any feature that affects call routing (i.e., change dialednumber, redirect to
another source region) requires a concrete address as well as any available alias information
relating to that address. This allows either the concrete address or the alias information to be
used to determine how the call should be routed (i.e., blocked, continued, forwarded).

Figure 5. Soft principles from the case study.

ples3 are identified that express the expected behaviour of the basic telephony system,
as well as properties imposed by feature categories.Hard principles express behaviour
that must always hold, whilesoft principles express properties that should hold when-
ever possible. Figures 4 and 5 describe the hard and soft principles identified in our case
study from Section 3.

Principles are correctness criteria, and they can be used toevaluate potential feature-
category orderings on the basis of how well the resulting system behaviour adheres to
these principles. Because hard principles are required to hold, a feature-category order-
ing must satisfy all hard principles to be acceptable. Soft principles, on the other hand,
are properties to be optimized. Thus, an optimal feature-category ordering is one that
satisfies all hard principles and violates a minimal number of soft principles.

3Hard and soft principles are referred to as constraint and criteria principles in [30] and [29].

P. Ann Zimmer and Joanne M. Atlee / Ordering Features by Category 11

Recall the feature interaction example given in the paper’sintroduction in which
the ordering of features Voice Mail and Return Call determines whether Return Call is
even activated. The Logging principle can be used to distinguish between acceptable
and unacceptable orderings of the Delegate and Target Redial categories: by placing the
Return Call before the Voice Mail feature the logging information about the incoming
call is recorded.

The example in Section 1 shows of how features from the Delegate and Multiplex
categories can interact and be correctly resolved using a variant of the Personalization
principle. Below are some other examples of how the principles can be used to deduce
the correct ordering(s) of pairs of feature categories:

Example 4.1 Source Redirect versus Alias
A Source Redirect feature allows a caller to redirect an outgoing call through

another source address zone (e.g., to redirect a call placedfrom home through an address
at work, so that his work address is billed for the subcall to the target address). AnAlias
feature allows the user to employ an alias, such as a name or a code, instead of dialing
a full address. If a caller dials an alias and the call attemptis redirected by theSource
Redirect feature before the dialed alias is translated into an address by theAlias feature,
then theNetwork principle is violated because the network does not know how to use the
alias to route the call. Thus,Alias features must be added to the call path beforeSource
Redirect features are added.

Example 4.2 Redial versus Set Outcome
A Redial feature can be used to call the originator of the last incoming unanswered

call. ASet Outcome feature can be used to reject all incoming calls. If an incoming call
attempt reaches theSet Outcome feature and is rejected before it reaches theRedial
feature, then theRedial feature never has a chance to log the call information so thatthe
subscriber can later return the call. This is a violation of theLogging principle. Thus,
Redial features must be added to the call path beforeSet Outcome features are added.

We have decided to only consider feature interactions that occur within the same re-
gion, since there are no defined set of accepted desirable behaviour for most interactions
that occur between a feature in the target region and a feature in the source region of
the same call. Thus, the above principles will be applied within a single call region to
determine the ideal ordering of feature categories.

Using the feature categories and the principles for proper system behaviour we ana-
lyze how the system works when the feature categories are serialized. Our analysis gen-
erates a set of best orderings for feature categories, but does not consider how features
should be individually ordered within each feature category.

4.3. Category Based Orderings

The principles of proper system behaviour are used to determine if one category ordering
is more acceptable than another. To determine the acceptability of category orderings, we
create a Category Representative Feature (Category Representative Feature(CRF)), a
set of feature transitions rules, that represent the expected behaviour of each category.
A CRFis designed to model the goals and functionality of its associated category. We
assume that the application of a set of non-interfering features within a category is rep-

12 P. Ann Zimmer and Joanne M. Atlee / Ordering Features by Category

resented the category’s CRF. This assumption means that theresolved goals of a set of
features in a category is represented by a CRF, otherwise thefeatures in the category
form an interaction feature set.4

Using the principles and the CRFs, we apply the CRFs in a serial ordering and check
for principle violations. A sequence of CRFs is considered an optimal ordering if no hard
principle violations occur and the minimum number of soft principle are violated.

5. Correctness of Ordering Categories

Our theory thus far has used principles to evaluate and rank category orderings, applying
these principles generates an optimal ordering of categories. In this section, we address
how optimal category orderings can be used to find optimal feature orderings. We prove
this theory, beginning with a proof of correctness with respect to features found in differ-
ent categories and follow-up with a proof of correctness with respect to features found
in different address zones. As previously mentioned, we do not consider feature inter-
actions that occur between source and target features in thesame call, because there are
few principles that indicate how these regions should behave with respect to one another.
Due to space restrictions, we provide only sketches of our proofs. More formal proofs,
which rely on precise definitions of multiple concepts, are presented in [29].

Theorem: Correctness of Category Prioritization
Given an optimal category ordering,O = [C1 . . . Cu], for a set of categoriesC of sizeu,
any sequence of features that adheres to this category ordering is also an optimal ordering
with respect to the principles used to deriveO.

Proof sketch: Proof by contradiction
Let f be the smallest sequence of features[f⋆

1
. . . f⋆

u], such that

• eachf⋆
i is a sequence of zero or more features from categoryCi ∈ C

• there exists an execution of the feature sequencef that violates some principleP
• there is no subsequence of features inf whose execution violates principleP

Case 1:f contains more than one feature from the same categoryCx.
Given that no smaller set of features violates principleP , the violation depends on the
presence of multiple features from the same category (Cx) in the presence of features
from other categories.5 We know from Section 4.3 that the application of multiple fea-
tures within a category will either leave the category in a CRFrepresentative state or an
interaction been the intra-category features has been detected. In the first case, the ap-
plication of the features exit the sequence with the same behaviour as a single feature,
however given that no smaller subsets of feature are know to cause this interaction, this
is impossible. In the second case, the sequence of features within the category do not
adhere to the expected CRFbehaviour for the category and an intra-category interaction
is detected. Since intra-category interactions are outside the scope of the theory on cat-

4We would like to explore this assumption more in future work:by identifying features within a category
that do not conform to the a CRF transition rule, we identify features at a higher chance for feature interactions.

5If only one category is involved, then this is clearly an intra-category interaction and outside the scope of
the theory on category orderings.

P. Ann Zimmer and Joanne M. Atlee / Ordering Features by Category 13

egory orderings, this interaction has no effect on whether afeature ordering is optimal
with respect to the category-based principles used to deriveO.

Case 2:f contains at most one feature from each category inC.
We construct the feature sequencefg from f , by replacing each featurefi in f with
the Category Representative Feature (CRF) forfi’s category. Recall that a CRFmodels
the goals and essential functionality of its associated category, and that principles reflect
the expected behaviour of the feature categories. Thus, iff violates some principleP
about the behaviour of categories, then its corresponding sequence of CRFs,g, also vi-
olates principleP . Given thatf adheres to the optimal orderingO, we know thatg is a
subsequence of the CRFsequence that was used to evaluate orderingO.

BecauseO is an optimal ordering, we know also thatO is either violation free or it
violates a minimum number of soft principles:

Case 2a:O is violation free.
If O is violation free, then its sequence of CRFs does not violateprinciple P , which
means that the subsequenceg should also not violateP , which leads to a contradiction.

Case 2b:O is known to violate a minimum number of soft principles, excludingP .
If the sequence of CRFs used to evaluate orderingO does not violate principleP , then
the subsequenceg should also not violateP , which leads to a contradiction.

Case 2c:O is known to violate a minimum number of soft principles, includingP .
C is an overly constrained set of feature categories. The violation of principleP is a
known and accepted solution to resolve interactionsC’s categories. Thus, although fea-
ture orderingf violatesP , it is still an optimal ordering with respect to the principles
used to deriveO. �

5.1. Correctness Across Address Zone

In the work presented thus far, we have ordered categories within a single address zone,
in this section, we expand our focus across address zones. Asdiscussed, Ideal Address
Translation (IAT) [27] is a theory used to order entire address zones with respect to other
address zones in the call path. IAT also imposes an ordering on the features in the call
path. We combine IAT and our principles of category orderingto order features, the
results are the features in different address zones may not adhere to an optimal ordering
(according to our principles) but the ordering is acceptable due to IAT orderings and
principles.

IAT principles were developed by AT&T for DFC-based telephony systems to deter-
mine how features should behave in the presence of multiple address zones. These IAT
principles work by considering the purpose of each address zone and how this purpose
should effect when a feature is implemented and how to override default behaviours.

Our category-based approach generates the ordering for features within a single ad-
dress zone, we combine address zones into our approach by nesting the feature categories
inside each address zone, so that as each new address zone is added to the call path the
features subscribed to by that address zone are added based on the order determined by
our feature category prioritization.

Nesting feature categories within several different address zones can potentially in-
troduce undesirable interactions. The undesirable interactions include the presence of
features which are out of order with respect to the category orderings due to their pres-

14 P. Ann Zimmer and Joanne M. Atlee / Ordering Features by Category

ence in different address zones or due to the presence of multiple instances of the same
feature in different address zones. Given these situations, the question arises: When are
two features subscribed to in different address zones ordered correctly with respect to
one another?

We claim that the nested combination of feature category orderings within multiple
address zones results in an acceptable ordering that correctly resolves feature interactions
based on the combined set of IAT principles and our proper-system behaviour principles,
where IAT principles have priority over proper-system behaviour principles.

Theorem: Correctness of Combined Address Zones and Category Prioritizations
Given a prioritized set of feature categories,C∗, and a set of address zones ordered
according to IAT principles, the resulting serial composition of all feature categories
within all address zones inside a DFC-based architecture correctly resolves interactions
with respect to our category-based principles and IAT principles.

Proof sketch: Proof by case analysis
The proof of this theorem is accomplished by decomposing theproof into different cases.
We need to consider each category ordering that is known to cause an interaction within
the single address zone and show that when present across address zones the interac-
tion between the categories is acceptable. There are technically many cases to consider,
however these the cases can be reduced to 4 types: optimal ordering is maintained; no
proper-system behaviour principle is violated; a proper-system behaviour principle is vi-
olated and IAT design conventions indicate that ordering iscorrect; and a proper-system
behaviour principle is violated and IAT design conventionsdo not resolve the interaction.
A proof for each of these sub-cases will be sketched below. A full formal proof for this
theorem can be found in [29].

Case 1:Optimal Ordering Maintained.
The ordering of the pair of feature categories in the different address zone matches the
optimal ordering. The ordering of the feature categories isoptimal and no further analysis
is needed.

Case 2:Optimal Ordering Violated.
The ordering of the pair of feature categories in different address zones does not match
the optimal ordering. The ordering is not optimal, hence further analysis is required.

Case 2a:No proper-system behaviour principle is violated.
Analysis does not detect any violations, hence ordering is optimal.

Case 2b:IAT design conventions indicate that ordering is correct.
One or more of the proper-system principles are violated. However, this violation is
deemed acceptable due to IAT design conventions, which haveprecedence over proper-
system principles. IAT design conventions state that for features in different address zone,
the more abstract (concrete) category has priority with respect to incoming (outgoing)
signals in the target (source) region. Since the category has precedence due to the place-
ment of its address zone, it is expected to respond to the signal before features in other
categories have the opportunity to respond, and hence this is an acceptable violation.

Case 2c:IAT design conventions do not resolve the interaction.
One or more of the proper-system principles are violated andthis violation is not cor-
rectly resolved using the IAT design conventions. IAT design conventions do not resolve

P. Ann Zimmer and Joanne M. Atlee / Ordering Features by Category 15

all interactions that occur between different address zones, thus the IAT solution was
extended to allow these special cases to be correctly resolved.6 The interactions that fall
into this category can be resolved using IAT design convention solution.�

6. Generating Feature-Category Orderings Automatically

The task of serializing a set of feature categories entails identifying a category ordering
that satisfies all of the identified principles of proper system and feature behaviour. To
do a thorough job, one would evaluate all possible feature-category orderings – a time-
consuming and error prone activity, if done manually. Thus,we formulate this search
problem as a Prolog program. The Prolog model evaluates all possible category order-
ings, simulates all possible call scenarios, and outputs the set of orderings that satisfy all
of the principles. If no such ordering exists, then it outputs all orderings that satisfy all
hard principles and violate the smallest number of soft principles.

6.1. General Design Overview

Prolog, short for Programming in Logic, is a declarative programming language based
on predicate calculus [23]. A Prolog program comprises a database of facts, relations,
and inference rules plus a set of queries over the database. The program executes by
evaluating a query. The query is also expressed a relation, so finding a solution to the
query means finding a set of variable values that cause the query, when instantiated with
those values, to be a true statement about the database’s contents. The Prolog engine
uses resolution, backtracking, term rewriting, and pattern matching to find an answer to
a query. If there is more than one solution to a query, then theProlog engine can be
configured to return all solutions.

We chose to model our serialization problem in Prolog because there is a clear corre-
lation between our telephony model and the database of factsand relations that make up
a Prolog program: our feature data can be represented as Prolog facts, our feature transi-
tion rules can be represented as Prolog inference rules, andour principles can be repre-
sented as Prolog assertions. We refer to the encoding of our telephony model in Prolog
as theTelephony Prolog Model(TP Model). A query in our TP Model is designed to
return, for a given set of categories and principles, a list of orderings of feature categories
that exhibit the fewest principle violations.

The TP Model takes as input the feature categories to be prioritized and the princi-
ples that define acceptable system and feature behaviour. Each feature category is repre-
sented by aCategory Representative Feature(CRF) that is encoded as a set of transi-
tion rules that mimic the CRF’s behaviour of reacting to input signals. Each principle is
expressed as an assertion over variables representing the current state of a call or call at-
tempt. Whenever an assertion evaluates to false, the corresponding principle is violated,
indicating an undesired feature interaction.

The five main concepts used in simulating the execution of a call attempt in the TP
Model arecall path, call segment, call state, feature transition rules, andprinciple
assertions. A call path, in a variation of the definition given in Section 2, is a sequence

6The extended IAT solution involves the use of a special signal sent between the address zones to override
default behaviour of the conflicting features.

16 P. Ann Zimmer and Joanne M. Atlee / Ordering Features by Category

of CRFmodules, ordered according to some feature-categoryordering. The TP Model
simulates communication between the CRFmodules by mappingthe output signals from
one module to the input(s) of its neighbouring modules. If a call path includes aMultiplex
CRF, then it is decomposed into severalcall segments, where each segment is delimited
by an end device or aMultiplex CRF [13]. Call segments simplify the modelling when
there are sections of the call path that are shared by severalcalls, as shown in Figure 1.
A call staterepresents the current execution state of one call attempt and the associated
call information in the database. One or morefeature transition rules are defined for
each feature and simulate the feature’s reactions to input signals.Principle assertions
represent feature interactions, or the absence of a desiredfeature interaction, in the TP
Model. In Subsection 6.3 and 6.4, we discuss the latter two concepts in more detail.

The TP Model performs an exhaustive simulation of all possible feature-category
orderings. A category ordering is combined with a specific set of feature data (e.g., a
redirect address, Personal Directory data, Blocking list)to form a distinctcall scenario.
For each call scenario, all potential outcomes are generated, where eachcall outcome
represents one possible execution path of a call. A call outcome depends not only on
the call scenario, but also on input from the call’s environment (e.g., whether the callee
answers the call). For example, the callee may either answera call, not answer a call,
or not be available (already on the phone) when she receives an incoming call. These
different environmental situations result in the creationof three call outcomes, and the
TP Model explores all possibilities.

6.2. Modelling Abstractions

In this section, we identify and describe some of the data structures used to model our
DFC-based telephony model in Prolog. The data structures below storedynamic or
staticdata, wherestatic dataare information that persist after a call is torndown, whereas
dynamic dataare information that pertain to the current structure of a call and are re-
moved when the call is terminated.

• Call Database(CallDB) contains dynamic call-specific information logged by
CRFmodules in the call segments and call outcomes currentlybeing explored.
When a call segment (outcome) terminates, any related call information is re-
moved fromCallDB. Examples of call database information include the compo-
sition of the call path, the list of CRFmodules still to be appended to the call path
(if the call path is still under construction), as well as feature-related data such as
the caller ID presented to the callee and the dialled alias.

• System Database(SysDB) holds static database information, recorded or re-
quired by the CRFmodules and the main telephony system, thatpersist beyond the
life of a call. Examples of system database information include billing data, the
last number dialled, and call-blocking lists.SysDB information is permanently
retained until explicitly removed or updated by a CRF.

• Call List (CList) is the list of all active and complete call segments that form the
call paths for the calls currently being explored.

• Call State is the current execution state of the call outcome being explored. It
includes the stage of the call (e.g., under construction, established, ending), the
current signal being processed, and the current state of thecall’s environment.
Although our approach refers to the call state as if it were a concrete entity, it is

P. Ann Zimmer and Joanne M. Atlee / Ordering Features by Category 17

BlockS_trans1(CallState, InputSig)
% Block call if target address of call attempt is on the blocking list

1 %Check preconditions
2 CallState.stage is under construction
3 CallState is in the source region
4 Source Block is the last module added to the call path
5 InputSig =setup

6 %Preconditions satisfied; check target address
7 target := CallState.target
8 subscriber := CallState.source
9 blocking list := SysDB(subscriber, BlockS_list)

10 if target∈ blocking list
11 then % block the call
12 OutputPort := reverse
13 OutputSig := callBlocked
14 CallState.stage := ending
15 else% continue the call
16 OutputPort := forward
17 OutputSig := InputSig
18 endif
19 endif

Figure 6. Transition rule for Source Block CRF.

in fact a derived entity comprised of information distributed inCallDB, SysDB,
andCList accessible via the call’sCall Identifier (CallID).

6.3. Feature-Transition Rules

In the TP Model, each category is represented using a CRF. A CRF is encoded as a set
of feature-transition rules that model the essential behaviour of a feature category with
respect to the signals it receives.

Information extracted from the TP Model databases are tested against the precon-
ditions of each transition rule to determine whether the rule is triggered in the current
call state. A triggered transition rule can extract furtherdetails from a database, such
as feature data values, to determine the appropriate actions to be applied by the rule.
The actions of a transition rule can modify the call state, output signals to neighbouring
features, and update information stored in theCallDB andSysDBdatabases.

An example feature transition rule is shown in Figure 6. Eachfeature transition rule
is designed with a set of pre-conditions (lines 2-5): a feature is enable when all the pre-
conditions are satisfied. If the feature is enable, then temporary variables are used to ex-
tract information from the database (lines 7-9) and this information is used to determine
the feature’s post-condition (lines 10-18). The post-conditions reflect the feature actions
and requests in changes to the call state and call database.

Example 6.1 Source Blocking CRF
In this example, we consider theSource Blocking transition rule that executes when

the CRFis added to the call path’s source region. This transition executes only if (1) the
call path is under construction, (2) the part of the call pathunder construction is the
source region, (3) the most recently added CRFisSource Blocking, and (4) the input
signal to be processed is setup. These constraints are listed in lines 1-4 of Figure 6, and
comprise the rule’s preconditions.

18 P. Ann Zimmer and Joanne M. Atlee / Ordering Features by Category

Network_Principle(CallState)
% Check Network Principle

1 %Check preconditions
2 CallState.stage is linking
3 %Preconditions satisfied; check target address
4 CallState.target is not formatted as a network address
5 %process hard-assertion violation
6 hardVioDetected(CallState)

Figure 7. Two principle assertions.

On lines 6-9, the rule checks theSystem Database (SysDB) to see if the subscriber
blocks outgoing calls to the intended target address. If thecall should be blocked, then
an error message is sent back along the established call pathand the stage of the call
changes to ending (lines 11-13). Otherwise, the feature behaves as if it were transparent
(i.e., as if the module had no effect on the call) and simply propagates the input signal
on to the next (future) feature in the call path (lines 15-16). Another rule adds the next
module to the call path.

6.4. Principle Assertions

Whether a feature-category ordering is deemed acceptable depends on whether the call
outcomes for all of its call scenarios satisfy the system principles (see Section 4.2). In
the TP Model, principle violations are expressed as Prolog assertions. If an assertion
holds in the TP Model, then a feature interaction can occur among the modelled feature
categories.

An example principle assertion is shown in Figure 7. Each principle assertion is
designed with a set of pre-conditions (line 2) and a set of post-conditions (line 4). If the
pre- and post-conditions are all satisfied, then the principle has been violated and we
capture the interaction (line 6) as either a hard or soft violation.

A hard violation is a Prolog assertion that when true indicates a hard principle is
violated. A hard principle expresses required or prohibited behaviour. So if the simulation
reaches a call state that violates a hard principle, then thecategory ordering currently
being explored is unacceptable and further exploration of the ordering is terminated. The
explored prefix of the category ordering, which was sufficient to realize the violation, is
added to theHard-Assertion Violation List (HardVioList).

A soft violation is a Prolog assertion that when true indicates a soft principle is
violated. Because a soft principle expresses desirable rather than required properties,
the presence of a soft violation is not as severe as a hard violation and is treated more
like a warning. If the simulation reaches a call state that violates a soft principle, the
category ordering being explored is not immediately deemedunacceptable – if, in the
end, no category ordering is violation free, then orderingsthat violate the least number
of soft principle violations will be the optimal orderings.Thus, soft principle violations
are noted by adding the explored prefix of the category ordering to theSoft-Assertion
Violation List (SoftVioList), and exploration of the call scenario continues.

Example 6.2 Network Principle: Hard Violation
The Network Principle can be violated only when a call attempt reaches the network

before the dialed alias is translated into a network address. Thus, the corresponding

P. Ann Zimmer and Joanne M. Atlee / Ordering Features by Category 19

setup
auth(Tina)

redirectS

’redirection
applied’

NETWORK PRINCIPLE
VIOLATED

Outcome 1

(a) Call Tree with Hard-Assertion Violation

billing

endDevice(addr#, device#)
avail

answer(device#)
answer

no constraint violations

Outcome 2

answer(device#)
ringTO

no constraint violations

Outcome 3

(b) Partial Call Tree

Figure 8. (a) A complete call tree that terminates after a hard-assertion violation is detected. (b) A small
portion of the end of a call attempt, in which the incoming call reaches the end device, finds it available to
accept the call, and explores both theanswerandring-timeoutoutcomes for this call.

Prolog assertion, outlined in Figure 7, need only be checkedwhenever the stage of the
simulated call is linking, meaning that the call is being routed to a new address zone
(line 2); and the property to check is that the target addressis not formatted as a network
address (line 4). If all of the assertion’s statements are true, then the Prolog program
reaches line 6, indicating that the principle has been violated.

6.5. Execution Model

This section briefly explores the different steps of simulating the TP Model: selecting
the next feature transition rule to be applied, updating thecall state based on the applied
rule’s actions, and testing the updated call state for principle violations. The process
repeats until all possible execution paths have been explored.

1. Initialize the call state.
2. Select a unique ordering of feature categories.

(a) Identify feature transition rules whose pre-conditions are enabled.
(b) Select an enabled feature transition rule, instantiatepossibility for any re-

quired but currently undetermined variations on the call scenario or call out-
come (i.e., membership in blocking list, caller availability) and update the call
state.

(c) Test for principle violation.
(d) Continue call exploration by: 1) continuing from step a)with the new call

state until a principle violation is found or no unexplored enable features tran-
sition rules remain. Once option 1 is exhausted, backtrack to the most recent
instance of b) with an unexplored feature transition rule and call scenario com-
bination and continue call exploration.

3. Explore next possible ordering of feature categories andrepeat above sub-steps.

6.6. Model Output

After simulating all of the possible call scenarios and identifying acceptable feature-
category orderings, the TP Model simulation outputs:

20 P. Ann Zimmer and Joanne M. Atlee / Ordering Features by Category

1. Violation-Free Orderings (VioFreeOrder) - a list of feature orderings that are
violation free.

2. Optimal Orderings (OptimalOrders) - this list is output only ifVioFreeOrder
is empty (i.e., there are no violation-free orderings). It lists the feature orderings
that violate no hard principles and violate the least numberof soft principles.
These are the optimal orderings.

3. SoftVioList - a list of orderings that violate some hard principle
4. HardVioList - a list of feature orderings that violate some soft principle

In the above,VioFreeOrder, or OptimalOrders , is the simulation’s recommendation
for how to order feature categories to minimize undesirableinteractions between inter-
category features.

The latter two lists, of feature orderings that violate principles, are output for infor-
mation only. To help feature designers to better understandwhy a particular ordering of
feature categories violates a principle, the TP Model simulation can output at the user’s
discretion the set ofcall treesand correspondingsignal tables. A call tree is created for
each call scenario of each call segment, and represents the possible call outcomes that
could execute in that scenario. Figure 8(a) shows a call treewhose path violates theNet-
work principle, which is a hard-assertion. The tree begins with the receipt of thesetup
signal. The caller is authenticated and dials an alias code,Tina. The call then passes to a
redirectS feature, which in this call scenario instantly redirects the call to another source
region. When the redirection occurs, a violation of theNetwork principle is detected: the
dialed alias was not translated into a network address before the call is routed to the new
call region. Figure 8(b) shows a small portion of a call tree that has multiple outcomes:
one for each possible callee response to an incoming call.

A signal table(not shown) can also be output for each call tree. The table displays
all of the signals that are generated by the features in the call outcomes, the order in
which the signals occur, the direction that they flow among the features in the call tree.

7. Optimizations

The previous section describes the TP Model simulation as ifit searches all possible call
outcomes. In this section, we introduce several optimizations that significantly reduce the
search problem by avoiding exploration of orderings that contain a subordering known
to result in a violation.

7.1. Optimizations For Hard Violations

A feature-category ordering that can result in a hard principle violation isunacceptable.
Moreover, a larger ordering is unacceptable if includes a subsequence of categories that
is unacceptable. TheHard-Violation optimization method (HardVio) is designed to
avoid the simulation of feature-category orderings that contain an unacceptable subse-
quence. There are two aspects of this optimization: (1) Whenever a hard-assertion is de-
tected (found to be true) during exploration of a category ordering, the categories ex-
plored before the violation, which may be a prefix of the category ordering under ex-
ploration, is rejected: this prefix is added toHardVioList and the simulation of all ac-
tive call paths ends. Simulation resumes with the next category ordering to be explored.

P. Ann Zimmer and Joanne M. Atlee / Ordering Features by Category 21

softVioDetected(CallState)
% called when a soft violation is detected during simulation of CategoryOrdering

1 if CallState.SoftVioCount == CallDB.MinViolations
2 then % violation count exceeds minimum; ordering rejected
3 add CallState.callpath toSoftVioList
4 end simulation of CallState.ordering
5 else% continue simulation
7 inc(CallState.SoftVioCount)
8 continue simulation of CallState.ordering
9 endif

softVioOptimization(CallState)
% called when simulation of category ordering finishes

1 if CallState.SoftVioCount < CallDB.MinViolations
2 then % we have a new minimal number of violations
3 CallDB.MinViolations = CallState.SoftVioCount
4 forall entrieso ∈ OptimalOrders
5 removeo from OptimalOrders
6 addo to SoftVioList
7 endforall
8 endif
9 add CallState.ordering toOptimalOrders

Figure 9. Two SoftVio optimization routines.

(2) Before the simulation of a new category ordering, the ordering is checked to see if
it includes an unacceptable subsequence (listed inHardVioList). If so, the simulation
rejects the ordering outright and instead starts exploringanother ordering.

The optimization benefits primarily from avoiding the exploration of entire feature-
category orderings. The reduction in search time depends onthe number and sizes of
the prefixes reported as being unacceptable: the smaller theprefix, the larger the number
of full category orderings that can be rejected without examination. There is also some
reduction in search time that comes from prematurely endingthe simulation of a category
ordering. The size of this reduction depends on what percentage of the ordering’s search
space remains unexplored when the violation is detected.

If every ordering of feature categories results in a hard violation, then there are no
acceptable category orderings. In this case, the system is over constrained. System de-
signers must either relax one of the hard principles (i.e., demote a hard principle to a soft
principle) or must disallow some feature-category combinations.

7.2. Optimizations For Soft Violations

Soft violations are not as serious as hard violations, because soft assertions are consid-
ered to bedesirablerather thanrequired properties. As such, when a soft-assertion is
detected (found to be true), the acceptability of the category ordering being explored is
diminished but not necessarily rejected. The goal of theSoft-Violation optimization
method (SoftVio) is to explore only category orderings that have a chance of being an
optimal ordering. An optimal ordering is one that exhibits theminimumnumber of soft-
principle violations. In the ideal case, an optimal ordering exhibits no violations.

The method works by keeping track of the minimum number of soft violations de-
tected within any of the already-explored category orderings, keeping a list of the order-

22 P. Ann Zimmer and Joanne M. Atlee / Ordering Features by Category

ings that have only this number of violations (OptimalOrders), and keeping a list of the
orderings that exceed the minimum number of soft violations(SoftVioList). There are
three aspects of this optimization method. Figure 9 shows the first two aspects: (1) When-
ever a soft violation is detected during simulation, the program increments the count of
violations associated with the category ordering being explored; if the new count exceeds
the minimum number of violations (lines 1-4 of softVioDetected), then the category or-
dering is rejected: simulation of all active call paths ends, and the categories explored
(possibly a prefix of the category ordering) is added toSoftVioList . Simulation resumes
with a new category ordering. (2) Whenever the exploration of a category ordering fin-
ishes successfully, its count of soft violations is compared to the current minimum num-
ber of soft violations known for any ordering. If the count issmaller, then it becomes
the new known minimum number of soft violations (lines 1-8 ofsoftVioOptimization).
OptimalOrders all have higher than the (new) minimum number of violations,so its
contents are moved toSoftVioList . The category ordering just explored becomes the first
element of a newOptimalOrders . Simulation resumes with a new category ordering.
(3) Before the simulation of a new category ordering, the ordering is checked to see if
it includes a subsequence known to exceed the number of soft violations (listed inSoft-
VioList); if so, the simulation rejects the ordering outright and instead starts exploring
another ordering.

7.3. Pairwise Optimizations

Most feature interactions are interactions between pairs of features. Thus, we can sig-
nificantly reduce the search space by first analyzing all pairs of feature categories; pop-
ulating HardVioList andSoftVioList with category pairs that exhibit hard- and soft-
principles violations, respectively; and then exploring larger category orderings. The vi-
olations detected during the analysis of pairs of categories are used by the HardVio and
SoftVio optimization methods to reduce the number of full-size category orderings that
are explored. We refer to this search strategy asPairwise Optimization.

Given a set ofn feature categories, the cost of performing the pairwise analysis is
quadratic:n∗ (n−1) analyses of category pairs. But if a single violation is found during
this analysis, then the number of full category orderings isreduced by halfn!/2 analyses
of n-category orderings are eliminated because exactly half ofthe orderings contain the
subordering that exhibits the violation. The HardVio and SoftVio optimization methods
reject these orderings before their simulation even starts. Each additional violation re-
duces again the number of full orderings that need to be simulated, usually by half. Thus
for sets of feature categories of sizen > 3, the cost of the pairwise analysis is small
compared to the savings realized by avoiding the search of full-size orderings.

8. Evaluation

To evaluate how well our approach works for decomposing features into categories and
to evaluate the effort of prioritizing these feature categories, we constructed a case study
using home-based telephony features from several different sources. As shown in Table
1, we surveyed over 350 features taken from sources including the feature interaction
benchmark [5], the second feature interaction contest [16], and from industry sources,
such as Nortel and 3Com [1,19].

P. Ann Zimmer and Joanne M. Atlee / Ordering Features by Category 23

Table 1. Total Feature Count broken down by Category for different Sources.

Source

N
o

rt
el

[1
9]

3
C

o
m

[1
]

C
en

tr
ex

[2
0]

C
en

tr
ex

P
lu

s
[2

1]

B
el

lc
o

re
[5

]

F
IW

C
o

n
te

st
[1

6]

Total

C
o

u
n

t

Original
Features 58 59 35 171 17 12 352

Total
Features 64 62 41 199 17 12 395

Percent
Uncategorized 14% 23% 14% 32% 6% 0%

C
at

eg
o

ry

Uncategorized 8 14 5 56 1 0 84

Alias 6 3 3 13 1 1 27

Authenticate 4 0 0 2 0 0 6

Billing 7 2 2 2 5 2 20

Block (S,T) 2 (0,2) 2 (2,0) 5 (2,3) 4 (0,4) 2 (1,1) 1 (0,1) 16

Delegate 5 9 5 36 2 2 59

Filter 2 0 0 2 0 1 5

Multiplex 7 4 4 24 2 3 44

Presentation 6 12 1 26 1 0 46

Redial (S,T) 7 (2,5) 5 (4,1) 7 (4,3) 2 (1,1) 2 (1,1) 1 (1,0) 24

Redirect (S,T) 5 (0,5) 6 (2,4) 4 (0,4) 24 (0,24) 1 (0,1) 1 (0,1) 41

Set Outcome 1 2 1 5 0 0 9

Of the initial 352 features, we were able to categorize 268. The 84 uncategorized
features fell into three categories: emergency features; end-device features, which are
implemented in the physical end device, such as hands-free dialing [19]; and adminis-
trative features, such as the ability to add and remove features from a user’s subscription
list. We excluded emergency features from our study becausethey must be manually
evaluated and serialized to ensure that they adhere to the necessary local and national
regulations. The end-device and administrative features are not covered because they re-
side in their own special address zones, and this paper is concerned with the ordering of
end-user features. Our category-based approach could be used to find suitable orderings
of the end-device and administrative features within theirrespective address zones; this
may require the identification of new categories and principles for these special address
zones.

Table 1 shows how the remaining features are clustered. Features from different
sources often have overlapping functionalities or descriptions (e.g., every source de-
scribes at least one Call Waiting Feature), although each feature has a different imple-

24 P. Ann Zimmer and Joanne M. Atlee / Ordering Features by Category

mentation. Note that the total number of features is higher than 268 because many fea-
tures have multiple goals and are thus cloned into two or morefeatures, as described in
Section 4.1.1. For example, some features that redirect call attempts can be bothRedi-
rect andDelegate features, and some features that block call attempts can beFilter
features as well asBlocking features.

Altogether, this clustering results in 14 feature categories. This list of categories is
not promoted as being complete. In fact, it is not possible tocreate a complete list, as new
features are continuously being added to the base system. Moreover, determining cate-
gories is a subjective process, and there may be other acceptable ways of clustering fea-
tures into categories. The effect of decomposing feature categories coarsely is that there
may be fewer (or no) category orderings are interaction free. The effect of decomposing
feature categories finely is reduced savings from using our category-based approach.

In the first case study, all possible call scenarios involving two users were simulated.
In the second case study, the call scenarios were expanded toinclude three users, where
after a traditional two user connection is established, aMultiplex feature (i.e., three way
calling, call waiting) is used to join a third party into the existing connection.

We compared the results of our case studies against the results of our manual analy-
sis [30]. Figure 10 shows both the original manual analysis results, the updated manual
analysis results and the partial ordering formed by mergingthe optimal orderings from
our case studies. The updated manual analysis results were modified after discovering
the need for extra principles while implementing the TP Model. Note that the updated
manual ordering and the case study-based ordering are very similar with only the interac-
tion between theDelegate andFilter categories not being found by the Prolog analysis.
This ordering is not found because the restriction used in the manual ordering allows for
the fact that calls to the subscriber should only be delegated by theDelegated feature,
if the call is intended for the subscriber as determined by the Filter feature. While this
is a good reason for ordering these features, no principle was recreated to satisfy this
restriction (it could be added) hence the ordering was not found.

8.1. Performance Analysis

To evaluate the TP Model, we used the 14 features categories identified by categoriz-
ing the features found in the different sources identified inTable 1. The results in this
section discuss the optimizations resulting from running TP Model with the following
simulations:

1. Test all category pairs in target region for a single call simulation.
2. Test all category pairs in source region for a single call simulation.
3. Test all full-sized category orderings in target region for a single call simulation.
4. Test all full-sized category orderings in source region for a single call simulation.

We calculated the cost of our category-based prioritization technique and compared
it against the cost of traditional prioritization methods,where the number of feature or-
derings evaluated is used to measure the cost. The traditional approach to prioritizing
features is the brute force approach that involves the generation off ! features orderings,
wheref is the number of features to be prioritized. Therefore, the traditional cost to pri-
oritize 268 features is 268!. This number is too large to be used effectively in our discus-
sions; consequently, we use the size of the Nortel feature set [19] (third column of Table

26 P. Ann Zimmer and Joanne M. Atlee / Ordering Features by Category

full feature ordering. If we assume the system designer is lucky and finds an acceptable
ordering quickly then the cost of the full feature ordering analysis is significantly smaller
than the pairwise analysis and we use3.3 ∗ 104 as our cost for the modified traditional
approach.

To compute the cost of our category approach; we determine the cost to categorize
the features plus the cost of the pairwise analysis of the 12 categories, followed by the
cost to analysis the remaining acceptable full CRFsets and finally the cost of analyzing
the features within each category. For the intra-category feature orderings, we use the
same assumptions as the modified traditional approach and the system designer stops
looking after the first acceptable intra-category orderingis found. In our case study, the
number of full CRF’s analyzed was reduced from12! to 399 after the pairwise analysis
eliminated many potential orderings. Thus our cost to analysis is:

=pairwise CRFs+ full CRFs + cost to categorize features+ feature orderings

=12!/(12− 2)! + 399 + 58 +

12∑

i=1

insignificant

=132 + 399+ ≈ 58+ ≈ insignificant

= ≈ 5.9 ∗ 102

(1)

This is a savings of over80%: a significant reduction in cost. For larger feature sets
the savings would be significantly higher. The cost to explore the feature pairs in the
modified traditional approach increases dramatically witheach new feature added, but
has not affect on the cost of our categorization approach, solong as not no categories are
added.

9. Related Work

Previous work on the using priorities to resolve feature interactions has studied partial
and full priority orderings as means to resolve feature interactions. Below, we explore
various methodologies that determine the correct priorityorderings by considering ar-
chitectural design, run-time evaluations, design patterns, etc.

Nejati et al work with design patterns, in [18], is the most similar to our approach.
Their technique similarly compares features in a DFC-basedarchitecture to determine
feature orderings that do not violate a set of “safety” properties. The approach uses design
patterns to represent features, which are composed to represent feature composition and
the results are tested for violation of safety properties. Nejati et al work formalizes the
notation that the presence of a pairwise interaction is significant reason to reject any
larger ordering containing the feature pair in the same relative ordering.7 The notable
differences between our techniques are 1) the feature evaluation is limited to a single
address zone, 2) only features that are “different” can be evaluated, otherwise the analysis
results are not useful 3) only a small case study of six features was performed and 4)

7This result is proven through the existence of transparent feature behaviour, which is also modelled by each
of the feature categories in our analysis.

P. Ann Zimmer and Joanne M. Atlee / Ordering Features by Category 27

while the safety properties used to identify invalid orderings are similar to our set of
hard-assertions, they have no method of represented soft-assertions, especially if a set of
mutually-exclusive soft-assertions exists.

Tsang and Magill’s technique in [25] determines feature priorities dynamically by
employing a run-time feature-interaction manager. Whenever a trigger event that acti-
vates the feature’s main functionality is received, the feature-interaction manager ana-
lyzes the different feature orderings to predict/detect whether an interaction is about to
occur. If there exists a feature ordering that does not result in any interactions, then this
ordering is chosen and the features are prioritized accordingly. However, if all feature
orderings result in an interaction, then the ordering with the fewest number of constraint
conflicts is chosen, with a static priority scheme used to break ties. The notable differ-
ence between Tsang and Magill’s technique and our approach are 1) the concept of fea-
ture privacy (only observable actions are used to detect interactions, to allow combining
features from different service providers) and 2) their technique was only tested on fea-
ture sets of at most size four, while our category-based approach is capable of ordering
much larger sets.

Architectural approaches to the feature-interaction problem involve using the struc-
ture of the underlying service as a method to reduce the number of feature interactions.
In some situations, such as AT&T’s Distributed Feature Composition (DFC) architecture
for telephony systems [12], these architectures are designed to work in combination with
a priority-based resolution scheme. In other architectures, the architectural design itself
imposes a priority scheme. By redesigning the call architecture into a call-processing
model that broke a call into different roles and subroles inside which features are applied,
Cattrall et al. [6] separated users from end devices and wereable to avoid/correctly re-
solve interactions as roles and subroles asserting their priority to control the call and de-
termine which features executed during the call attempt. A role represents a user, a group
of users, or, even more specifically, the life-role of a user (e.g., work role, family role,
team captain role); and a subrole represents the distribution of a call (e.g., the end device
used, a specific user within a group). This concept of roles and subroles is closely related
to the Ideal Address Translation principles [27] that we usein this paper to combine
different address zones as the call attempt progresses through different user feature sets,
either through normal call progress or via a call redirection. As another architectural ex-
ample, Zibman et al. [28] use precedence rules together withan agent-based architecture
to resolve interactions using priorities. This architecture distinguishes between various
roles within the telephony system. For example, a user is separate from his end device:
multiple users (e.g., family, technical support groups) can access the same end device,
and a single user may access several end devices (e.g., home phone, work phone, cell
phone). This rule-based architecture is combined with a processing model that monitors
for feature interactions that occur as violations of feature or service assumptions (e.g.,
new hardware services remove the need for existing assumptions) or due to role confu-
sion. Feature interactions are detected and resolved through the use of precedence rules
by determining which events or messages have priority.

In design-stage approaches to feature-interaction detection, researchers use various
techniques to identify feature interactions and then use feature priorities to resolve these
interactions. In Elfe et al. [10], feature priorities are determined as part of their detec-
tion and resolution algorithm, which tests for constraint violations. Pairs of features are
tested, and when a constraint violation is found, the feature ordering is reversed and

28 P. Ann Zimmer and Joanne M. Atlee / Ordering Features by Category

retested. If the alternate ordering does not result in a violation, this ordering is selected
and the feature pair is prioritized accordingly. When both feature orderings cause con-
straint violations, the decision is referred to the featuredesigner who is asked to choose
the correct ordering. Nakamure and Tsuboi [17] use a frame model, which is a theory
that uses data structures to represent and construct knowledge about features during the
design stage, for the purposes of detecting and eliminatingfeature interactions. In this
work, each feature is expressed as a frame that contains slots that hold (or will hold) val-
ues relating to attributes (e.g., source and target address) about that feature and call. The
modelled features are then composed, analyzed, and evaluated with respect to three types
of feature interactions:exclusive interactions, which are equivalent to shared-variable
interactions; andconnective and recursive interactions, which are both similar to data-
modification interactions where a variable assignment causes the execution of another
feature or modifies the expected output of an already executing feature, respectively.
When an interaction is found, the feature designer is prompted to eliminate the interac-
tion by choosing the most appropriate ordering and the system stores this solution as a
feature priority to be enforced.

Other examples of design-time solutions involve the use of Standard Transition Rule
(STR) and Supervisory Control Theory (SCT) to help prioritize features. Harada et al.
[11] and Kawauchi and Ohta [14] use STR in their work. Harada et al model features
as both a description rule and a set of implementations that describes the feature’s be-
haviour. A feature interaction (aka service interaction) is detected between a pair of fea-
tures when the implementation of the feature’s behaviour results in contradicting transi-
tions (i.e., they are both able to execute but have conflicting results). Resolution of the
interaction is performed by the designer who can prioritizethe conflicting transitions,
or use another technique to resolve the interaction. Kawauchi and Ohta [14] also used
STR when they created a mechanism for three-way interactions and proposed a detection
system to identify feature interactions among sets of threefeatures. The authors analyze
cases of three-way interactions where two of the three features do interact, but this inter-
action is not apparent until the third feature is added (e.g., some functionality of the two
interacting features is blocked unless a third feature is present). The features are modelled
as a set of three rules: application rules, which define the event and pre-conditions neces-
sary to trigger this feature’s functionality; precedent rules, which are used to determine
the feature that is executed when multiple application rules are satisfied; and state change
rules, which simulate the execution of the feature. This approach uses prioritization in
two ways: all feature pairs are assumed to be correctly ordered via a priority ordering,
and the precedence rules give different features priority when determining execution.

In the area of SCT, Thistle et al. [24] compose supervisors together to form the be-
haviour of the system by controlling the actions of features. In this work, the authors
add a reporter map to the supervisory control theory, which acts as a filter to erase event
streams that are observed by the supervisor: the erased or filtered event is not disabled
within the supervisor. When the supervisors are joined, thereporter maps are placed be-
tween the source of events and the supervisor, which effectively weakens each supervi-
sor’s control of its feature, because the erased event is notpassed through the reporter
map to the supervisor. Consequently, some supervisors, which could have reacted to the
event do not notify the controller, are not considered when the controller makes its deci-
sion as to which supervisor will respond to the event. Thus, the reporter map can impose
a priority ordering between the supervisors with respect toevents. Another example pri-

P. Ann Zimmer and Joanne M. Atlee / Ordering Features by Category 29

oritization in SCT is Chen et al.’s [7], which uses functionsto dynamically determine a
partial ordering among supervisors to prevent blocking. The authors consider modular
feature development and represent feature requirements asfinite state machines, where
the supervisors for each feature are composed to form the system. A priority function
is associated with each individual supervisor and is used tocontrol the actions of the
supervisor in case of interactions. This scheme is called modular control with priorities.
After introducing this scheme, the authors describe four algorithms that can be used to
assign priority values to the supervisors’ priority functions. The first two algorithms are
for mixed priority functions that are designed to prevent blocking in live-lock free sys-
tems (i.e., the execution can always reach a stable state) between supervisors. The last
two algorithms focus on designing the priority function to give the dominant supervisor
priority over the other supervisor whenever a conflict occurs.

10. Conclusion

Feature interactions pose a large problem in feature-rich domains, so much so that an
entire research community (i.e., centered around the International Conference on Fea-
ture Interactions) has evolved to address this issue [2,8,9,15,3,22]. In this paper, we ex-
plore methods to reduce the cost of prioritizing a set of features for use in priority-based
techniques for resolving feature interactions.

The categorization of features is a critical step that must be carefully considered as it
affects the success of our category-based approach. Once the categories are selected, the
principles for proper system behaviour are created, such that the principles hold regard-
less of which features are active in the system. In our experience, it is easier to identify
the principles after the categories have been determined, since the categories give insight
into what the system and features are trying to accomplish. The principles presented in
Section 4.2 represent the standard set of subscriber-basedfeatures.

By decomposing the prioritization problem into two phases,first ordering a set of
categories and then ordering the intra-category features,we reduce the problem signif-
icantly, to the point where we can automatically generate the priorities for the feature
categories. We showed that the automatically generated partial-ordering is nearly equiv-
alent to the partial-ordering identified by our manual analysis. In fact, when generating
the results, we discovered the need for two new principles. These principles were then
added and the results of our manual analysis were updated to reflect these two new prin-
ciples. Furthermore, our evaluation shows that as long as the number of categories is
significantly smaller than the number of features to be ordered, then the cost reduction
to determine priority orderings is significant. Our case study, implemented using an op-
timized Prolog model, showed the cost was reduced to less than 1

1055 % of the traditional
cost. Given this significant reduction in the cost and the ability of our model to accu-
rately reproduce the manually identified partial-ordering, we can confidently argue that
our category-based approach was successful.

References

[1] 3com Techincal Guide. IP Telephony Jargon Buster and Glossary.
http://www.3com.com/voip/assets/3com_200251-003.pdf.

30 P. Ann Zimmer and Joanne M. Atlee / Ordering Features by Category

[2] L. G. Bouma and H. Velthuijsen, editors.Feature Interactions in Telecommunications Sys-
tems. IOS Press, 1994.

[3] M. Calder and E. Magill, editors.Feature Interactions in Telecommunications and Software
Systems VI. IOS Press, 2000.

[4] E. Cameron, N. Griffeth, Y. Lin, and H. Velthuijsen. “Definitions of Services, Features, and
Feature Interactions”, December 1992. Bellcore Memorandum for Discussion, presented at
theInternational Workshop on Feature Interactions in TelecommunicationsSoftware Systems.

[5] E. J. Cameron, N. D. Griffeth, Y.-J. Lin, M. E. Nilson, W. K. Schnure, and H. Velthuijsen.
Feature Interaction Benchmark for IN and Beyond. InFeature Interactions in Telecommuni-
cations Systems II, pages 1–23, 1994.

[6] D. Cattrall, G. Howard, D. Jordan, and S. Buj. An Interaction-Avoiding Call Processing
Model. InFeature Interactions in Telecommunications Systems III, pages 85–96, 1995.

[7] Y.-L. Chen, S. Lafortune, and F. Lin. Design of nonblocking modular supervisors using event
priority functions.IEEE Transactions on Automatic Control, 45(3):432–452, March 2000.

[8] K. Cheng and T. Ohta, editors.Feature Interactions in Telecommunications Systems III. IOS
Press, 1995.

[9] P. Dini, R. Boutaba, and L. Logrippo, editors.Feature Interactions in Telecommunications
and Distributed Systems IV. IOS Press, 1997.

[10] C. D. Elfe, E. C. Freuder, and D. Lesaint. Dynamic constraint satisfaction for feature inter-
action. InBT Technology Journal, volume 16, number 3, pages 38–45, July 1998.

[11] Y. Harada, Y. Hirakawa, and T. Takenaka. A design support method for telecommunication
service interactions. InGLOBECOM ’91. Countdown to the New Millennium. Featuring a
Mini-Theme on: Personal Communications Services., volume 3, pages 1661–1666, 1991.

[12] M. Jackson and P. Zave. “Distributed Feature Composition: A Virtual Architecture for
Telecommunications Services”.IEEE Transactions on Software Engineering, 24(10):831–
847, October 1998.

[13] A. L. Juarez Dominguez and N. A. Day. Compositional reasoning for port-based distributed
systems. InASE ’05: Proceedings of the 20th IEEE/ACM international Conference on Auto-
mated software engineering, pages 376–379, New York, NY, USA, 2005. ACM Press.

[14] S. Kawauchi and T. Ohta. Mechanism for 3-way feature interactions occurrence and a de-
tection system based on the mechanism. InFeature Interactions in Telecommunications and
Software Systems VII, pages 313–328, 2003.

[15] K. Kimbler and L. G. Bouma, editors.Feature Interactions in Telecommunications and Soft-
ware Systems V. IOS Press, 1998.

[16] M. Kolberg, E. H. Magill, D. Marples, and S. Reiff. Second feature interaction contest results.
In Feature Interactions in Telecommunications and Software Systems VI, 2000.

[17] M. Nakamura and Y. Tsuboi. A method for detecting and eliminating feature interactions
using a frame model. InCommunications, 1995. ICC 95 Seattle, Gateway to Globalization,
1995 IEEE International Conference on, volume 1, pages 99–103, 1995.

[18] S. Nejati, M. Sabetzadeh, M. Chechik, S. Uchitel, and P.Zave. Towards compositional syn-
thesis of evolving systems. InSIGSOFT ’08/FSE-16: Proceedings of the 16th ACM SIGSOFT
International Symposium on Foundations of software engineering, pages 285–296, New York,
NY, USA, 2008. ACM.

[19] Nortel Networks.Centrex Feature Library. www.nortelnetworks.com/products/01/centrex.
[20] Nortel Networks. Centrex Feature Library - Glossary.

www.nortelnetworks.com/products/01/centrex/library/list.html.
[21] Nortel Networks. Centrex Feature Library - Voice Features.

www.nortelnetworks.com/products/01/centrex/library/voice/index.html.
[22] S. Reiff-Marganiec and M. Ryan, editors.Feature Interactions in Telecommunications and

Software Systems VIII. IOS Press, 2005.
[23] R. W. Sebesta.Concepts of Programming Languages. Addison-Wesley, third edition, 1996.
[24] J. Thistle, R. Malhame, H.-H. Hoang, and S. Lafortune. Feature interaction modeling, detec-

tion and resolution: A super supervisory control approach.In Feature Int. in Tele. and Dist.
Sys. IV, pages 93–107, 1997.

[25] S. Tsang and E. H. Magill. Behaviuor based run-time feature interaction detection and res-
olution approaches for intelligent networks. InFeature Interactions in Telecommunications
and Distributed Systems IV, 1997.

[26] G. Utas. “A Pattern Language of Feature Interaction”. In International Workshop on Feature
Interactions in Telecommunications Systems V, pages 98–114, 1998.

[27] P. Zave. Address translation in telecommunication features. ACM Trans. Softw. Eng.
Methodol., 13(1):1–36, 2004.

P. Ann Zimmer and Joanne M. Atlee / Ordering Features by Category 31

[28] I. Zibman, C. Woolf, P. O’Reilly, L. Strickland, D. Willis, and J. Visser. “Minimizing Feature
Interactions: An Architecture and Processing Model Approach”. In International Workshop
on Feature Interactions in Telecommunications Systems III, pages 65–83, 1995.

[29] P. A. Zimmer. Prioritizing Features Through Categorization: An Approach to Resolving
Feature Interactions. PhD thesis, University of Waterloo, 2007.

[30] P. A. Zimmer and J. M. Atlee. Categorizing and prioritizing telephony features. InFeature
Interactions in Telecommunications and Software Systems VIII , 2005.

	JSS12.Copyright
	JSS12c
	JSS12.Copyright
	JSS12

