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Abstract
The output of a code generator is assumed to be correct and not
usually intended to be read or modified; yet programmers are often
interested in this, e.g., to monitor a system property. Here, we con-
sider code customization for a family of code generators associated
with big-step executable modelling languages (e.g., statecharts).
We introduce a customization language that allows us to express
customization scenarios for the generated code independently of a
specific big-step execution semantics. These customization scenar-
ios are all different forms of runtime monitors, which lend them-
selves to a principled, uniform implementation for observation and
code extension. A monitor is given in terms of the enabledness and
execution of the transitions of a model and a reachability relation
between two states of the execution of the model during a big step.
For each monitor, we generate the aspect code that is incorporated
into the output of a code generator to implement the monitor at the
generated-code level. Thus, we provide means for code analysis
through using the vocabulary of a model, rather than the detail of
the generated code. Our technique not only requires the code gener-
ators to reveal only limited information about their code generation
mechanisms, but also keeps the structure of the generated code in-
tact. We demonstrate how various useful properties of a model, or
a language, can be checked using our monitors.

1. Introduction
Automatic code generation from high-level models is a key tech-
nology to raise the abstraction level in software development, and
so to increase productivity, and improve code reliability. While the
output of a code generator is usually not meant to be read or mod-
ified by a programmer, it is often necessary to have a means to
understand the behaviour of the code, for example, in order to inte-
grate it into an existing code base or to inspect its correctness.

In this paper, we introduce a framework for automatic cus-
tomization of generated code to enhance it with the capability to
monitor a property at runtime. Our system receives a property-of–
interest for the generated Java code of a model, and produces As-
pectJ [1] code that is woven to the generated code to monitor the
property. Our system works with the output of a family of code
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generators [2] that each generates code for a behavioural model
specified in a big-step modelling language (BSML) [3].

BSMLs are a widely used class of modeling languages, which
includes the original statecharts [4] and its variants [5], among
other formalisms. A BSML can be used to specify the behaviour
of systems that interact with their environments continuously, e.g.,
an automated banking machine or a microwave. In a BSML model,
the reaction of a model to an input is described by a big step,
which consists of a sequence of small steps, each of which is the
execution of a set of transitions. There is a plethora of BSMLs,
which can essentially be distinguished by their semantic variations
[3, 6]. These variations specify the detail of how transitions become
enabled and how they are executed.

In our framework, a monitoring property is specified in the big-
step monitoring language (BML), which we introduce in this pa-
per. A BML monitor uses the vocabulary of a BSML model, and
not the often unreadable vocabulary of the generated code, to spec-
ify a property for the generated code of the model. As such, our
framework raises the level of abstraction that a developer works at:
a developer neither needs to know about the code generation mech-
anism, nor about the mechanism by which a model-level property is
monitored at the generated-code level. A BML property can be con-
sidered as a kind of predicate-logic formula over the transitions of a
model, together with a reachability (or an unreachability) operator
that specifies whether a certain state of a big step can reach (must
not reach) another state of the big step. Quantification can be used
to specify a general property about a model; e.g., the global consis-
tency [7] property asserts that a transition that is triggered with the
absence of an event and a transition that generates the event cannot
be executed in the same big step. A BML property is either an in-
variant, required to hold in all big steps, or is a witness, required to
hold in at least one big step. A novelty in the design of our BML is
that it can be uniformly used by different BSMLs.

We define the semantics of BML by adapting the temporal
operators of LTL [8] to work in the scope of a big step. A key idea
in our semantics is that the enabledness and execution information
about the transitions are treated as uninterpreted functions [9]:
the semantics of BML is independent of how transitions become
enabled and how they are executed. As such, BML abstracts away
from the particularities of the semantics of BSMLs, and thus, is
uniformly adoptable by the family of BSMLs. This allows for
adopting BML for the output of different code generators as well.

We have implemented BML for a family of code generators [2]
that generates code for a subset of BSMLs. We have developed
a code generator that for each BML monitor generates the multi-
threaded AspectJ code that collects the necessary information to
interpret the monitor at runtime. Because of the design of our
BML and the structure of the BSML-generated code, our generated
aspects need to intercept the execution of only a few of methods
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Figure 1. A simple BSML model.

of the BSML-generated code. To implement BML for a new code
generator, we require the BSML-generated code to expose only
limited programmatic means to inspect the execution of big steps.

Our contribution in this paper is threefold. First, we introduce a
language that allows to specify monitors to analyze the behaviour
of generated code by using the vocabulary of a model, rather than
the detail of its generated code. Thus, we combine model analy-
sis with code analysis, as advocated by others [10, 11], to decrease
the gap between the model and the code. Second, we present a uni-
form, automatic approach to implement BML monitors for a family
of code generators that support different BSML semantics. Finally,
we present a non-intrusive, aspect-based technique to customize the
generated code to analyze its behaviour. Our technique is compa-
rable with other approaches that aim at improving the extensibility
of object-oriented software via aspects [12, 13].

The remainder of the paper is organized as follows. Section 2
presents an overview of the syntax and semantics of BSMLs. Sec-
tion 3 presents our BML and its example applications. Section 4
presents the semantics of BML. Section 5 presents our implemen-
tation of BML for a family of code generators. Section 6 discusses
related work. Section 7 concludes the paper.

2. Background: Big-Step Modelling Languages
In this section, we present an overview of the family of big-step
modelling languages (BSMLs), whose semantics we deconstructed
and compared in our previous work [3, 6]. We begin with de-
scribing the common, normal form syntax that we have adopted
for BSMLs. We then briefly describe the common semantics of
BSMLs, together with some of their semantic variations. There are
further semantic variations that are not considered in this paper; de-
tails can be found in our previous work [3, 6]. We use the BSML
model in Figure 1 as our running example throughout the paper.

2.1 Normal Form Syntax
To provide a unifying semantic framework for BSMLs, we intro-
duced a normal form syntax, which is similar to the syntax of orig-
inal statecharts [4, 7]. A BSML model is a hierarchical, extended
finite state machine that consists of: (i) a hierarchy tree of control
states, and (ii) a set of transitions between these control states.

Control states. A control state, graphically represented by a
rounded box, represents a noteworthy moment in the execution
of a model. Each control state has a type, which is either And,
Or, or Basic. The control states of a model form a hierarchy tree,

where the leaves (and only they) have type Basic. A child of an
And-state or Or-state is surrounded by the box representing its par-
ent; the children of an And-state are separated from one another
by dashed lines. The ancestor and descendant relations are defined
with their usual meanings. As an example, the model in Figure 1 is
a simplified BSML model for the software system that controls the
operation of a microwave oven. Control stateMicrowave is an And-
state that has three children, namely, Controller, Lock, and Cooker,
which are allOr-states; note that the surrounding lines around these
Or-states have been removed to simplify the graphical representa-
tion. Control state Unlocked is a Basic-state and a child of Lock.
One of the children of an Or-state is its default control state, which
is signified by an incoming arrow without a source. The root of the
hierarchy tree must be an Or-state, which is not explicitly shown
if it has only one child; e.g., as in the model in Figure 1. Each
control state has a unique name that appears at its top, left corner.
The least common ancestor of two control states is the lowest (i.e.,
closest to the leaves) control state that is an ancestor of both; e.g.,
the least common ancestor of Controller and Lock is Microwave.
Two control states are orthogonal if none of them is an ancestor
of the other and their least common ancestor is an And-state; e.g.,
Controller and Lock.

Transitions. A transition, graphically represented by an arrow,
specifies behaviour in a BSML model. Each transition, t, has a
source control state, src(t), and a destination control state, dest(t),
together with the following four optional elements: (i) a guard con-
dition, gc(t), which is a boolean expression over a set of variables,
enclosed by a “[ ]”; (ii) a triggering condition, trig(t), which is the
conjunction of a set of events and negation of events; (iii) a set of
variable assignments, asn(t), which is prefixed by a “/”, with at
most one assignment to each variable; and (iv) a set of generated
events, gen(t), which is prefixed by a “̂”. Each transition name
is followed by a “:”. As an example, in the model in Figure 1, t1
is a transition, with src(t1) = Of f , dest(t1) = On, gc(t1) = true,
asn(t1) = ∅, trig(t4) = start, and gen(t4) = {lock, start cook}. Tran-
sitions t3, t4, t5, and t6 use variables; e.g., asn(t3) = {l := true}
and gc(t5) = [l = true]. Variable l is used to disallow the situation
where t5 is executed before t3 and t4 is executed before t6, to avoid
microwave radiation while the door is unlocked. The arena of a
transition t, denoted by arena(t), is the lowest Or-state in the hier-
archy tree such that the source and destination control states of the
transition are its descendants. For example, in the model in Figure
1 arena(t7) = Controller and arena(t1) = Active. For a model M,
we denote the set of all its transitions as Trans(M).
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Figure 2. Structure of a big step.

2.2 Common Semantics and Semantic Variations
A BSML model specifies the behaviour of a system that interacts
with its environment. An environmental input is a set of input
events together with a set of assignments to input variables. The
reaction of a BSML model to an environmental input is a big step
that consists of a sequence of small steps, each of which can be the
execution of a set of transitions.

2.2.1 Model Initialization
Initially, in a BSML model, all variables are assigned their initial
values; all events are absent (i.e., their statuses are false); and the
model resides in the default control state of its root. Furthermore,
the following invariants always hold for a BSML model: (i) if the
model resides in one of its And-states, it resides in all of its children;
and (ii) if it resides in one of its Or-states, it resides in exactly one
of its children. As an example, initially, the BSML model in Figure
1 resides in control states Microwave, Controller, Lock, Cooker,
Active,Of f ,Unlocked, and Idle. Variable l is initialized with a false
value. Events start, stop, activate, deactivate are environmental
input events of the model (they are not generated by any transition).
The model has no environmental input variables.

2.2.2 Structure of a Big Step
Figure 2, adopted from our previous work [6], depicts the struc-
ture of a big step, T . The execution of a big step is an alternating
sequence of snapshots and small steps, in response to an environ-
mental input I. A snapshot of a BSML model is a valuation of its
snapshot elements, each dealing with an aspect of the semantics of
a BSML. For example, there is a snapshot element that maintains
the set of control states that a model resides in: upon the execution
of a transition, its source control state is removed from the snapshot
element and its destination control state is added to the snapshot
element. Similarly, there are snapshot elements that maintain the
values of variables, the statuses of events, etc. The number of snap-
shot elements of a BSML model depends on the semantics of the
BSML. In the big step in Figure 2, there are k+2 snapshots, namely,
sp0, sp1, · · · , spk+1, and n snapshot elements, namely, el1, · · · , eln.
We call snapshot sp0 and snapshot spk+1 the source snapshot and
the destination snapshot, respectively, of big step T . Snapshot sp1,
called the beginning snapshot, includes the effect of receiving input
I at snapshot sp0. Each tuple, (spi, τi, spi+1), (1 ≤ i ≤ k) is a small
step of T . For each small step, (spi, τi, spi+1), spi and spi+1 are its
source snapshot and destination snapshot, respectively. The effect
of the execution of a small step is stored in its destination snapshot.
We often refer to a big step through its sequence of small steps;
e.g., we refer to big step T = ⟨sp0, I, sp1, τ1, sp1, · · · , τk, spk+1⟩ as
⟨τ0, · · · , τk⟩. At each snapshot, there might be more than one set of
transitions that can be executed as the next small step; we call each
of these sets of transitions a potential small step of that snapshot.
We denote the set of potential small steps of a model at a snapshot,
sp, as potential(sp). For a BSML model M, we denote the set of
all its possible big steps as bigsteps(M).

2.2.3 Common Semantics
The flowchart in Figure 3, adapted from our previous work [3],
depicts the conceptual stages in executing a single big step. At
the beginning of a big step, an environmental input is received
from the environment. The next six stages of the flowchart specify
the necessary stages in forming and executing a small step. The
flowchart iterates until its big step becomes maximal, meaning that
there is no more small steps to be executed, at which point the big
step concludes and the flowchart reaches its end. In each iteration
of the flowchart, if there are more than one potential small steps,
stage 5 chooses one non-deterministically. As an example, when
the BSML model in Figure 1 resides in its default control states,
if environmental input event start is received at the beginning of a
big step, transition t1 can be taken as a small step. The execution of
t1 generates events lock and start cook, which trigger transition t3
to be taken as the second small step. However, if gc(t5) would have
been true and the BSML semantics would have only allowed one
transition per small step, then {t3} and {t5} each would have been a
potential small step after the execution of t1.

2.2.4 BSML Semantic Variations
Each of the six numbered stages of the flowchart in Figure 3
could be carried out differently in different BSMLs, and thus, is
a semantic variation point for BSMLs. We call these semantic
variation points the semantic aspects of BSMLs [3]. Each semantic
aspect can be instantiated with a semantic option that specifies how
the corresponding stage of the semantic aspect must be carried out
[3]. We use the sans serif and Small Caps fonts to refer to the name
of a semantic aspect and a semantic option, respectively.

The feature diagram [14] in Figure 4 shows six semantics as-
pects together with a common set of semantic options for each of
the semantic aspects. Since variables and events are optional in the
syntax of BSMLs, their corresponding semantic aspects are op-
tional features of the feature diagram. In this paper, we consider
only a commonly used subset of the semantic aspects and semantic
options, but there are more semantic aspects and options [3]. The
semantics that we consider in this paper are supported by the family
of code generators that we consider in our implementation.

The Event semantic aspect specifies the snapshots in which
a generated event is present and can trigger a transition. Three
common semantic options for the Event semantic aspect are that a
generated event is: (i) present only in the destination snapshot of the
small step that generates it (the Next Small Step semantic option);
(ii) present in the destination of the small step that generates it, and
in all subsequent snapshots in the big step (the Remainder semantic
option); or (iii) present throughout the next big step after the big
step in which it is generated (the Next Big Step semantic option).

The GC Variable semantic aspect concerns the variable values
used to evaluate guard conditions. Two common semantic options
are: (i) to use variable values from the beginning of the current
big step, according to the assignments in the previous big step (the
GC Big Step semantic option); or (ii) to use variable values in the
current snapshot, thus taking into account the assignments made
in the current big step (the GC Small Step semantic option). The
semantic options for the RHS Variable semantic aspect are similar.
As an example, in the model in Figure 1, when the model resides
in its default control states and input event start is received, only
employing the Remainder and GC Small Step semantic options
results in the expected behaviour: ⟨{t1}, {t3}, {t5}⟩; e.g., if the GC
Big Step semantic option is employed, t5 is not executed.

The Concurrency and Priority semantic aspects deal with form-
ing the set of potential small steps of a BSML model at each snap-
shot, using the set of enabled transitions determined by stages 1 and
2 of the flowchart in Figure 3. The Concurrency semantic aspect
specifies whether exactly one (the Single semantic option) or all of
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the transitions with orthogonal arenas (the Many semantic option)
must be included in a small step. The Priority semantic aspect spec-
ifies whether a transition, t, has a higher priority than another tran-
sition, t′, in which case if t can be included in a potential small step,
then t′ must not belong to any potential small step. Two common
semantic options are that a transition with a higher source control
state has a higher priority than a transition with a lower one (the
Source Parent option) and vice versa (the Source Child option).

The Maximality semantic aspect specifies when a big step be-
comes maximal. Two common semantic options are that: (i) once
a transition, t, is taken by a small step, no other transition whose
arena is an ancestor or descendant of arena(t) can be taken in that
big step (the Take One semantic option); and (ii) a big step can
continue until there is no more transitions whose trigger and guard
condition are satisfied (the TakeMany semantic option).

3. A Monitoring Language for BSMLs
This section introduces our big-step monitoring language (BML).
A BMLmonitor for a BSML model specifies a property of the mod-
elled system. The evaluation of such a property amounts to a run-
time monitor that observes the execution of the model at the big-
step granularity for adherence to the specified property. Monitoring

at the big-step granularity is useful since it is compatible with the
design philosophy of BSMLs that considers a big step (and not its
constituent small steps) as a unit of execution. Section 4 describes
the semantics of BML, which is oblivious to whether big steps of a
BSML model are executed by the model itself or, for example, by
the generated code for the model: it requires only information about
the enabledness and execution of the transitions of the model. Simi-
larly, this semantics is oblivious to the particularities of the plethora
of BSML semantics: it treats the information about the enabledness
and the execution of transition as uninterpreted boolean functions
[9]. As such, BML provides a high-level means to specify proper-
ties about a BSML model that can be uniformly monitored both at
the model and code level. In this paper, we are interested in moni-
toring only the behaviour of generated code. Section 5 presents our
implementation of BML at the generated-code level.

The BNF in Figure 5 presents the abstract syntax of BML. As
shown in the first line of the BNF, a monitor is either an invariant,
which specifies a property that should hold for all big steps of the
model, or a witness, which specifies a pattern that could happen in a
big step of the model. An invariant monitor intercepts the execution
of the model in order to find a counterexample for the property
that it represents. A witness monitor intercepts the execution of the
model in order to find a witness example of the property that it
represents. A monitor is meant to execute as long as the model
executes. An invariant monitor returns all counterexamples that
it encounters during the execution of the model, and similarly, a
witness monitor returns all witness examples.
Predicates. To specify monitors for a model, BML provides two
basic unary predicates: en and ex, both of which operate over
the transitions of the model. Predicate en(t) evaluates to true in a
snapshot iff transition t is enabled, i.e., iff t belongs to a potential
small step in that snapshot. Predicate ex(t) evaluates to true in
a snapshot iff it is about to be executed by the next small step.
By definition, if ex(t) is true at a snapshot, so is en(t). As an
example, in the model in Figure 1, invariant monitor I : ¬en(t3) ∨
¬en(t5) asserts that transitions t3 and t5 are never enabled together
(i.e., there is no race between locking the microwave door and
starting the radiation); and witness monitor W : ex(t7) asserts that
transition t7 executes at least in one big step (i.e., microwave can be
deactivated). Predicates en and ex do not have a snapshot parameter
because such a parameter is implicit in the semantics of BML.
Reachability expressions. Besides a predicate-logic-like syntax,
BML uses two operators that each can be used to specify a kind
of reachability or unreachability relation between the snapshots of
a big step. Binary operators, ↪→ and ↪̸→ are reachability and un-
reachability operators, respectively. We call an expression that uses
a reachability operator or an unreachability operator a reachability
expression or an unreachability expression, respectively. In a reach-
ability (or an unreachability) expression, the left operand is called



Monitor ::= I: Invar |W: Witness

Invar ::= ISpExp1 | ISpExp1 ↪→ ISpExp2 |
ISpExp1 ↪̸→ ISpExp2

ISpExp1 ::= BoolExp | QuantA BoolExp
ISpExp2 ::= BoolExp | Quant BoolExp

Witness ::= WSpExp1 |WSpExp1 ↪→WSpExp2 |
WSpExp1 ↪̸→WSpExp2

WSpExp1 ::= BoolExp | QuantE BoolExp
WSpExp2 ::= BoolExp | Quant BoolExp

BoolExp ::= en(t) | ex(t) | ¬BoolExp |
BoolExp ∧ BoolExp |
BoolExp ∨ BoolExp

Quant ::= QuantA | QuantE
QuantA ::= ∀ tv ∈ Tr ·
QuantE ::= ∃ tv ∈ Tr ·

t ::= tv | tc
tv ::= A logical variable over transitions
tc ::= A transition of the model: tc ∈ Trans(M)
Tr ::= A subset of Trans(M); Tr ∈ 2Trans(M) |

A function’s value, f : t→ 2Trans(M)

Figure 5. A BNF for the abstract syntax of BML.

the source expression, and the right operand is called the destina-
tion expression. The source expression specifies the snapshot(s) in
a big step over which a reachability (or an unreachability) expres-
sion should be evaluated. The destination expression specifies the
snapshot(s) that must be reached for the reachability to hold (or
that must not be reached for the unreachability expression to hold).
For example, e1 ↪→ e2 specifies that from a snapshot of a big step
that satisfies e1, a future snapshot of the big step, including the
current snapshot, can be reached in which e2 is satisfied. An invari-
ant monitor checks for a counterexample in which a reachability
expression does not hold, while a witness monitor checks for an
example in which a reachability expression holds. As an example,
for the model in Figure 1, invariant I : ex(t3) ↪→ ex(t5) specifies
that it is always the case that if transition t3 is executed, then tran-
sition t5 will also be executed in the same big step (i.e., if the mi-
crowave door is locked, then radiation eventually starts). The in-
variant I: ex(t5) ↪̸→ ex(t3) asserts that transition t5 is not executed
before or at the same time as t3. Invariants I: ex(t5) ↪̸→ ex(t3) and
I: ex(t5) ↪→ ¬ex(t3) are not the same: if ex(t5) is true, the latter in-
variant would hold when t3 is not executed at least in one snapshot.

Quantification. To specify a monitor that applies to a range
of transitions, the syntax of BML allows to quantify over a set
of transitions of a model. For a monitor of a model that uses
a (un)reachability1 expression, each of its source and destina-
tion expressions can use a quantification. We assume the follow-
ing two syntactic well-formedness conditions: (i) a monitor does
not have any free variables; and (ii) its quantifiers use distinct
logical variables. Invariants and witnesses use different kinds of
outer quantifications, where an outer quantifier of a monitor is
the quantifier that appears immediately after an “I :” or “W :”.
An invariant (a witness) could only use a universal (an existen-
tial) quantification as its outer quantifier. For example, invariant
monitor I : ∀t ∈ Trans(M) · ex(t) ↪→ ¬en(t) ensures that a tran-
sition of M cannot execute in all small steps of a big step, be-
cause it becomes disabled after it is executed. Witness monitor
W : ∃t ∈ Trans(M) · ex(t) specifies that there exists a transition of
M that is executed. The set of witness examples for this witness
monitor at runtime could be used to animate the execution of M.

1 “a (un)reachability” should be read “a reachability or an unreachability”.

Range of quantification. The logical variable of a quantifier of an
invariant ranges over a set of transitions. For a model, M, this range
is either an explicit subset of the set of transitions of the model
(i.e., a subset of Tran(M)) or a set that is determined by a syntactic
function, f , where f : t → 2Trans(M). For example, the invariant
monitor, I : ∀t ∈ Trans(M) · ex(t) ↪̸→ ∃t′ ∈ samearena(t) · ex(t′),
in effect, checks that the execution of M adheres to the Take One
maximality semantics; function samearena(t) returns the set of
transitions, excluding t, whose arenas are the same as t’s.

Implicit quantifications. The meaning of a monitor involves
some implicit quantifications as well. An invariant monitor has two
implicit universal quantifications that assert that the invariant holds
for all big steps and for all of their snapshots. A witness monitor
has two implicit existential quantifications that specify that there
exists a big step and a snapshot of that big step such that the witness
property holds for it. Also, in the meaning of a reachability expres-
sion, in an invariant or a witness, there is an implicit existential
quantification that asserts that there exists a destination snapshot in
which the reachability expression holds.

Checking semantic properties. A semantic property of a mod-
elling language is a semantic attribute of the language that is com-
mon to all models specified in that language [15]. Using BML, we
can specify an invariant monitor to check a semantic property of a
BSML model. Such a monitor cannot be used to prove the presence
of a semantic property at the language level, but it can be used, for
example, to confirm one’s understanding about a BSML semantics,
or to gain confidence about the correctness of an implementation of
a BSML semantics. Next, we present two such monitors.

In a globally consistent BSML semantics [7], if the negation of
an event is used to trigger a transition in a big step, that event is not
generated during the same big step. The following invariant asserts
the global consistency property, for BSML model M,

I: ∀t ∈ Trans(M) · ex(t) ↪̸→ ∃t′ ∈ neggen(t) · ex(t′), (1)

where neggen(t) is the set of transitions in the model that each
generates at least one of the negated literals in the trigger of t.

In a quasi non-cancelling BSML semantics, which is similar to
a non-cancelling [15] BSML semantics, if a transition, t, becomes
enabled in a big step, either t or one of its neighbouring transitions
will be executed in that big step; two transitions are neighbours
if they have the same source or destination control states. The
following invariant asserts this property,

I: ∀t ∈ Trans(M) · en(t) ↪→ ∃t′ ∈ neigh(t) · ex(t′) ∨ ex(t), (2)

where function neigh(t) returns the neighbouring transitions of t.
As an example, in Figure 1, when the model resides in its de-

fault control states and environmental input event start is received,
assuming that gc(t5) = [true], if the model employs the Single and
Next Small Step semantic options, then there are two big steps
possible: ⟨{t1}, {t3}⟩ (not executing t5) and ⟨{t1}, {t5}⟩ (not executing
t3), which violate invariant (2) above. Employing the Many concur-
rency semantics results in a quasi non-cancelling semantics.

A limitation. The non-cancelling semantic property [15]2 is a
stronger property than the quasi non-cancelling property: in a non-
cancelling semantics, an enabled transition, t, in the above monitor,
cannot become disabled until the destination expression of the
reachability expression becomes true. We cannot express the non-
cancelling property in BML, because BML does not have a syntax
to capture the notion of “becoming disabled”; we plan to include
such a syntax in BML in the future; cf., Section 7.

2 In previous work [15], we used the term “executable” with the same
meaning as the term “enabled” here; we changed our terminology here to
provide a clear distinction between en and ex predicates.



4. Semantics of BML
The meaning of a monitor is defined with respect to a BSML model
and its big steps. Our semantics for BML assigns a boolean value to
each monitor of a model. If an invariant monitor is assigned a false
value, then there exists at least one counterexample big step that
makes it false. If a witness monitor is assigned a true value, then
there exists at least one witness-example big step that makes it true.
The semantics of finding counterexamples and witness examples is
implicit in the semantics of assigning truth value to a monitor.

We present the semantics of invariant and witness monitors sep-
arately. Except for the semantics of reachability and unreachability
expressions, the semantics of BML is simply based on the seman-
tics of predicate logic. We first consider the semantics of ground
reachability and unreachability expressions, whose source and des-
tination expression do not use any quantification. We then extend
these semantics to the cases with quantification.

Notation. We use notation ⟦y⟧ to denote the meaning of a BML
term y. We use a subscript to denote the big step under which y is
evaluated; e.g., ⟦y⟧T is the meaning of y under big step T . To spec-
ify the semantics of reachability and unreachability, we adapt the
“globally” (!) and “finally” (#) temporal operators of linear tem-
poral logic (LTL) [8], to express temporal properties of individual
big steps of a model. To evaluate an LTL formula l against a big
step T , we write [l]T . Within a big step, the ! operator requires its
operand to hold in all snapshots of the big step; the # operator re-
quires its operand to hold at least in one of the snapshots of the big
step, including the current snapshot. These temporal operators can
be nested and combined with logical operators. For example, pred-
icate [#(!¬en(t1))]T asserts that transition t1 is finally disabled in
big step T and henceforth remains disabled in T .

4.1 Semantics of Monitors without Quantification
Semantics of invariant monitors. Given a big step, T , the mean-
ing of a ground invariant monitor that neither uses a reachability
nor an unreachability expression is easy; e should always be true:

⟦I: e⟧T ≡ [!e]T
The meaning of a ground invariant monitor that uses a reacha-

bility expression is described by the following formula, which uses
a request-response temporal pattern:

⟦I: e1 ↪→ e2⟧T ≡ [!(e1 ⇒ (#e2))]T .

Similarly, the meaning of a ground invariant monitor with an
unreachability expression is described by the following formula:

⟦I: e1 ↪̸→ e2⟧T ≡ [!(e1 ⇒ (¬#e2))]T .

As such, it can be observed that ⟦I: e1 ↪̸→ e2⟧T $ ¬(⟦I: e1 ↪→
e2⟧T ), because, for example, if e1 is always false in T , then both
⟦I: e1 ↪̸→ e2⟧T and ⟦I: e1 ↪→ e2⟧T are true.

Semantics of witness monitors. Given a big step T , the meaning
of a ground witness monitor that neither uses a reachability nor an
unreachability expression is easy; finally, e should become true:

⟦W: e⟧T ≡ [#e]T .

The meaning of a ground witness monitor that uses a reachabil-
ity expression is described by the following formula:

⟦W: e1 ↪→ e2⟧T ≡ [#(e1 ∧ #e2)]T ,

which asserts that e1 becomes true in T , followed by e2.
Similarly, the meaning of a ground witness monitor that uses an

unreachability expression is described by the formula,

⟦W: e1 ↪̸→ e2⟧T ≡ [#(e1 ∧ (¬#e2))]T .

4.2 Semantics of Quantification
To specify the semantics of a monitor that uses quantification,
we expand the monitor to a set of ground monitors. A quantified
boolean expression has exactly one quantifier, while a quantified
reachability or an unreachability expression can have up to two
quantifiers (one in the source and one in the destination expression).
Thus, we use two expansion functions: one for each quantifier.

The first expansion function, exp out, eliminates the outer
quantifier of a monitor. For an invariant monitor, i = I: ∀t ∈ T · e,
exp out(i) =

∧
tc∈T (I : e[tc/t]), where e[tc/t] means rewriting e by

replacing the quantification variable t with transition tc. Similarly,
For a witness monitor, w = W: ∃t ∈ T · e, exp out(w) =

∨
tc∈T (W:

e[tc/t]). Each of the monitor terms I: e[tc/t] or W: e[tc/t] might use
another quantification, if e is a (un)reachability expression with two
quantifications. The second expansion function, exp in, eliminates
these inner quantifications in a standard way. Function exp in, as
opposed to exp out, does not introduce any new ground moni-
tors; it just expands a destination expression. The two functions are
identity functions if their inputs do not have an expected quantifier.

We then define the semantics of invariant I: e of model M as:
⟦I: e⟧ ≡ ∀T ∈ bigsteps(M) · ⟦exp in(exp out(I: e))⟧T ,

where each of ⟦exp in(exp out(I : e))⟧T is the evaluation of the
conjunction of a set of ground invariants.

Similarly, we define the semantics of witness W: e as:
⟦W: e⟧ ≡ ∃T ∈ bigsteps(M) · ⟦exp in(exp out(W: e))⟧T ,

where each of ⟦exp in(exp out(I : e))⟧T is the evaluation of the
disjunction of a set of ground witnesses.

An invariant must hold in all big steps, and thus a universal
quantification is used in its semantics; a witness needs to hold in
at least one big step, and thus an existential quantification is used.

5. An Implementation of BML
We adopt the output of the family of code generators introduced
by Prout, Atlee, Day, and Shaker [2] for our implementation of
BML. These code generators themselves are generated, on the fly,
by a parametric code generator generator (CGG) that, based upon
the semantic parameter values that it receives, uses conditional
compilation to act as a particular code generator. The normal form
syntax, the semantic aspects, and the semantic options of BSMLs,
as described in Section 2, can be modelled by the syntax and the
semantic parameters of the CGG, as outlined below.

First, the CGG uses a syntax that is comparable to our nor-
mal form syntax in Section 2.1: while we use a notion of a hier-
archy of control states, CGG uses a notion of composition tree. A
composition tree consists of a hierarchy tree of composition oper-
ators, each of which specifies a policy in the execution of the tran-
sitions of its operands. The two needed composition operators to
model our normal form syntax are the Micro-Interleaving and
the Micro-Parallel composition operators, which provide the
means to model the Single and the Many Concurrency semantics,
respectively. The leaves of a composition tree, and only they, are hi-
erarchical transition systems (HTSs), each of which can be consid-
ered as an Or-state without any And-state descendant. We assume
that a model employs either only Micro-Interleaving composi-
tion or only Micro-Parallel composition. We call a model that
satisfies this criterion a CGG-BSML model.

Second, the CGG provides a set of parameterized snapshot
elements and predicates that each could be customized to model
a semantic option. We call a CGG semantics that corresponds to a
combination of our semantic options a CGG-BSML semantics.

Organization of the section. Section 5.1 describes the code gen-
eration mechanism of CGG. Section 5.2 presents our own code gen-



eration mechanism that customizes a piece of CGG-generated code
with aspects to evaluate a BML monitor. Section 5.3 reports about
our experiments and discusses issues related to our implementation.

5.1 Structure of Generated Code and its Execution Pattern
Our implementation of BML is based on knowledge about the high-
level structure of the code generated by CGG. Similar knowledge
is needed when implementing BML for a different code generator.
Given a CGG-BSML semantics and a CGG-BSML model, CGG
generates sequential Java code that implements the behaviour of
the model; concurrency is simulated via sequential execution.

Structure of generated Code. The structure of the generated code
is based on: (i) the structure of the composition tree of the model;
and (ii) the snapshot elements specified through the input semantic
parameter values. There is a Java class for each composition oper-
ator and a Java class for each HTS. Each model has m HTSs. We
refer to the names of the classes that represent them as HTS 1, · · ·,
and HTS m. There is a class called EnvSensor that provides an in-
terface to implement an environment for the generated code. There
is a root class called GeneratedSystem that instantiates and man-
ages all classes. In our implementation of BML, we need to deal
only with the classes that represent the HTSs of a model (to obtain
information about the enabledness and the execution of transitions)
and the EnvSensor class (to obtain information about the scope of
a big step). Table 1 enumerates the classes that we use in our imple-
mentation of BML, together with the list of a few of their methods,
fields, and variables that we need. For convenience, we have speci-
fied a symbol to refer to the name of each method.

Execution pattern. The generated code for a CGG-BSML model,
specified in a CGG-BSML semantics, follows the semantic struc-
ture of a big step in Figure 2. The start of a big step is signified
by the execution of senseEnv. The set of potential small steps
at a snapshot are identified by the execution of a sequence of
enabled trans methods of the HTS is (1 ≤ i ≤ m). The set of
transitions of a small step are executed by the execute methods
of the HTS is (1 ≤ i ≤ m). Thus, the execution of a small step by
a piece of CGG generated code can be encoded by regular expres-
sion n+x+, where n and x are symbols representing the invocation
of an enabled trans and an executedmethod, respectively. The
execution of a big step can be encoded as v(n+x+)∗n+, where v rep-
resents the invocation of the senseEnvmethod; the last n+ denotes
that the big step is maximal. The ongoing execution of a BSML
model can be modelled as a sequence of big steps: (v(n+x+)∗n+)+.

5.2 BML Code Generator (BML-CG)
We have implemented a prototype system, BML code generator
(BML-CG), which given a CGG-BSML model and a monitor with-
out quantification generates the multi-threaded AspectJ code that
performs the runtime evaluation of the monitor against the execu-
tion of the CGG generated code of the model. Intuitively, the gen-
erated aspects follow the semantics of BML in Section 4. For ex-
ample, for an invariant monitor with an unreachability expression,
whenever the source of the expression becomes true in a big step,
the system checks whether its destination expression could become
true in that big step, in which case it produces a counterexample.

Two key insights about the generated code by BML-CG are
that: (i) by using AspectJ, a monitor expression is evaluated with-
out modifying the structure and the behaviour of the CGG gener-
ated code; and (ii) by using threads, the evaluation of a monitor
that uses a (un)reachability expression is orthogonalized into units
that each corresponds to a snapshot where the source expression
of the (un)reachability expression becomes true. The latter prop-
erty makes BML-CG readily amenable to support quantification,
by evaluating the constituent ground monitors of a monitor orthog-

onally. Next, we describe the design of BML-CG, focusing mainly
on our use of aspects and threads in the BML-CG generated code.

5.2.1 Aspect Code Generated by BML-CG
AspectJ provides a rich language to specify point cuts, join points
and advices for a Java program [1]. In a BML-CG generated code,
however, we only need to use before and after advices for join
points in the execution of the methods listed in Table 1.

Figure 6 presents the three pointcuts together with five advices
that we use in our generated code to implement a BML moni-
tor. In our implementation of BML-CG, we distinguish between
four types of monitors: (i) invariants with reachability operators;
(ii) invariants with unreachability operators; (iii) witnesses with
reachability operators; and (iv) witnesses with unreachability op-
erators. (The monitors without a (un)reachability operator are spe-
cial cases of one of the above four types.) The point cuts and ad-
vices in Figure 6 are the same for these four types of monitors,
except for the advice invoked before an enabled trans method,
i.e., before() : HTSenJoin(Object p). This advice is specialized
for each type of monitor. Next, we describe each advice in detail.

Before the execution of an enabled trans method, its cor-
responding advice checks whether the source expression of the
(un)reachability expression of the monitor, i.e., src exp(en, ex),
is true. Expression src exp(en, ex) is evaluated with respect to the
information about the enabledness and the execution of transitions
stored in arrays en and ex, respectively; these information are up-
dated as the execution of the CGG generated code continues. When
src exp(en, ex) is true, a new thread is forked that will check if
the destination expression of the (un)reachability expression of the
monitor could become true. The effect of the execution of a small
step is evaluated at its destination snapshot, before checking for the
enabledness of the transitions for the next small step. As such, it
suffices to do the above evaluation only if the big step is not at the
beginning snapshot and before the first n in the n+x+ sequence of
the next small step; i.e., when !begSnapshot && firstEn is true.
Once all threads evaluate the effect of the last small step, i.e., af-
ter waitForAllThreadsToReact() terminates, the information in
arrays en and ex are reset for evaluating the new small step.

After the execution of an enabled trans method, its corre-
sponding advice collects the set of enabled transitions determined
by the method in array en; similarly, after the execution of an
execute method, its corresponding advice collects the enabled
transition that is executed by the method in array ex. We use
Java reflection mechanisms to collect these information from the
enabled transitions and trans fields, described in Table 1.
(To use Java reflection, we had to change trans variables to be-
come fields of their corresponding classes. This is the only change
that we made to the CGG-generated code.) Both advices update
the variables firstEn and firstEx, which determine whether the
first n and the first x in the sequence of method executions of a
small step n+x+ are encountered, respectively. The latter advice is
also responsible: (i) to increment the index representing the current
snapshot of a big step, to add an element to the vector that stores the
counterexamples/witness examples; and (ii) to update the variable
that determines the beginning snapshot of a big step.

Before the execution of the senseEnvJoin method, i.e., when
a current big step ends and a new big step is about to start, its cor-
responding advice sets the endBigStep to true. Setting this vari-
able to true signals all forked threads during the big step to ter-
minate; function waitForAllThreadsToEnd() ensures that these
threads terminate. After the execution of this method, the set of all
counterexamples or witness examples could be inspected in vari-
able result. After the execution of the senseEnvJoin method,
at the beginning of a big step, its corresponding advice resets the
variables of the system, preparing for a new big step.



Class Method Symbol Role

EnvSensor senseEnv(..) v
This method simulates the behaviour of the environment by setting the environ-
mental input events and variables.

HTS 1, · · · , HTS m enabled trans(..) n
For each HTS i, (1 ≤ i ≤ m), its method enabled trans identifies the set of
high-priority transitions whose arenas are in HTS i and can be taken in the next
small step; this set is stored in the field enabled transitions of HTS i.

HTS 1, · · · , HTS m execute(..) x
For each HTS i, (1 ≤ i ≤ m), its method execute executes one of the transitions
stored in the field enabled transitions of HTS i non-deterministically; vari-
able trans in execute method stores the identifier of the executed transition.

Table 1. List of the methods, fields, and variables in the CGG generated code that are of interest for the implementation of BML.

/*Enabledness and execution information.*/
boolean[] en = new boolean[#TRANS];
boolean[] ex = new boolean[#TRANS];
/*Counterexamples or witnesses of a big step.*/
Vector<HashSet<Integer>> result = ⟨⟩;
boolean begSnapshot = true; /*sp1 or not.*/
boolean endBigStep = false; /*spk+1 or not.*/
/*First n and x in small step n+x+ or not.*/
boolean firstEn = true;
boolean firstEx = true;
int curSnapshot =0; /*Current snapshot.*/
pointcut HTSenJoin(Object p):
execution(HTS*.enabled_trans(..));
pointcut HTSexJoin(Object p):
execution(HTS*.execute(..));
pointcut senseEnvJoin(): execution(*.senseEnv(..));
before(): HTSenJoin(Object p) {
if (!begSnapshot && firstEn) {
/*Based on the type of a monitor, one is executed.*/
if (src_exp(en,ex)) {
new [I :s ↪→ d]findCounter(curSp).start(); /*or*/
new [I :s ↪̸→ d]findCounter(curSp).start(); /*or*/
new [W :s ↪→ d]findWitness(curSp).start(); /*or*/
new [W :s ↪̸→ d]findWitness(curSp).start();
waitForAllThreadsToReact();
for(i=0 to #TRANS-1) {en[i] = false; ex[i] = false;}
}
}
}
after(): HTSenJoin(Object p) {
collectEnableds(p,en);
firstEx = true;
firstEn = false;
}
after(): HTSexJoin(Object p) {
collectExecuted(p,ex);
if (firstEx) {
curSnapshot++; firstEx = false; firstEn = true;
result.add(new HashSet());
}
if (begSnapshot) begSnapshot = false;
}
before(): senseEnvJoin() {
endBigStep = true;
waitForAllThreadsToEnd();
/*Examine counterexamples and witness examples.*/
}
after(): senseEnvJoin() {
for(i=0 to #TRANS-1) {en[i]= false; ex[i]=false;}
result.clear();
begSnapshot = firstEn = firstEx = true;
endBigStep = false; curSnapshot = 0;
}

Figure 6. Point cuts and advices used in BML-CG generated code.

5.2.2 Multi-Threaded Code Generated by BML-CG
As mentioned earlier, the before() : HTSenJoin(Object p) ad-
vice, in the aspect in Figure 6, forks a thread when a snapshot
of a big step is arrived at which the source expression of the
(un)reachability expression of a monitor is true. Figure 7 shows
these threads. Based on the type of a monitor, a thread is invoked to
evaluate the monitor, through inspecting the value of the destination
expression of the (un)reachability expression of the monitor, i.e.,
des exp(en, ex). A thread terminates when the big step ends, i.e.,
when endBigStep becomes true. Functions addCounterExample
and addWitnessExample store a counterexample and a witness
example, respectively, in the last index of result.

We note that, for a witness monitor, once a thread is forked
during a big step, no more subsequent threads needs to be forked
because one witness example suffices; similarly, for an invariant
monitor that uses an unreachability expression, one thread per big
step is enough. However, in our implementation, we continue to
fork new threads, in order to, (i) find all counterexamples and all
witness examples; and (ii) to develop a multi-threaded implemen-
tation, with the necessary synchronization mechanisms, to provide
the foundation to support: (a) monitors with quantification, each
of which comprises of multiple ground BML terms; and (b) con-
current evaluation of multiple monitors. As a result of this design
decision, the first and the fourth threads, as well as, the second and
the third threads, in Figure 7, are symmetric.

5.3 Discussion
Experiments. Using BML-CG, we have experimented with the
generated code of a few example BSML models. We ran various
BML monitors against the CGG generated code for the example
model in Figure 1 (and its variations). Using different BSML se-
mantics, we checked that a BML monitor behaves as expected,
and thereby, tested the correctness of CGG, BML-CG, and the
model as a whole. For example, in the model in Figure 1, if input
events stop and deactivate are received together at the beginning
of a big step, when the model resides in its default control states,
the expected behaviour would be non-deterministic: either big step
⟨{t1}, {t3}, {t5}⟩ or big step ⟨{t7}⟩ would execute. To confirm this be-
haviour, the following two properties should hold:W: en(t1)∧en(t7)
and I : (en(t1) ∧ en(t7)) ↪→ (ex(t7) ∨ ex(t5)). However, if the Next
Small Step event semantics is employed, the latter invariant would
not hold because of counterexample big step ⟨{t1}, {t3}⟩. As another
example, to eliminate the above non-determinism, we changed the
source of t7 to Active, and employed the Source Parent priority
semantics, which assigns t7 a higher priority than t1; the model
then satisfied invariant I : ¬en(t1) ∨ ¬en(t7). In our experiments,
we ensured that we cover the range of possible monitors and the
range of BSML semantic options. We did not find any unexpected
behaviour. We also experimented with other example models, in-
cluding the CGG generated code for a model of an elevator system
of a three-story building. This system was specified in a notation



/*Used for monitors with reachability expressions*/
void [I :s ↪→ d]findCounter(int sp) {
int myLastSnapshot = sp-1;
while(!endBigStep) {
if (myLastSnapshot < curSnapshot) {
if (des_exp(en,ex)) return;
myLastSnapshot++;
}
}
addCounterExample(result); }
/*Used for monitors with unreachability expressions*/
void [I :s ↪̸→ d]findCounter(int sp) {
int myLastSnapshot = sp-1;
while(!endBigStep) {
if (myLastSnapshot < curSnapshot) {
if (des_exp(en,ex)) addCounterExample(result);
myLastSnapshot++;
}
} }
/*Used for witnesses with reachability expressions*/
void [W :s ↪→ d]findWitness(int sp) {
int myLastSnapshot = sp-1;
while(!endBigStep) {
if (myLastSnapshot < curSnapshot) {
if (des_exp(en,ex)) addWitnessExample(result);
myLastSnapshot++;
}
} }
/*Used for witnesses with unreachability expressions*/
void [W :s ↪̸→ d]findWitness(int sp) {
int myLastSnapshot = sp-1;
while(!endBigStep) {
if (myLastSnapshot < curSnapshot) {
if (des_exp(en,ex)) return;
myLastSnapshot++;
}
}
addWitnessExample(result); }

Figure 7. Different kinds of threads for evaluating monitors.

that uses asynchronous events, which is out of the current scope of
BSMLs [3]. Our BML-CG, however, could deal with such a gener-
ated code. For example, we monitored that the three transitions that
open the three doors of the elevator are never enabled together.

Cost of monitoring. The BML-CG generated code incurs a run-
time cost to the execution of the CGG generated code. In terms of
space, this cost is modest: we introduce only a few global variables
and two boolean arrays, en and ex, whose sizes are the number of
the transitions of the model. In terms of time, however, the cost is
proportional to the number of running threads, which in the worst
case – where at each snapshot of a big step, one thread is forked
– is proportional to the length of a big step. This cost includes the
computation time of the threads, the cost of their synchronization,
and the overhead of aspects and Java reflection. The cost of the
evaluation of a BML monitor is not related to the size of the mon-
itor: the evaluation of the source and destination expression of a
(un)reachability expression are constant-time boolean evaluations.
The size of a model, however, could indirectly affect the cost of
evaluation: a big model can produce a long big step. In our experi-
ments, we did not notice a tangible slowdown in the execution time
of the GCC-generated code. However, we observed the importance
of building the right environment for checking a BML property, so
to avoid executing irrelevant transitions in checking the property.

BML for other code generators. Our implementation of BML
relies on knowledge about how to obtain the set of enabled and ex-

ecuting transitions of each small step, and how to determine the
start and the end of a big step at runtime. Any code generator
that somehow exposes these information could be enhanced with
a BML monitoring capability. The more explicit these information
are exposed, the more efficient an implementation could be. For ex-
ample, if the CGG generated code would expose each of the set of
enabled and executed transitions of a small step in a single field of a
single class, then it would be possible to use only two join points to
collect these sets, instead of twice as many as the number of HTSs.
Such a saving could result in a significant performance improve-
ment. Even better, if these fields would have been accessible via
existing methods of the generated code, no Java reflection would
have been needed. We chose to use CGG as is to demonstrate the
relative independence of BML from a code generator.

6. Related Work
Our work is related to runtime monitoring frameworks (RMFs),
such as Temporal Rover [16] and PathExplorer [17], which pro-
vide tool support for monitoring an input temporal property against
the execution of a program. In an RMF, an input temporal property
is usually an LTL formula that is encoded in an input format (IF).
Our BML and the IF of a typical RMF are comparable: they are
both used to specify monitoring properties. Our BML, however, is
distinct in two main respects. First, BML uses the vocabulary of
models, such as the names of transitions and their enabledness and
execution information, to specify a monitoring property for gen-
erated code. The IF of an RMF, however, uses the vocabulary of
programs, such as the names of variables, methods, segments of
the code, etc. Second, BML, by virtue of being specialized for the
family of BSMLs, is preequipped with abstraction constructs that
facilitate the specification of properties. As such, using the IF of
an RMF to specify a property that is equivalent to a BML prop-
erty could be challenging. For example, specifying the equivalent
property to BML property (2) on page 5 could be a hard task; even
articulating such a property in natural language through the vocab-
ulary of the code can be very complicated. Of course, to evalu-
ate a BML monitor at the code level, similar to an RMF property,
the vocabulary of the code needs to be used. However, the abstrac-
tion constructs of BML provide guidelines not only about how to
check these properties against the code, but also about how to gen-
erate/derive the code, in the first place, to facilitate such checks.

A class of RMFs, which we call aspect-based RMFs (AB-
RMF), use aspects to specify and implement runtime monitors for
programs [18–23]. The IFs of these RMFs and their implementa-
tion strategies are comparable to our BML and our BML-CG, re-
spectively. While in our implementation of BML we use aspects,
the syntax and the semantics of BML are independent of aspect
technology. In an AB-RMF, however, its IF, its syntax, semantics,
and implementation are all based on aspects, and thus based on the
terminology of programs. While compared to a regular RMF, an
AB-RMF provides a higher level of abstraction for property speci-
fication, it still uses a generic, program-level IF, as opposed to our
BML, which is a specialized, model-level IF. Our use of aspects in
the BML-CG generated aspects is comparable with the implemen-
tation of an AB-RMF: they both use the notion of execution join
points to incrementally evaluate a property of the code at runtime.
The difference is that we chose AspectJ simply because the output
code of CGG naturally lends itself to be instrumented with aspects.
Our regular-expression–like notation, in Section 5.1, is comparable
to the IF of AB-RMF Tracematches [18].

Our work is comparable to frameworks that combine the aspect-
oriented and generative programming paradigms [24–27]. Our
work is distinct in that it focuses on a specific usage of gener-
ating aspects, as opposed to ”general-purpose aspect languages”,
which are criticized for “losing their purposefulness” [28].



Our work is related to works that promote using aspects at the
model level [12, 13], either to capture aspects during the modelling
process [12], or to facilitate the extension of object-oriented code
[13]. The point cuts in our implementation are model-based point
cuts in that they originate from the vocabulary of a BSML model.

Hand-written aspects have been used to extend the functionality
of a piece of generated code [29]. Our work is different in that
BML works with model-level vocabulary of BSML models and our
implementation automatically generates aspect code.

Lastly, our work follows the goals of software development
methodologies that advocate model-driven code analysis [10, 11].

7. Conclusion and Future Work
In this paper, we introduced a language for specifying runtime
monitors that analyze the behaviour of a piece of generated code
that is derived from a model specified in a big-step modelling lan-
guage (BSML). Also, we introduced a customization mechanism
that modifies the generated code to enhance it with a runtime mon-
itoring capability. Our big-step monitoring language (BML) has a
high-level syntax that uses the vocabulary of a model, rather than
the detail of the generated code, to specify a runtime monitor. As
such, our BML raises the level of abstraction that a developer works
at when analyzing the generated code. A novelty in the design of
our BML is that it abstracts away from the particularities of the
syntax and semantics of the plethora of BSMLs, and thereby, lends
itself to be adopted by a wide range of modelling languages and
by the output of a wide range of code generators. We have imple-
mented the core, quantified-free fragment of BML for a family of
code generators. We have developed a non-intrusive code genera-
tion technique that customizes a piece of generated code with the
AspectJ, multi-threaded code that monitors a property.

We plan to extend our implementation to support quantified
BML monitors. As discussed in Section 3, we plan to extend BML
with predicates that capture the notions of “becoming disabled”,
and “becoming enabled”. Also, to specify a wider range of runtime
monitors, we plan to extend BML to support backward reachability
and unreachability operators, so that a monitor could refer to the
past snapshots of a big step. Lastly, we are interested in introducing
an action syntax to BML so that a BML term could not only
monitor the behaviour of generated code, but also could modify it.
As an example, using action disable(), which removes a transition
from the set of enabled transitions, it is possible to enforce a
globally-consistent behaviour, as specified in property (1) on page
5, by disabling all transitions t′ ∈ neggen(t) in property (1).
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[17] K. Havelund and G. Roşu, “Monitoring Java programs with Java
PathExplorer,” in RV’01, vol. 55 of Electronic Notes in Theoretical
Computer Science, pp. 1–18, Elsevier, 2001.

[18] C. Allan, P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins,
O. Lhoták, O. de Moor, D. Sereni, G. Sittampalam, and J. Tibble,
“Adding trace matching with free variables to AspectJ,” in OOP-
SLA’05, pp. 345–364, ACM Press, 2005.

[19] F. Chen and G. Rosu, “Mop: an efficient and generic runtime verifica-
tion framework,” in OOPSLA’07, pp. 569–588, ACM Press, 2007.

[20] V. Stolz and E. Bodden, “Temporal assertions using AspectJ,” Elec-
tronic Notes in Theoretical Computer Science, vol. 144, no. 4, pp. 109
– 124, 2006. RV’05.

[21] E. Bodden, P. Lam, and L. Hendren, “Clara: A framework for partially
evaluating finite-state runtime monitors ahead of time,” in RV’10,
vol. 6418 of LNCS, pp. 183–197, Springer, 2010.

[22] K. Havelund, “Runtime verification of C programs,” in TestCom/-
FATES’08, vol. 5047 of LNCS, pp. 7–22, Springer, 2008.

[23] J. Seyster, K. Dixit, X. Huang, R. Grosu, K. Havelund, S. A. Smolka,
S. D. Stoller, and E. Zadok, “Aspect-oriented instrumentation with
GCC,” in RV’10, vol. 6418 of LNCS, Springer, 2010.

[24] D. Zook, S. S. Huang, and Y. Smaragdakis, “Generating AspectJ
programs with Meta-AspectJ,” inGPCE’04, vol. 3286 of LNCS, pp. 1–
18, Springer, 2004.

[25] D. Lohmann, G. Blaschke, and O. Spinczyk, “Generic advice: On the
combination of AOP with generative programming in aspectC++,” in
GPCE’04, vol. 3286 of LNCS, pp. 55–74, Springer, 2004.

[26] D. R. Smith, “A generative approach to aspect-oriented programming,”
in GPCE’04, vol. 3286 of LNCS, pp. 39–54, Springer, 2004.

[27] U. Kulesza, A. F. Garcia, and C. J. P. de Lucena, “An aspect-
oriented generative approach,” in OOPSLA’04 Companion, pp. 166–
167, ACM, 2004.
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