ACM Copyright Notice

© ACM 2017

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Published in: Proceedings of the Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering (ESE/FSE'17), September 2017

“Continuous Variable-Specific Resolutions of Feature Interactions”

Cite as:

M. Hadi Zibaeenejad, Chi Zhang, and Joanne M. Atlee. 2017. Continuous variable-specific
resolutions of feature interactions. In Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering (ESEC/FSE 2017). ACM, New York, NY, USA, 408-
418.

BibTex:

@inproceedings{Zibaeenejad:2017:CVR:3106237.3106302,

author = {Zibaeenejad, M. Hadi and Zhang, Chi and Atlee, Joanne M.},

title = {Continuous Variable-specific Resolutions of Feature Interactions},

booktitle = {Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering},

series = {ESEC/FSE 2017},

year = {2017},

pages = {408--418}

}

DOI: https://doi.org/10.1145/3106237.3106302

50

Continuous Variable-Specific Resolutions of Feature Interactions

M. H. Zibaeenejad
University of Waterloo
Waterloo, ON, Canada
mhzibaee@uwaterloo.ca

ABSTRACT

Systems that are assembled from independently developed
features suffer from feature interactions, in which features
affect one another’s behaviour in surprising ways. The Fea-
ture Interaction Problem results from trying to implement
an appropriate resolution for each interaction within each
possible context, because the number of possible contexts to
consider increases exponentially with the number of features
in the system. Resolution strategies aim to combat the Fea-
ture Interaction Problem by offering default strategies that
resolve entire classes of interactions, thereby reducing the
work needed to resolve lots of interactions. However most
such approaches employ coarse-grained resolution strategies
(e.g., feature priority) or a centralized arbitrator.

Our work focuses on employing variable-specific default-
resolution strategies that aim to resolve at runtime features’
conflicting actions on system’s outputs. In this paper, we
extend prior work to enable co-resolution of interactions on
coupled output variables and to promote smooth continuous
resolutions over execution sequences. We implemented our
approach within the PreScan simulator and performed a
case study involving 15 automotive features; this entailed
our devising and implementing three resolution strategies
for three output variables. The results of the case study
show that the approach produces smooth and continuous
resolutions of interactions throughout interesting scenarios.

KEYWORDS

Feature interactions, software integration, internet of things

ACM Reference format:

M. H. Zibaeenejad, Chi Zhang, and Joanne M. Atlee. 2016. Con-
tinuous Variable-Specific Resolutions of Feature Interactions. In
Proceedings of 11th Joint Meeting of the European Software Engi-
neering Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering, Paderborn, Germany, 4—8
September, 2017 (ESEC/FSE 2017), 7?7 pages.

DOI: 10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner /author(s).

ESEC/FSE 2017, Paderborn, Germany

© 2016 Copyright held by the owner/author(s). 978-x-XXXX-XXXX-
x/YY/MM...$15.00

DOI: 10.1145/nnnnnnn.nnnnnnn

Chi Zhang

University of Waterloo
Waterloo, ON, Canada
c335zhan@uwaterloo.ca

Joanne M. Atlee
University of Waterloo
Waterloo, ON, Canada
jmatlee@uwaterloo.ca

1 INTRODUCTION

In feature-oriented software development, a system’s func-
tionality is decomposed into features, where each feature is
an identifiable unit of functionality that may be optional
or dynamically selectable (e.g., Cruise Control). Feature-
orientation helps to address software complexity through
decomposition into (feature) modules that can be considered,
developed, and evolved independently. Software developers
use features as the basis for incremental software develop-
ment, where each software release is described in terms of
new or updated features (as well as bug fixes). Feature mod-
ularity enables rapid development and integration of new
features; and facilitates development of new systems through
assembly of existing modules, possibly from multiple sources.

Although features are often treated as separate concerns,
a feature may behave differently when integrated with other
features in the system. A feature interaction occurs when
one feature affects the behaviour of another. For example,
the software controllers for the braking features on the 2010
Toyota Prius interacted badly, reducing drivers’ overall ability
to brake and leading to multiple crashes and injuries [?].
There has been considerable research into the automatic
detection of feature interactions [?], but the real complexity
lies in their resolution. Most interactions (although not
all [?]) be detected through pair-wise analysis of features,
which is quadratic in the number of features. However, each
interaction needs to be analyzed and possibly resolved; and
the ideal resolution depends on the presence of other features.
For example, the desired speed of a car depends on the driver’s
actions (e.g., depression of the accelerator pedal) as well as
which features related to speed have been activated (e.g.,
cruise control, speed-limit adherence, collision avoidance,
stability control). Thus, each new feature comprises its
core functionality plus some (possibly exponential) number
of exceptions, each implementing desired behaviour in the
context of a particular combination of other activated features.
As the number of features grows, a software team finds that
the development of a new feature is eventually dominated by
the Feature Interaction Problem: the need to analyze feature
combinations, resolve interactions, and verify resolutions [?
]

The most effective solutions to the Feature Interaction
Problem are feature-oriented architectures that coordinate
the communications and interactions among feature modules
[? 7 7 ? 7]. The architectures enable rapid develop-
ment, integration, and deployment of new features because
they preserve the modularity of distinct features — but they
do so at the expense of optimal resolutions of interactions.
Interactions are resolved at runtime by the architecture’s

ESEC/FSE 2017, 4-8 September, 2017, Paderborn, Germany

" resolved
ac |o.n;|on actions on
variable g variable

Figure 1: Architectural model for variable-specific resolutions

coordination strategies, which are usually based on feature
priority or precedence, runtime arbitration, or negotiation.
Such approaches for loose integration and coordination of
features are becoming increasingly important, as they enable
developers (and consumers!) to interconnect components
and devices without considering their interactions. However,
most of these resolution strategies are coarse grained, in that
they are based on the priority or precedence of the features
themselves rather than the features’ interacting actions. As
such, they provide suboptimal win/lose resolutions in which
some features’ actions are sacrificed in favor of other features’
actions; and they often require an upfront total or partial
ordering on features [?].

Bocovich and Atlee [? | have proposed a feature-oriented
architecture with variable-specific resolutions, in which the
developer can devise, for each system output variable, an
appropriate default strategy for resolving conflicting actions
on that variable. As simple examples, a resolution strategy for
one output variable might be the minimum of the features’
actions, whereas the strategy for another output variable
might be the average of the features’ actions. Their approach
has several advantages, including that resolution strategies
(1) are agnostic to the particular features, or even the number
of features, involved in an interaction; (2) are fine-grained
(c.f., feature priority); and (3) are specific to the variables
being assigned (c.f., a uniform strategy like feature priority).
However, their approach failed to consider the quality of
default resolutions over a sequence of features’ actions, or
how resolution strategies might interact if their respective
output variables are coupled.

Our work extends their architecture in a number of ways:

e Feature logic is separated from control logic, to dis-
tinguish between interactions that are amenable to
(sub-optimal) default resolutions strategies versus
computations that need to be optimal.

e System features, whose realizations are independent
of specific input and output devices, are treated
separately from actuator features, which apply to
particular actuators.

e Non-cyclic information flows between resolution mod-
ules enable co-resolutions of interactions involving
tightly-coupled variables.

e Our feature-action language is richer, and inputs to
the resolution modules are richer, to promote smooth
resolutions over consecutive execution steps.

M. H. Zibaeenejad, Chi Zhang, and Joanne M. Atlee

Cruise Control Feature

Speed<

Increase
cuipsg e o)
Speed>
Maintain_ CruiseSpeed
speed() Speed<

eds<

Increase
_speed()

Feature logic Control logic

Figure 2: A model of a Cruise Control feature that combines
its feature logic with its control logic.

e There is advice on how to accommodate task features,
which have long-term actions.

We have evaluated our work within the PreScan simu-
lator for advanced driver assistance systems (ADAS). We
have implemented fourteen automotive features, have devised
and implemented three default resolution strategies for the
features’ outputs, and have plugged these modules into our
architecture. The results of the case study show that the
approach produces smooth and continuous resolutions of
interactions throughout interesting scenarios.

The rest of the paper is organized as follows. We first
give an overview of the original work that promotes variable-
specific resolutions (VSR) to feature interactions. In Sec-
tion ??, we describe extensions to this architecture, to support
continuous variable-specific resolution (CVSR) of interactions
over an execution sequence and co-resolution of interactions
on tightly-coupled variables. In Section ??, we present the
implementation of our architecture, our variable-specific reso-
lution strategies, and the results of the case study. Section ??
summarizes related work, and Section ?? concludes the paper.

2 VARIABLE-SPECIFIC RESOLUTION (VSR)

The architectural model of variable-specific resolution (VSR)
is depicted in Figure ??. Features are implemented as separate
modules that execute in parallel, each reacting to current
sensor values and issuing actions to the system’s output
variables. A resolution module is defined for each of the
system’s output variables (e.g., a separate resolution module
for the brake pressure on each wheel of a vehicle). The role
of the resolution modules is to resolve features’ conflicting
actions on the modules’ corresponding output variables.

A system’s execution is an iteration of periodic functions.
In each iteration, the feature modules react to system inputs
from sensors, by issuing actions on output variables. For
example, a cruise control feature in a car (Figure ??) will
continuously monitor the car’s speed and compare the current
speed to the driver’s desired cruising speed; if corrective
action is required, the feature sends actions to the car’s engine
throttle system or to the braking system. Normally, the
features’ actions would flow directly to the output variables;
instead, they flow to the variables’ corresponding resolution
modules. Every input to the resolution module includes
meta-data regarding the action category, i.e., driver action,
emergency action, safety action, non-safety action. Fach

50

Continuous Variable-Specific Resolutions of Feature Interactions

resolution module inputs an arbitrary set of actions on some
output variable, performs a pre-programmed variable-specific
resolution strategy on those actions, and issues a resolved
action or series of actions to its corresponding output variable.
In VSR, the developer is responsible for devising a reso-
lution strategy for each output variable (or type of output
variable). A primary benefit of this approach is that the num-
ber of resolution modules to be developed is typically much
smaller than the number of possible optimal resolutions.! A
second benefit is that resolution strategies do not depend
on which features are active in the system or on the specific
interactions to be resolved; thus, new features can introduce
new actions on existing output variables without requiring
any modifications to the resolution modules (although new
features that introduce new output variables would require
the development of new variable-specific resolution modules).
As such, the VSR approach addresses the Feature Interaction
Problem by drastically reducing the amount of work to be
performed by the developer to resolve feature interactions.
However, the VSR architecture is a partial solution that
only considers how singleton feature interactions are resolved.
It raises questions about the effectiveness of default resolution
strategies when applied continuously over a sequence of fea-
tures’ actions. Also, VSR does not accommodate the default
resolution of interactions that involve coupled variables.

3 CONTINUOUS VSR

In this section, we introduce continuous variable-specific
resolution (CVSR), which consists of a number of extensions
to the original VSR architecture that are devised to resolve
interactions effectively and continuously over a sequence of
execution steps. We illustrate our work with a running
example involving five advanced driver assistance systems
(ADAS) and features:

Cruise Control (CC) keeps vehicle speed at driver-set value

Speed Limit Control (SLC) keeps vehicle speed below speed limit

Headway Control (HC) keeps a safe distance to the vehicle ahead

Anti-lock Braking System (ABS) keeps the wheels from locking

Traction Control System (TCS) keeps the wheels from spinning
Many of these features manipulate the same variables, in-
creasing the likelihood of undesired interactions among the
features. Specifically, all of these features have a direct or
indirect impact on a vehicle’s speed.

3.1 Feature vs. Control Logic

In previous works on resolving feature interactions at run-
time cite, features operate directly on output variables and
actuators. However, in dynamic systems like vehicle control,
actions are highly optimized by nonlinear controllers that
account for vehicle dynamics, environmental conditions (e.g.,
gradients in the road), fuel efficiency, and other performance
factors. If multiple features were to attempt to control the
same output variable or actuator (e.g., engine throttle) at
the same time, with each feature issuing an optimized action

'In the worst case, each feature interaction would require unique
resolutions for every combination of active features.

ESEC/FSE 2017, 4-8 September, 2017, Paderborn, Germany

negative
y acceleration

contro

positive
acceleration

speed

Figure 3: An overview of the CVSR architecture: feature-
logic modules act on attribute variables; variable-specific res-
olution modules resolve conflicting actions on attributes; and
control logic realizes and optimizes resolved actions.

on that actuator, it is unlikely that an engineer could devise
an appropriate resolution strategy that (1) resolves an inter-
action among the multiple optimized actions, such that (2)
the resolution is itself optimal.

Instead, we advocate separating features’ intents from how
those intents are realized through commands to actuators.
In particular, we propose separation of feature logic from
control logic, where feature logic is responsible for computing
a feature’s desired effects on the system, and control logic
is responsible for realizing that effect and for optimizing its
realization, through commands on output devices and ac-
tuators. To achieve this separation, we introduce attribute
variables, which are abstract representations of system char-
acteristics and outputs. A feature’s intent is expressed as
actions on attribute variables (thus actions are agnostic to the
system’s concrete actuators); and resolution modules resolve
conflicts on attribute variables (thus their computations are
also agnostic to the system’s actuators). The control logic
transforms the actions on attribute variables into optimized
control signals to actuators.

With the control logic separated out of features’ actions,
the task of devising a default resolution strategy for resolving
interactions among conflicting feature actions becomes pos-
sible: a resolution module is associated with each attribute
variables (rather than with each output variable) to resolve
conflicting actions on attribute variables; and then control
logic is used to realize and optimize the resolved actions on
attribute variables. As a concrete example, consider automo-
tive features Cruise Control, Headway Control, and Speed
Limit Control (in Figure ??). The feature logic for each of
these features determines a desired value for the vehicle’s
speed (an attribute variable). A resolution module for the
attribute variable speed takes as input the features’ actions
on vehicle speed and computes a vehicle acceleration (i.e.,
the acceleration needed to achieve the resolved speed value).
Depending on whether the resolved acceleration is positive
or negative, the action is forwarded to the control logic for
the engine throttle system or braking system, where each
control-logic module is optimized for its respective actuator.

By separating feature logic from control logic, we are able
to distinguish between features’ intents, whose interactions
are likely to be amenable to default resolution; versus the

NONON NN
(S N I

ESEC/FSE 2017, 4-8 September, 2017, Paderborn, Germany

optimized realizations of feature actions, which are nonlinear
in nature, and less likely to be amenable to default resolutions.

3.2 Dependencies Among Attribute Variables

When there are dependencies between attribute variables,
their corresponding resolution modules cannot decide their
values independently. For example, a vehicle’s steering angle
and its speed need to be considered together, if the vehicle is
to turn safely without skidding.

In the case where attribute variables are tightly coupled
but are realized by different actuators, the CVSR architecture
allows for limited sharing of information among resolution
modules, so that a resolution strategy for one attribute vari-
able may use the projected next value of a related attribute
variable (see Figure ??(a)). For instance, to accommodate the
dependency between steering and speed variables in our ex-
periments, the output of the steering angle resolution module
flows to the speed resolution module, to be used to calculate
a safe turning speed. Information flows among the resolution
modules must be acyclic to avoid a circular dependency. If a
dependency cannot be made acyclic, then either the coupled
attribute variables must be set by a single combined reso-
lution module, or one of the resolution modules must make
do with stale values of the coupled attributes (e.g., from the
previous execution step or from the sensors).

A different type of dependency exists between uncoupled
attribute variables that are realized by the same actuator.
For example, Anti-Lock Braking (ABS) limits wheel slip, and
Traction Control (T'CS), controls wheel spinning. The two
attribute variables are unrelated, which means that there
are no interactions to resolve with respect to actions on the
attributes. However, actions on both attributes are realized,
at least in part, by the brake actuator, and the realizations
can conflict with each other. CVSR defers the resolution of
such interactions to the actuator’s control-logic module (see
Figure ??(b)). Thus, the resolution module for each coupled
attribute variable sends its output to their common control-
logic module, and the control-logic module is responsible for
coordinating and optimizing their realizations.

In general, dependencies among attribute variables impinge
on our objective to modularize default strategies for resolving
feature interactions. The impact is minor when dealing
with tightly-coupled attribute variables: one of the coupled
variable’s resolution modules remains agnostic of features and
other resolutions modules; whereas the resolution module
for the second variable is designed to take into account the
projected next value of the first variable. However, in the
case of unrelated attribute variables that are realized by the
same actuator, there is no possibility for default resolution of
their interactions. The control-logic module needs to know
the context of the actions it is realizing, in order to produce
an optimized control signal for the actuator.

3.3 Actuator Features

The decomposition of features into feature logic and con-
trol logic and the introduction of attribute variables allows

M. H. Zibaeenejad, Chi Zhang, and Joanne M. Atlee

features to be agnostic to the actual output devices used
to realize their actions; and allows resolution modules to
resolve interactions on attribute variables without knowing
how the resolved actions will be realized. However, some
features are designed to enhance specific actuators; obviously,
these features cannot be actuator agnostic. In our running
example, Anti-Lock Braking (ABS) is an actuator feature.
The intent of ABS is to improve the braking actuator be-
haviour so that wheel slip is minimized — by applying brake
pressure intermittently. On the other hand, Cruise Control,
Headway Control, and Speed Limit Control are features that
manipulate characteristics of the whole system (i.e., speed,
distance to the preceding vehicle) without regard to how
those characteristics are realized through actuators.
Therefore, we distinguish between two feature types:

e Actuator features: features that enhance and extend
the behaviour of an actuator.
e System features: actuator-agnostic features.

CVSR is designed to ease the resolution of interactions among
system features only. Because actuator features are designed
to extend and improve the behaviours of actuators, and
because actuators and actuator features typically need to
behave optimally, it is unlikely that one can devise an ac-
ceptable feature-agnostic default strategy for resolving in-
teractions that involve actuator features. Thus, we exclude
them from the set of features that CVSR coordinates by
default resolution strategies, and instead CVSR delegates
their coordination to the control-logic modules.

We recognize that some system features (e.g., emergency
features) may also have behaviours that must be optimized.
In our running example, Traction Control activates when a
car is out of control due to wheel slippage; its actions are
realized through precise reduction of engine torque and appli-
cation of specific brake forces to individual wheels. In CVSR,
system features whose behaviours need to be optimized are
treated as actuator features: they are coordinated by control-
logic modules, which are responsible for producing optimal
resolutions and control signals for the actuators.

Thus, in CVSR, each execution step of the system consists
of the following sub-steps: (1) system features react to sensor
inputs by acting on attribute variables, (2) their (possibly
conflicting) interactions are resolved according default res-
olution strategies implemented in resolution modules (one
per attribute variable), (3) the resolved actions on attribute
variables are realized by control-logic modules as optimized
control signals destined for the system’s actuators, (4) actua-
tor and emergency features enhance these control signals, (5)
a second set of control-logic modules resolve and optimize
enhanced signals from multiple actuator features, and (6) the
optimized control signals are sent to the actuators. An ex-
ample of the CVSR architecture as it applies to an extended
version of our running example of automotive system and
actuator features is given in Figure ?7.

S

N o o

Continuous Variable-Specific Resolutions of Feature Interactions

ESEC/FSE 2017, 4-8 September, 2017, Paderborn, Germany

sensed
speed

v action on

q acceleration
contro \

q action on
control accele\rat)ion

. g

constraint
. on speed

resolved

predicted

. angle
constraint

on angle

““"" " d
angle 5 andactuator
contro o cee

acceleration,

engine
throttle
eee

brake
pressure

contro
stability

Steering features

optimal
brake pressure

m warmng on | task on/off
warning angle |
v

H

) &=

detection warning on

angle

Figure 4: A partial model of the CVSR architecture instantiated with ADAS system and actuator features.

S% %}DE
' Ea{ am

(a) (b)

Figure 5: (a) Coupled attributes realized by different actua-
tors, (b) Uncoupled attributes realized by the same actuator

3.4 Feature Action Language

In VSR [?], the feature action language is limited to assigning
new values to output variables. Each feature action is (1) the
target value of one variable, and (2) meta-data that indicates
whether the action is a driver action, an emergency action,
a safety action, or a non-safety action. This information is
sufficient to resolve interactions effectively among a single
set of feature actions [? |; but it results in turbulence and
thrashing when the same resolutions are applied to multiple
sets of feature actions over time. To improve the quality of
interaction resolutions over an execution sequence, CVSR
extends the feature action language to include not only target
values of attribute variables, but also target derivatives of
attribute values, and simple constraints on attribute values:

(1) Target Attribute Value: The target value of an at-
tribute variable is still the truest reflection of a feature’s
intent with respect to a particular system attribute.

(2) Target Derivative of Attribute: For attribute variables
that represent dynamic system attributes (e.g., speed), resolu-
tion modules produce smoother, more continuous behaviour
if they resolve conflicts over target derivatives (i.e., target
rates of change change) rather than over target values.

(3) Attribute bounds: In some cases, a feature’s intent
is to enforce a constraint [?]. For example, the intent
of Speed Limit Control (SLC) is to keep a vehicle’s speed
at or below the current speed limit. If feature actions were
limited to variable assignments, then a feature like SLC must
continuously monitor the system and take corrective action
whenever its intended constraint is violated. The effect on
system behaviour is periodic violation and re-establishment
of SLC’s speed constraint. To avoid such fluctuations in
behaviour, CVSR extends the feature action language to allow
lower and upper bounds on attribute values. The resolution
module tries to produce resolved actions that satisfy given
bounds, to avoid future corrective actions from features.

Figure ?? shows a simulation of Control Cruise (maintain-
ing 100 km/hr) and SLC (adhering to a 90 km/hr speed

Speed(km/h)
o]
N
=

— Without attribute bounds

------- with attribute bounds

Time(secs)

Figure 6: Car speed when Cruise Control is set to 100 km/hr
and Speed Limit Control keeps the speed under 90 km/hr.

50

ESEC/FSE 2017, 4-8 September, 2017, Paderborn, Germany

limit). Resolutions fluctuate more when the features’ actions
are target values of speed (solid line), compared to resolutions
when SLC’s action is a bound on speed (dashed line).

3.5 Task Features

So far, feature actions have been instantaneous: in each exe-
cution step of the system, features issue actions on attribute
variables or control signals that are expected to be realized at
the end of the execution step; and then in the next execution
step, sensors report updated variable values and the features
react by issuing new actions to be realized at the end of
this next execution step; and so on. However, some feature
actions are not instantaneous. A task feature is a feature
that has at least one action that takes multiple execution
steps to achieve and is non-interruptible. For example, Lane
Changing (automatically move the vehicle to the centre of
the next lane) and Automatic Park Assist (automatically
perform parallel parking) are task features.

Because tasks should be completed without interruption,
CVSR gives tasks priority over other feature actions. This
requires some negotiation between a task feature and the
resolution modules of the attribute variables that its task
affects. Specifically, a task feature and the resolution modules
need to agree on the initiation of a task: a task starts by
seeking permission from the resolution modules of all the
attribute variables that the task might act on; permission is
granted when no other task is active and all warning signals
are off. While the task is active, the affected resolution
modules normally ignore actions from other features. Thus,
during a lane change, the actions from Lane Keeping are
ignored; and while parallel parking, the actions from Lane
Keeping and Headway Control are ignored. The task ends by
notifying resolution modules of the completion of the task.
This protocol is discussed in more detail in Section ??, where
we present the resolution modules that we use in our studies.

A resolution module can abort a task in the event of a
driver action or an emergency action from another feature
(e.g., due to an impending collision). In such an event, the
resolution module sends an abort message to the task feature,
and the task feature notifies the other resolution modules
that the task has completed. At present in CVSR, a task
feature does not attempt to recover from an aborted task;
instead, the driver, the emergency action, and other features
work to react to the emergency situation. In the future, we
plan to experiment with other reactions of task features to
emergency situations, such forward commit or rollback.

4 CASE STUDY

To evaluate the quality of resolutions that result from us-
ing the CVSR approach, we conducted a simulation of the
CVSR architecture populated with system features from the
automotive domain and three resolution modules relevant
to the features. We used the MatLab toolbox PreScan as
our simulation tool.2 PreScan is a physics-based simulation
platform that is used in the automotive industry to develop

2https://www.tassinternational.com/prescan

M. H. Zibaeenejad, Chi Zhang, and Joanne M. Atlee

Advanced Driver Assistance Systems (ADAS). Simulated ve-
hicles can be equipped with a number of different sensors
(e.g., camera, Lidar, radar, TIS). The simulation environ-
ment can be programmed with road segments (curvatures,
speed limits, gradient) and actors (cars, bikes, pedestrians).
Actuators are pre-built into the actors and cannot be directly
manipulated. This limitation means that we cannot simulate
actuator features such as ABS.

Our case-study features are taken from public documents
that describe 22 Bosch driver-assistance and active-safety
features.®> Of these, four features (Anti-lock Braking, Trac-
tion Control, Active Steering, Electronic Stability Control)
are excluded from the case study because they are actuator
features; two additional features (Road Sign Assist, Driver
Drowsiness Detection) are excluded because the PreScan
simulator does not support the necessary sensors; one feature
(Automatic Park Assist) is excluded because it is too compli-
cated to implement and has no conflict interactions with the
other features. Table ?? lists the remaining 15 features used
in our case study and their descriptions. The third column
indicates what the feature’s outputs are, and the last column
indicates what the associated resolution modules are.

4.1 Evaluation Criteria

To evaluate the quality of resolutions to feature interactions,
we need to use multiple criteria. First and foremost is the
degree to which a resolution adheres to the original intents
and behaviours of the interacting features. However, given
that a resolution, by its nature, changes the actions being
performed by one or more interacting feature, we need sec-
ondary criteria for evaluating those resolutions that change
features’ actions.

There are global properties of the system that represent
minimal criteria for correct behaviour of the overall system:

e The vehicle does not crash into other cars or obstacles.

e The vehicle stays on the road, and in the centre of the
current lane except when changing lanes.
e The vehicle issues warning signals when a global prop-

erty or feature property is violated.

e The vehicle’s acceleration does not exceed 2.94 msz7

except in due to emergency actions [?].
e The vehicle’s lateral acceleration does not exceed
1.176ms? except due to emergency actions 7]

Lastly, variable values should not be turbulent, in order for
sequences of resolutions to result in smooth and continuous
system behaviour. A variable’s value is deemed turbulent if
it fluctuates around a target value. The higher the amplitude
of the fluctuation, the worse the turbulence.

4.2 Programmed Resolution Modules

The essence of the CVSR approach are the resolution modules
that are programmed to employ default resolutions strategies

3https://goo.gl/4LSI3H

https://www.tassinternational.com/prescan
https://goo.gl/4LSl3H

Continuous Variable-Specific Resolutions of Feature Interactions

ESEC/FSE 2017, 4-8 September, 2017, Paderborn, Germany

Feature Name Feature Functionality Feature-Logic Resolution|
Output Modules

Speed Limit Control (SLC) Automatically keeps the vehicle’s speed at or below the road’s speed limit. Speed bound Speed

Cruise Control (CC) Maintains a desired speed of vehicle as set by the driver. Acceleration Speed

Headway Control (HC) Keeps the vehicle within a safe distance behind the preceding vehicle. Speed bound, | Speed
acceleration

Traffic Jam Assist (TJA) The car assumes the same speed as the car in front of it, following at a safe distance. | Acceleration Speed

Pedestrian Protection Braking | Automatically initiates emergency braking in case of impending collision with a | Acceleration Speed

(PPB) pedestrian.

Predictive Braking System | When warned of a collision, initiates partial braking to give the driver more time to | Acceleration Speed

(PBS) react.

Emergency Braking System | When warned of a collision, prepares the braking system for full braking, to be | Acceleration Speed

(EBS) activated with any braking signal from the driver.

Lane Keeping Assist (LKA) Issues appropriate steering commands to keep the vehicle in the center of the lane. | Steering angle | Steering

Lane Departure = Warning | Detects if the vehicle is about to move out of its lane, and warn the driver. Warning Warning

(LDW)

Collision Warning (CW) Detects and warns the driver if the preceding vehicle is too close. Warning Warning

Pedestrian Protection Warning | Detects an impending accident with pedestrians (who are in the same lane as the | Warning Warning

(PPW) vehicle) and warn the driver of impending collision.

Lane Change Assist (LCA) Detects and warns the driver if a vehicle is in the driver’s blind spot or is approaching | Warning Warning

rapidly from the rear.

Rear Cross Traffic Alert | Detects and warns the driver if a vehicle crosses to the left or right behind the driver. | Warning Warning

(RCTA)

Parking Aid (PA) Detects the presence of an object when the vehicle is moving in reverse, and warn | Warning Warning

the driver indicating the distance to the detected objects.

Lane Changing Control (LCC) | Automatically finishes a lane-change action. Acceleration, Speed,

steering angle | steering,
warning

Table 1: Case study automotive system features.

that are most appropriate for resolving conflicts on their re-
spective attribute variables. For our case study, we needed to
devise three resolution modules for three attribute variables:
speed, steering angle, and warnings.

The inputs to each resolution module are lists of actions
and meta-data from an arbitrary number of features:

Targets - array of features’ target values

Derivs - array of features’ derivative targets

Bounds - array of features’ bounds on attribute variable
Emerg - designated emergency actions

CurValue - current attribute value as detected by sensors
RM - data from other resolution modules

reqs - array of task requests from task features

rels - array of task-complete notifications

The outputs of each resolution module is a resolved action
on the attribute variable, or signals to task features:

Action - resolved action on attribute variable
Perm - array of responses to task initiation requests
abort - signal to abort current task

In addition, there is an internal variable current_task, which
designates a task feature that is currently executing a task.

In each execution step, the input arrays are uniformly
indexed, such that actions and meta-data at index i are
associated with the same feature. An array element with
index ¢ may be empty if there is no corresponding input for
the corresponding feature. If the variable current_task is
set, meaning that a task is currently executing, we will use
current_task as an index into input arrays, to designate the
inputs associated with the executing task feature.

4.2.1 Steering-Angle Resolution Module. Our default strat-
egy for resolving conflicts over actions on the vehicle’s steering
angle is given in Algorithm ?7?:

Basic resolution strategy: Emergency actions have the high-
est priority (line 6). For non-emergency actions, the average
value of the target angle values is used to balance the require-
ments of all of the steering features (line 17).

Task features: If no tasks are currently executing, then at
most one request to initiate a task will be accepted (lines
12-15). Once a task is executing, then its actions have highest
priority (line 10), until the task completes (lines 2-3) or is
interrupted by an emergency action (lines 4-7).

Constraints/bounds: The final output Angle is no greater
than the minimum input bound (line 19-20), except for emer-
gency actions (line 6-7).

4.2.2 Speed Resolution Module. Our default strategy for
resolving conflicts over actions on the vehicle’s speed is given
in Algorithm ??.

Basic resolution strategy: In automobiles, a smaller accel-
eration has a greater possibility of being ‘safe’ than a larger
acceleration. Thus, the basic resolution strategy is to com-
pute all of the target accelerations (the acceleration needed to
achieve the lowest bound on speed (line 6), the acceleration
needed to achieve the minimum target value (line 7), the
minimum value among all of the target accelerations), and
return the minimum of these (line 11).

Coupled variables: To keep the vehicle’s lateral accelera-
tion within an acceptable range, the speed resolution takes
as input the projected value of the steering angle (provided
by the steering resolution module), and calculates the up-
per bound on vehicle speed needed to maintain a lateral
acceleration of less than 1.176m/s2 (line 4).

50

ESEC/FSE 2017, 4-8 September, 2017, Paderborn, Germany

Algorithm 4.1: Steering resolution

Input: Targets[],Bounds[],Emerg]],regs[],rels[]
Output: Angle,Perm[],abort

1 Var: current_task

2 if rels[] is non-empty then

3 L current_task = none;

4 if Emerg[] is non-empty then

5 abort current_task;

6 Angle = average(Emerg]]);

7L return,;

8 switch current_task do

9 case not none do

10 Angle = Targets[current_task];
1 For all r € regs[]: Perm[r]=0;
12 case none do

13 if req[] is non-empty then

For some r € reqs[]: current_task=r;Perm[r]=1;

15 For all i € regs[]\r: Perm[i]=0;

14 ‘
16 else

17 L Angle = average(Targets][]);
}

18

if Angle > minimum(Bounds[]) then
L Angle = minimum(Bounds(]);

[
S ©

Constraints/bounds: The algorithm computes the smallest
constraint among the given Bounds|] and the computed speed
bound needed to maintain a safe lateral acceleration (line 5);
a (negative) target acceleration is computed to achieve this
minimal bound if it is less than the vehicle’s current speed.

Task features: The handling of tasks the same as in the
steering resolution module, and is omitted here for brevity.

Algorithm 4.2: Speed resolution

Input: Targets[],Derivs[],Bounds[],Emerg|[],NextAngle,CurSpeed,
Input: reqs(],rels||
Output: Accel,Perm[],abort

1 if Emerg[] is non-empty then

2 ‘ Accel= min(Emerg][));

3 else

4 Bound = Calc_Bound(NextAngle);

5 Bound = min(min(Bounds][]), Bound);

6 if Bound < CurSpeed then
7 L Accel = (Bound - CurSpeed)/DefaultTime;

8 Accel2 = (min(Targets[]) - CurSpeed)/DefaultTime;
9 if Accel2 and Derivs[] is empty then

10 ‘ Accel = 0;
11 else
12 L Accel = min(Accel, Accel2, Derivs[]);

4.2.3 Warning Resolution Modules. For the sake of this
case study, we assume that all the warnings related to the
same attribute variable have the same display (for instance,
a warning light or alarm for angle warnings and another one

M. H. Zibaeenejad, Chi Zhang, and Joanne M. Atlee

for speed warnings). Our resolution module for one such
attribute (steering angle) is given in Algorithm ?7:

Basic resolution strategy: If any of the warning features
for an attribute sends an alert, the warning display for that
attribute should be on (line 10).

Task features: Permission to execute a task is granted only
if the related attribute is not issuing a warning (lines 3-4).
Otherwise, the handing of task requests and completions is
similar to the other resolution modules.

Algorithm 4.3: Steering warning resolution

Input: Targets[],reqs|],rels[]

Output: Warning,Perm[],abort
1 if rels[] is non-empty then
2 L current_task = none;

3 if maz(Targets[])#0 then

4 ‘ For all r € regs[]: Perm[r]=0

5 else

6 if regs[] is non-empty then

7 For some r € reqgs[]: current_task=r, Perm(r]=1;
8 For all i € regs \ r: Perm[i]=0;

9 else

10 L Warning = max(Targets|]);

4.3 Simulation Results

We first simulated features in isolation, to ensure that our
evaluations of the quality of CVSR resolutions are not nega-
tively affected by errors in the feature implementations. For
each feature, we systemically devised a test suite comprising
three types of test scenarios:

e normal scenarios that test a feature maintaining a
behaviour (e.g., CC maintaining the current speed)

e transition scenarios that test a feature transition-
ing between two normal cases (e.g., CC targeting a
cruising speed vs. maintaining that speed)

e boundary scenarios that test a feature at the bound-
ary of a transition (e.g., CC behaviour when the
vehicle speed is at or just below the cruising speed)

For each scenario, we determined whether feature logic was
implemented correctly by comparing the simulation results
against feature intent as well as against our quantitative and
qualitative criteria (see Section ?7).

To assess the benefit of using derivatives in resolution-
module calculations, we compared resolution strategies that
make use of target derivatives against resolution strategies
that do not use target derivatives. We tested feature combi-
nations on a test suite of transition scenarios and boundary
scenarios, and we compared the simulation results according
to how well they adhere to the features’ intents and how
well they meet our quantitative and qualitative requirements.
Our results show that, in transition scenarios, the resolution
strategies that make use of derivatives produce resolutions
that more closely adhere to the features’ intents. For exam-
ple, in scenarios involving Headway Control and a preceding
car, the resolution strategy that uses derivatives slows the

NONON NN
(S N I

Continuous Variable-Specific Resolutions of Feature Interactions

- T T T T T
250 : = without derivative input
- — = with derivative input

-

—~
-
- :
el

Distance(m)

Safe distance violated

Time(seconds)

Figure 7: Improvement of resolutions due to the inclusion of
derivatives in the resolution strategy.

vehicle down more quickly and reestablishes a safe distance
to the preceding car more quickly (Figure ?7).

To assess the benefit of using attribute bounds in resolution-
module calculations, we compared resolution strategies that
make use of attribute bounds against resolution strategies
that do not use attribute bounds. We simulated feature com-
binations on a test suites transition scenarios and boundary
scenarios, our results show that, in all scenarios, the reso-
lution strategy that does not make use of attribute bounds
has greater turbulence in variables’ values (with the ampli-
tude of the turbulence greater in transition scenarios than in
boundary scenarios). Whereas the resolution strategy that
employs attribute bounds results in smoother resolutions of
variable values over an execution (recall Figure ?7).

To assess the necessity of allowing information flows among
resolution modules, we simulated speed and steering features
in combination. Recall that in our implemented resolution
modules, the projected next steering angle value is shared
with the speed resolution module. We devised a test suite of
normal scenarios and transition scenarios. Figure ?? shows
the simulation results for a transition scenario in which the
vehicle’s lateral acceleration is exceeded: the vehicle enters a
curve in the road at high speed, and the steering resolution
turns the vehicle approximately 2° to keep the vehicle in the
centre of the road. The changes in steering angle can be
sudden, causing the lateral acceleration to exceed 1.176m/ 52;
in response, the speed resolution modules decelerates the
vehicle to reduce lateral acceleration.

Full simulation results can be found the second author’s
thesis (citation omitted).

4.4 Stress test

We use the following scenario as a stress test of our case study,
to assess how a CVSR architecture performs in the presence
of multiple feature interactions. The scenario comprises three
phases: in phase one, the vehicle has a speed of 75 km/hr,
Cruise Control (CC) is active and set to 100 km/hr, and
the road has a speed limit of 90km/hr. As shown in the
simulation results in Figure ??, the vehicle’s speed transitions
smoothly up to the speed limit and stays there.

ESEC/FSE 2017, 4-8 September, 2017, Paderborn, Germany

I T

i
~
}5

N\ A ungr ™ L s

A/ T VAN

Stesiing Angle(deres)

Vv

2 4 6 3
Time (secs)

Speed(kmh)

Time (secs)

(ms2)
I
=
——

U.m
.

‘I

i

;

1

;

;

i

;

;

.

;

1

;

;
!

¥ W A AN A

Time (secs)

Figure 8: Constrain speed according to steering angle. The
adjustments in speed are highlighted by rectangles.

In phase two of Figure ??, the vehicle is cruising at the
speed limit when a car traveling at speed 80km/hr cuts in
front of the vehicle (11s into the simulation). Headway Con-
trol (HC') reacts by issuing speed and acceleration targets
to slow down the vehicle, and the resolution (of CC, SLC,
and HC actions) is to brake sharply until a safe distance is
achieved with the preceding car (12s). At this point, HC
issues a speed bound to maintain a safe distance, and the
resolution is to increase vehicle speed to the features’ mini-
mum speed bound (i.e., the speed of the preceding vehicle).
Eventually (15s), the driver invokes Lane Change Control
(LCC) to change lanes and pass the preceding car. But there
is another car in its blind spot, which means there is a Lane
Change Assist (LC'A) warning that prevents the steering
resolution module from allowing the lane-change task.

In phase three of Figure ??, the adjacent car leaves the ve-
hicle’s blind spot, which inactivates the LC' A warning. When
the driver re-invokes Lane Change Control, the resolution
module permits the lane-change task. During lane changing,
priority is given to LC' actions (and actions of LCA, LDW,
and DDD are ignored). Once the lane change is complete,
the resolution module resumes default resolutions and the
vehicle’s speed smoothly progresses back to the speed limit.

4.5 Threat to Validity

The features were implemented by the authors, although they
are based on descriptions from online sources. Differences
between our implementations and an industrial vehicle’s fea-
tures may affect feature interactions, which in turn may
threaten the validity of our results. Moreover, because signif-
icant effort is needed to implement features and to generate
and run simulations, our case study comprises 15 features,
and only one task feature and one pair of coupled variables.
CVSR’s approach to handling task features and dependencies
among variables would benefit from further evaluation.
CVSR has been designed to apply generally to feature-
oriented systems, including dynamic systems; but it has been
evaluated only on features from the automotive domain. We

ESEC/FSE 2017, 4-8 September, 2017, Paderborn, Germany

M. H. Zibaeenejad, Chi Zhang, and Joanne M. Atlee

Phase 1 Phase 2 Phase 3
= \ i I
< 90 et :
£ . /
pd P
= 80 :/ i T
(7] H
a . .
W 70— it :
| | : | | |
5 10 P20 25 30

é‘ Time(secs) Enter left curve Lane Keeping adjustment
=651 o /
ol o /
2 — A :
©] i
L1651 3 i
‘£ | [| | |
2 10| 15 20 25 \ 30
& i Time(secs) Start right lane change Lane change finished
_ 2 : — T | T
] i Safe distance satisfied ;
o | i Car enters/leaves left i
w1 ; blind spot Car enters/leaves
E Preceding car cuts in right blind spot
g \u“‘ I \ I

0 10 | 15 20 25 30

' Time(secs)

Figure 9: Simulation of a stress-test scenario.

cannot guarantee that the current architecture can be applied
to other domains without additional case studies.

5 RELATED WORK

In general, there are three major approaches to addressing
feature interactions: formal methods, software architectures,
and online resolution techniques. Formal methods are mainly
used to detect interactions among features. Mathematical
models of features (e.g., logic or automata) and automated
reasoning techniques (e.g., theorem proving or model check-
ing) is used to detect interactions among features [? 7 7 ?
]

Architectural approaches interconnect feature modules,
and address interactions through conventions and protocols
that coordinate the features’ executions and sharing of re-
sources. Ccoordination is typically based on feature priority [?
? 7 7 7] or precedence [? 7 ? 7], which orders the fea-
tures’ reactions to system inputs. Such approaches need a
predetermined total or partial ordering on features, which
can be time-consuming to derive; and there may not be a
single ordering that is appropriate for resolving all feature
conflicts. Moreover, such approaches favour the actions of
one feature the the expense of other features, resulting in
possibly sub-optimal resolutions. In contrast, CVSR resolu-
tions consider all enabled actions, can be specialized to the
variable being acted on, and do not require features orderings
(or even prior knowledge of the features).

Online resolution techniques detect and resolve conflicts
among features at runtime. Resolution strategies include
feature priority, feature precedence, negotiation [?], arbi-
tration [? ? 7], rollback [? ? |, involving the user [?],
feature suspension [?], and feature termination [?]. Most
approaches either require a centralized authority that is re-
sponsible for detecting and resolving conflicts (e.g., arbitation,

rollback), have high runtime costs (e.g., negotiation, involving
the user), or result in coarse-grained resolutions.

Some approaches offer finer-grained resolutions. Laney et
al. [? 7] propose resolutions in which priorities are considered
at the granularity of individual feature requirements. During
feature composition, the developer specifies which aspects of
a feature’s behaviour may be left unsatisfied in the event of
a conflict. Interactions are resolved on a case-by-case basis.
Thus, the number of interactions to consider and resolve is
potentially exponential in the number of features.

The work closest to ours is variable-specific resolution
(VSR) [?], which proposes an architecture that uses resolu-
tion modules to resolve conflicting actions at runtime. The
resolution modules are variable specific, allowing engineers to
devise an appropriate resolution strategy for each controlled
variable rather than needing to devise a monolithic arbitrator
that fixes all possible interactions. Our work extends VSR
by (1) separating feature logic from control logic, and dis-
tinguishing between system features and actuator features,
thereby clarifying which interactions are amenable to default
resolutions and which need optimal resolutions; (2) extending
the feature action language to include derivatives and bounds,
resulting in higher-quality resolutions; (3) addressing interac-
tions among variables that have interdependencies; and (4)
accommodating task features. Automotive researchers [? |
have independently proposed using speed limits as constraints
to optimize the behaviour of Cruise Control, to achieve a
smooth vehicle speed when transitioning between different
speed-limit zones. Our work generalizes this idea, and uses
bounds to prevent thrashing around a target attribute value.

Continuous Variable-Specific Resolutions of Feature Interactions ESEC/FSE 2017, 4-8 September, 2017, Paderborn, Germany

1 6 CONCLUSION

We presented continuous variable default resolution (CVSR)
for resolving at runtime interactions among ad-hoc combina-

4 tions of features in a dynamic system. Our contributions over
o prior work include (1) separation of feature logic from control
o logic, (2) the distinction between system vs. actuator fea-
7 tures, and how only system features are amenable to default
8 resolutions, (3) extensions to the feature action language to
o include derivatives and constraints on attribute values, to
10 promote smooth sequences of resolutions over time, and (4)
= preliminary support for task features. Lastly, we provide
2 evidence in the form of a case study that CVSR can produce
::j smooth continuous resolutions over executions paths.

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

45

46

47

48

49

50

51

52

53

54

	FSE17.Copyright
	FSE17

