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Abstract—While there may be general agreement on what it
means for a formal method to be usable (e.g., ease of modelling,
automated and scalable analysis), there is no consensus in the
software-engineering or formal-methods communities on what
strategies lead to more usable formalisms. In this paper, we aim
to raise discussion around such strategies by proposing four-
teen concrete recommendations for achieving practical formal
methods. Our recommendations apply to research in formal
modelling, automated analysis, and automated transformation
(e.g., transforming a model into the input to an analysis tool).
Our recommendations focus on formal methods for functional
requirements of software product lines, as per our experience
in this area as part of a research project in collaboration with
an automotive manufacturer; however, most of the recommen-
dations apply to formal methods in general. We also provide a
brief overview of a formal modelling language and an under-
development tool chain that realizes our recommendations.

Index Terms—formal methods, modelling, analysis, usability,
requirements, software product lines

I. INTRODUCTION

Software-engineering researchers who study formal meth-
ods (hereafter called SE/FM researchers) are interested in
transferring formal-methods technologies to industrial soft-
ware development. They are cognizant of the user experience
in employing formal methods, and they investigate research
problems that aim to make formal methods more usable or
more scalable. At the very least, they consider how to improve
the usability and scalability of any technologies that they
develop.

When SE/FM researchers write about the usability of formal
methods, they typically refer to the following objectives:

• Ease the modelling and evolution of software models.
The most commonly stated barrier to the adoption of
formal methods is that the formalisms are inherently
difficult to use. The tasks of creating formal represen-
tations of software (and keeping them up-to-date) is time
consuming and error prone. In some cases, the formalisms
require expertise or mathematical aptitude that is uncom-
mon among software practitioners. Formal notations and
processes should be designed with the intent to improve
the productivity of both the specifiers and reviewers of
formal models.

• Maximize automation. One means of drastically im-
proving developer productivity is by automating time-

consuming tasks. If the tasks are error prone, automation
also improves the quality of models and software.

• Improve the scalability of automated verification. Prob-
ably the second most commonly stated barrier to the
adoption of formal methods is that automated verifica-
tion techniques do not scale to industrial-size models.
Addressing this goal includes developing new methods
for downscaling the verification problem, as well as
integrating techniques that optimize the verification.

• Improve confidence in analysis results. Given that
automating a formal method is itself a software-
development problem, software practitioners may ques-
tion whether the automation has been implemented cor-
rectly. They may lack confidence in an automated an-
alyzer or in any automated transformation of formal
descriptions. Improving an analyzer’s feedback (e.g., vi-
sualization of examples and counterexamples) can help, if
users can easily relate the feedback to the original model.

Although SE/FM researchers seem to agree on the above
objectives, they pursue very different strategies, suggesting a
lack of consensus on how best to achieve these goals.

The purpose of this paper is to promote discussion about
how best to improve usability of formal techniques. To initiate
discussion, we propose fourteen concrete recommendations
for making progress on the above objectives. Our recom-
mendations are based on twenty years of research experience
in trying to apply, adapt, and extend formal modelling and
analysis techniques to the requirements and high-level de-
signs of large-scale software systems, such as flight-control
systems, air-traffic–control systems, product lines of telephony
features, and product lines of automotive features. We focus on
requirements-level models, because they are smaller to analyze
and because analysis of them can reveal errors early in the
development process, when errors are cheaper to fix. Some of
our recommendations are specific to the modelling and anal-
ysis of behavioural requirements or product-line models, but
many recommendations simply aim to make formal methods
in general more usable.

In the rest of the paper, we present our recommendations
and the rationale behind them, and we overview our current
work on realizing these recommendations in a tool chain
that supports the modelling and analysis of requirements for
software product lines.



II. RECOMMENDATIONS

Below, we present fourteen recommendations for mak-
ing formal methods more usable. The recommendations are
grouped according to whether they affect research directions in
modelling languages, automated analyses, or automated model
transformations.

A. Modelling Recommendations

This section describes our recommendations for easing
formal modelling and model evolution, with an emphasis on
requirements modelling for software product lines.

1) Build on standard modelling languages: There is a
major disconnect between the modelling languages developed
by the software-engineering community and those developed
by formal-methods researchers. On the one hand, software-
engineering modelling languages are designed for direct use
by practitioners: they provide a rich set of constructs to enable
natural descriptions of a variety of systems, from a variety of
view points. Practitioners are trained in the use of software-
engineering modelling languages. However, many such lan-
guages lack precision and so their models are not amenable to
analysis. On the other hand, many formal-methods modelling
languages can be thought of as abstractions of software-
engineering modelling languages that are designed to support
reasoning and automated analysis. A viable approach towards
practical formal methods is to add precision to standard
software-engineering modelling languages, such as the UML
and feature diagrams. Making such languages precise enables
translation to formal modelling languages for the purpose of
analysis (e.g., [32]). Following this approach, we recommend
adapting standard software-engineering modelling languages
to support precise product-line modelling, rather than inventing
a new language for this purpose.

2) Support configurable semantics: Modelling notations
can have variable semantics. Semantic variants emerge from
applying the language to systems that are naturally described
using different semantics. For example, statechart variants [43]
differ in several variation points, including the semantics
of concurrency (e.g., interleaving vs. true concurrency), the
persistence of events (e.g., one vs. multiple execution steps
after the event is generated), and the variable values used to
evaluate expressions (e.g., the current values vs. the values
from the last stable state). To make an informed choice of
language variant for a specific modelling task, the practitioner
must be aware of the language’s semantic variations, as well
as the criteria for choosing amongst them. Unfortunately, a
practitioner’s choice of language variant is typically limited
by the available tools (which support only a small subset
of the variants). As such, a modeller is often forced to use
modelling hacks to simulate missing semantic options (e.g.,
modelling the persistence of events in a language that does
not support it, by introducing auxiliary variables to record the
latched events).

We recommend employing and supporting semantically
configurable modelling languages. Modelling tools should
provide facilities that allow a modeller to choose among the

semantic options of the language. Furthermore, there should
be prescriptive guidance on how to choose among the provided
semantic options. One can use semantic configurability to
impose problem-specific formal semantics to languages that
do not have specific semantics (e.g., the UML).

3) Support (feature) modularity: A fundamental approach
for managing complexity in software development is to de-
compose the system along separate concerns. In software
product lines, feature decomposition is the main criterion of
separation [26], where a feature is a “coherent and identi-
fiable bundle of system functionality” [40]. In product-line
development, a family of related software products (e.g.,
smart phones, automobile models) shares a common set of
mandatory features, and products are differentiated by their
variable (optional or alternative) features [44]. Ideally, all
software artifacts (e.g., requirements models, design, code) are
decomposed into feature modules.

Although features are modelled as separate feature modules,
the modeller will eventually want to visualize and (manually
or automatically) analyze feature combinations corresponding
to products of the product line. To do so, the modeller
must derive models of feature combinations by composing
feature modules using one of two approaches: (1) composing
a valid selection of feature modules to obtain a model of a
particular product; (2) composing all of the feature modules
to obtain a model of the whole product line (representing all
products). The second approach does not preclude the need
for the first approach: depending on how individual products
are distinguished in a model of the whole product line (e.g.,
annotating transitions or actions with presence conditions of
the relevant optional features), it may not be easy to visualize
models of individual products from the product-line model. We
recommend automating both approaches of composing feature
modules. As explained in II.B, a composed model of the whole
product line, with all of its variabilities, enables more efficient
analyses of the product line’s set of products.

4) Support modelling feature enhancements as differences:
A product line is primarily evolved by adding new features.
Sometimes, the purpose of a new feature is to enhance an
existing feature. As an example from the automotive domain,
various advanced cruise-control features enhance traditional
cruise control with additional criteria for maintaining the ve-
hicle’s speed (e.g., distance from the vehicle ahead, the speed
limit). It is natural to model such features in terms of their
differences from the enhanced features (e.g., [1], [4], [24]). In
this approach, the model of the enhanced feature is reused as
the context for expressing the new feature. In addition to the
benefits of reuse, this approach has the benefit of making the
task of modelling (at least some features) smaller and more
focused on the new feature’s essential enhancements – thereby,
easing some modelling and evolution tasks.

5) Support commutative feature composition: In some
cases, a new feature is designed to modify the behaviours
of existing features. For example, adaptive cruise control is
designed to override traditional cruise control’s computation
of the vehicle’s speed, when there is a slower vehicle ahead.



It is common to realize such intended interactions by imposing
a total order in which features are composed (e.g., [1], [4],
[23]), so that a subsequently-composed feature can modify the
behaviours of previously-composed (lower priority) features.
Such approaches have the benefit of resolving unknown con-
flicts between any pair of features through priority; however,
such resolutions are not explicit and may not be desired.
Furthermore, because feature priority is realized through com-
position order, the composition is non-commutative – which,
as explained in Section II.B, adds significantly to the analysis
task.

To avoid the problems of the above approach, we recom-
mend – perhaps controversially – that feature composition be
commutative. Note that such a decision precludes using com-
position order to (implicitly) realize feature priorities. Instead,
we recommend modelling intended interactions overtly, for
example by overtly documenting feature priority or, better,
explicitly specifying overrides of particular feature transitions
or feature actions. With this approach, the only resolutions
performed are those that are explicitly modelled. Remaining
interactions manifest themselves as ambiguities, nondetermin-
ism, or inconsistencies to be detected in analysis.

Note that this recommendation is distinct from Recommen-
dation 4: a new feature’s intended interactions with existing
features can be realized using composition order or not, re-
gardless of whether the new feature is modelled as differences
from existing features or as a standalone feature.

6) Support additive evolution: Evolving a formal model to
incorporate new functionality is generally a non-trivial task.
The modeller must be wary of the syntactic and semantic
impacts that a change, made to one part of the model,
has on other parts of the model. We promote the additive
evolution of formal models: that is, new functionality should
ideally only add elements to the model. This eases the task
of model evolution (at least with respect to evolution for
the purpose of enhancement). Moreover, by not changing or
removing existing elements, we avoid dangling references to
the changed/removed elements.

Additive evolution is particularly effective for product-line
modelling, where evolutions typically add optional features.
Even if a new optional feature overrides existing behaviours,
it is important to keep the original behaviours in the model
(rather than removing them), because they become the prod-
uct’s behaviour whenever the optional feature is not present
in the product.

Note that this recommendation complements Recommenda-
tion 4 by requiring that, in modelling a new feature’s require-
ments as differences from existing features, the differences
be additive (i.e., extensions of existing features), even when
expressing overrides.

B. Analysis Recommendations

This sections presents a number of recommendations for
scaling up formal-verification techniques to large-scale sys-
tems and software product lines.

7) (Normally) Adopt and extend state-of-the-art analysis
tools: A common practice among SE/FM researchers is to
develop new tools to demonstrate novel ideas and techniques.
While we recognize there is a place for building one’s own
tools, for example as proofs of concept, once the concepts
have been proven, they should be transferred to state-of-the-
art open-source tools. The danger of developing new closed-
source tools is that they have a relatively short lifespan:
the student-developers graduate, or research funding ends.
Instead, we believe that the default should be to adopt and
extend a small collection of powerful analysis tools. Exam-
ples of open-source analyzers that implement and integrate
state-of-the-art analyses and optimizations include SPIN [22],
NuSMV [10], PVS [34], ACL2 [27], CPAchecker [8] and Java-
PathFinder [42]. These tools are supported by a community of
users and developers, and are continuously improving.

For instance, in the case of product-line analysis, several
special-purpose tools have been built from scratch (e.g. [12],
[37]). These tools may not develop a large user base and do not
benefit from all of the state-space optimizations being invented
by the formal-methods community. An example where a state-
of-the-art tool was extended was the work by Classen et
al. [13] in which the NuSMV model checker was extended
for product-line analysis.

Of course we recognize that not all analysis techniques can
be integrated and there are times when new technology is
disruptive and warrants the development of new tools (e.g.
BDD-based model checking, SAT-based model checking).
However, by embedding as many analysis and optimization
techniques as possible in the same tool, the SE/FM community
stands a chance of addressing scalability problems.

8) Analyze the whole product line instead of individual
products: Analysis of a product line can be achieved by either
(1) generating the individual product variants and analyzing
each product separately or (2) analyzing the whole product line
and all of its variabilities as a single model. While it is possible
to generate automatically all product variants (e.g., [7], [35])
and check them in isolation, this approach may not scale to
large product lines because the number of products to analyze
is exponential in the number of optional features. Moreover,
it has been shown that model checking the whole product-line
model [3], [13], [21], [38] is more efficient because analysis
can exploit the commonalities among different products [14],
[39]. We, therefore, recommend product-line analysis over
product-based analysis. To further improve the efficiency of
the analysis, the product-line model should include informa-
tion about valid feature configurations, so that the analyzer
examines only valid product variants.

To ensure that the feedback from product-line analysis is
comparable to the feedback from product-based analysis, it
is not enough for the analyzer to report simply whether a
property is satisfied or not. If a property can be violated,
the analyzer should report all product variants in which the
property can be violated.

2 Revisited) Support commutative feature composition: If
feature composition is not commutative, then the order of com-



position can affect analysis results: features may interact when
composed in one order but not in another order. This affects the
performance of the analysis because it is likely that multiple
feature orderings need to be examined. In approaches that rely
on ordered composition, intended interactions will define a
partial order among features. However, to analyze a product,
the partial order must be extended to a total composition order
– preferably one that introduces no unintended interactions.
The analysis must check candidate total orderings until a
suitable one is found. To search thoroughly for all possible
feature interactions, the analysis would need to check all total
orderings that extend the designed partial order. The impact
on the cost of the analysis is particularly relevant to product-
line analysis, which already examines all valid combinations
of features; we do not want to check multiple orderings of all
valid combinations of features.

9) Automate the generation of correctness properties:
Even with the continued advancements in automated analysis,
the user must still specify the correctness property to be
checked. This raises two issues: (1) identifying a complete
and effective set of correctness properties (including detection
of vacuity [6]) and (2) correctly expressing the properties in
a formal property language such as temporal logic [18].

Correctness properties can broadly be classified as
application-dependent (e.g. safety, security) or application-
independent (e.g deadlock, livelock, nondeterminism). There
has been much research that investigates how to ease the
task of expressing application-dependent properties includ-
ing graphical/visual notations [15], [28], syntactic sugar [5]
and specification patterns [17]. Research on application-
independent properties has focused on identifying or gener-
ating properties automatically. For example, the FDR tool
from Formal Systems (Europe) comes with a property checker
for detecting deadlock, livelock and nondeterminism in CSP
models [9]. As a second example, some types of feature
interactions (e.g. conflicting assignments [16] or conflicting
actions to actuators [25]) can be expressed as properties
derived solely or mostly from the features’ formal models.
We recommend trying to formulate correctness properties such
that more of them can be generated automatically or semi-
automatically.

C. Transformation Recommendations

The overall purpose of the transformation process is to
translate a verification problem into the input language of
existing formal-methods tools. Below are concrete recom-
mendations for a transformation process that supports the
usability objectives of maximizing automation and improving
confidence in the results.

10) Fully automate the transformation process: To max-
imize automation, the transformation process itself must be
fully automatic. It should require no user input regarding
abstractions for analysis or compatibility with the destination
language. Automated transformation helps to realize the goal
of ease of evolution by supporting an iterative analysis process:
as errors are detected and corrected or as the product line

evolves with the addition of new features, the transformation
and analysis steps will be run repeatedly.

11) Interpret analysis results in terms of the source model:
To produce useful feedback to the modeller, it must be possible
to interpret analysis results in terms of the source model.
This places a number of requirements on the transformation
process: (1) The transformation should produce a destination
model whose set of behaviours is equivalent to that of the
source model if the destination language is sufficiently expres-
sive. (2) If any abstractions are employed during transforma-
tion, they must be reversible or concretizable when interpreting
results. (3) The source and destination models must use the
same name spaces. (4) At a more complex level, the source and
destination models must have the same execution semantics
(e.g., the same order and concurrency of transitions). To
achieve matching semantics, the transformation may need to
add to the destination model auxiliary variables (e.g., to record
history information).

12) Make the transformation tool semantically config-
urable: A naı̈ve way for the transformation process to support
Recommendation 2 (configurable semantics) is to offer a
suite of transformation tools, one for each possible seman-
tics. Instead, we recommend developing a single semantically
configurable transformation tool. The implementation of such
a tool can exploit commonalities in the semantic variations. A
second advantage is that users learn and interface with only
one transformation tool.

13) Make the transformation tool extensible: As one of
our analysis goals is to use existing tools, and potentially
multiple analyzers, we recommend that transformation tools be
designed and constructed so that they can be easily extended to
additional target analysis tools. Such extensibility means iden-
tifying likely variability points in the space of input languages
to analysis tools (e.g., data types, concurrency semantics, step
semantics) and encapsulating these variability points in the
transformation tool—in the same way that Recommendation
12 entails encapsulating the semantic variability points in the
space of the source modelling languages.

14) Verify the transformation: In order to increase con-
fidence in the analysis results, there should be a means of
verifying, at least in part, that the transformation has pro-
duced an artifact that is equivalent in behaviour to the source
model. This goal is complicated by Recommendation 12 (to
support semantically configurable transformation) because the
verification must cover a large and potentially growing number
of combinations of semantic options. Rather than verify a
configurable (possibly evolving) transformation tool, it may
be more effective to check that the destination model is
correct. A major question is how close such techniques can
come to verifying that the produced destination model has an
equivalent set of behaviours to the source model. Moreover,
transformation verification faces the same issues with respect
to scalability as the analysis phase focus.
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III. ACTUALIZING THE RECOMMENDATIONS

The above recommendations are based on our own research
in trying to develop modelling and analysis techniques to
be used in an industrial setting. In our current work, we
are investigating problems in modelling the requirements of
automotive software features, and automatically reasoning
about the behaviour of feature combinations.

In this section, we briefly overview the current status of
our research and describe how different aspects of our work
(some of which is completed and some of which is in progress)
actualize the various recommendations listed in the previous
section. Figure 1 outlines our planned tool chain separated into
the modelling, transformation, and analysis phases. While this
tool chain may seem relatively long, the invocation of the
various tools would be automatic and invisible to the user.

A. Modelling Progress

Two artifacts are produced in the modelling phase of the tool
chain in Figure 1: (1) a semantically configured model of the
requirements of a software product line that is structured by
features (FORML Model); and (2) an integrated model of the
product line’s requirements (Product Line Model), obtained by
automatically composing the models of the individual features
(Feature Composer).

FORML Model: The model is expressed in the feature-oriented
requirements modelling language (FORML) [36]. A FORML
Model is a precise model of a product line’s requirements,
comprising two main views: (1) the World Model, which is
an ontology of concepts that describes the world in which the
product line’s members (products) will operate (e.g., objects,
events, and other systems in the products’ environment); and
(2) a set of Feature Modules that separately describe the
desired effects of each feature on the world. Some of the key

properties of FORML that contribute to the modelling goals
in Section II.A are as follows:

• FORML is a UML-like language: the World Model and
Feature Modules are based on UML class diagrams and
UML state machines, respectively. for example, as in
KAOS [41] and Larman’s approach [29], class diagrams
are used to model a system’s world rather than its inter-
nal components, and state machines are used to model
environmentally observable behaviour as opposed to the
behaviour of individual objects.

• FORML supports feature modularity.
• FORML supports commutative feature composition. In-

tended interactions are specified explicitly as overrides
of existing features’ transitions or actions (rather than
implicitly through ordered composition).

• Adding a new feature requires only additive changes to a
FORML Model’s Feature Modules – even when the new
feature includes intended interactions or is modelled as
enhancements to existing features.

FORML has a semantically configurable execution se-
mantics, based on an existing foundation for configurable
semantics developed by Esmaeilsabzali et al., called big-
step modelling languages (BSMLs) [19]. BSMLs is a family
of executable behavioural modelling languages (e.g., various
statechart variants, process algebras). Each BSML has a syntax
that is mappable to a normal-form syntax, called composed,
hierarchical transition system (CHTS) – an automaton-based
language with a rich syntax for describing transition triggers
and actions. The semantics of a BSML can be described by
selecting from options associated with eight semantic variation
points. Each semantic option is characterized in terms of
its advantages and disadvantages, as a means of advising
modellers on how to define the semantics of a particular
BSML. We are working on casting FORML as a subset of the



BSML family, by mapping its syntax to CHTS and identifying
the subset of semantic variation points and associated semantic
options that are relevant to FORML. This will enable the
modeller to choose the Model Semantics of a FORML Model
(see Figure 1) in terms of a set of BSML semantic options.

Feature Composer and Product Line Model: We have auto-
mated the composition of a set of Feature Modules into a
Product Line Model, as denoted by the Feature Composer tool
in Figure 1. Our Feature Composer was implemented using the
FeatureHouse framework [2]. FeatureHouse provides a generic
framework for the structural composition of feature modules
using superimposition.

B. Transformation Progress

In our current tool chain, depicted in Figure 1, the transfor-
mation step takes as input a Product Line Model (representing
a set of features), a World Model and the Model Semantics
(representing the semantic choices that have been made), and
produces an SMV model to be analyzed.

BSML2SMV: We have developed a single, fully auto-
matic, semantically configurable transformation tool called
BSML2SMV [20] that takes as input the CHTS normal-
form syntax and a set of parameters specifying seman-
tic options (i.e., choices within the configurable semantic
space). BSML2SMV supports the entire family of BSML lan-
guages [19] and produces models in the SMV language [31].
BSML2SMV builds on work from a previous semantically
configurable transformation project [30] that supported a more
implementation-oriented semantic space called template se-
mantics [33]. BSML2SMV supports the newer semantic frame-
work and produces SMV models whose modularity more
closely matches that of the input CHTS model.

The translator BSML2SMV implements most of the recom-
mendations we laid out in Section II.C: it is fully automatic
and supports configurable semantics. It produces an SMV
model whose level of abstraction and name space are the same
as those of the source model. We are currently investigating
methods for verifying the correctness of models produced by
BSML2SMV. In future work, we will consider extending our
transformation tool to support transformation to additional rich
target verification languages so that we will have access to
more analysis tools.

Translate to CHTS: To use BSML2SMV, we must transform
the FORML Product Line Model and World Model into
the CHTS normal form syntax. Because CHTS is automata
based, the mapping of the Product Line Model (a transition
system) is straightforward. The World Model, however, is a
data model based on the UML class diagram. Both SMV and
CHTS currently support only low-level data types. Therefore,
the World Model, which contains rich data types, has to be
encoded using the available low-level primitive types, such
as arrays and enumerations. We are still experimenting with
efficient ways of encoding the World Model.

C. Analysis Progress

Our main goal in analyzing a Product Line Model is
to detect unintended interactions among the product line’s
features. As shown in Figure 1, the input to the analysis
phase of our tool chain is an SMV Model representing the
entire product line. Properties to detect feature interactions are
automatically generated based on the FORML Model of the
features’ individual requirements. The SMV Model Checker
reports for each violated property (representing an unintended
feature interaction) the set of products in which the interaction
can occur. Below we discuss the progress we have made with
regards to automating and optimizing the analysis task.

Feature Interaction Property Generator: To generate automat-
ically correctness properties for detecting feature interactions,
we first had to identify the different ways in which feature
interactions manifest themselves. Currently, we have identified
and formulated correctness criteria for detecting interactions
due to nondeterminism or conflicting actions. The Property
Generator outputs correctness properties expressed in Compu-
tation Tree Logic (CTL) [11]. The properties are generated
automatically from the requirements models of the features
without any input from the user, which is in line with our goal
of fully automating the analysis and improving the usability
of the method.

Property generation is complicated by the fact that some
feature interactions are intended and desirable, and should
not be reported as errors in the model. Since our FORML
modeling language supports the explicit modelling of intended
interactions, as discussed in Section III.A, we are able to
encode properties such that only unintended interactions are
reported. This improves the feedback to the user and helps the
user to focus only on troubleshooting undesired behaviour.

SMV Model Checker: We are currently using an extended
version of the NuSMV model checker [10] that is capable
of analyzing product-line models [13]. The model checker
takes as input an SMV model representing a product-line
and analyzes the full product-line model. The model checker
outputs for each violated property a Boolean expression that
characterizes all of the feature configurations (or products) that
violate the property; it also outputs a counterexample showing
how the property can be violated in one of the output products.
However, this work builds on BDD-based model checking,
which is no longer state-of-the-art for software models, so we
are currently exploring other optimized model checkers, to see
if they can be extended to analyze product-line models.

IV. CONCLUSIONS

We have presented fourteen recommendations of concrete
strategies to improve the usability of formal methods. Our
recommendations focus on the modelling and analysis of
behavioural requirements for software product lines, but many
of them generalize to other application domains. We intend
for these recommendations to be input to a larger discussion
within the SE/FM community on how to improve the usability
of formal methods.
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