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ABSTRACT
Systems assembled from independently developed features
su↵er from feature interactions, in which features a↵ect one
another’s behaviour in surprising ways. The feature-intera-
ction problem states that the number of potential interac-
tions is exponential in the number of features in a system.
Resolution strategies o↵er general strategies that resolve en-
tire classes of interactions, thereby reducing the work of the
developer who is charged with the task of resolving interac-
tions. In this paper, we focus on resolving interactions due
to conflict. We present an approach, language, and imple-
mentation based on resolution modules in which the devel-
oper can specify an appropriate resolution for each variable
under conflict. We performed a case study involving 24 au-
tomotive features, and found that the number of resolutions
to be specified was much smaller than the number of possi-
ble feature interactions (6 resolutions for 24 features), that
what constitutes an appropriate resolution strategy is di↵er-
ent for di↵erent variables, and that the subset of situation
calculus we used was su�cient to construct nontrivial reso-
lution strategies for six distinct output variables.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications—
Methodologies; D.2.10 [Software Engineering]: Design;
D.2.12 [Software Engineering]: Interoperability

General Terms
Design, Reliability

Keywords
Feature interaction, conflict resolution

1. INTRODUCTION
Software systems are growing in size and complexity. The

“scale” of large-scale systems no longer refers simply to large
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codebases but also to extreme variability, including increas-
ingly larger sets of requirements, greater optionality and
customization, and greater varieties of execution platforms.
Such complexity is partly addressed through decomposition.
In feature-oriented software development, a system’s
functionality is decomposed into features, where each fea-
ture is an identifiable unit of functionality or variation.
Users view features as system capabilities (e.g., cut, copy,

and paste; Caller ID; Cruise Control) that may be optional,
selectable, or tari↵able. Software developers use features as
the basis for incremental software development, character-
izing software releases in terms of the new features intro-
duced or updates to existing features. Feature orientation
is particularly important in software product lines, in which
families of similar software products (e.g., smartphones) are
managed and evolved in terms of their features, and where
individual products are di↵erentiated by their (optional) fea-
tures [30]. Feature orientation also has the added benefit
that features can serve as a shared vocabulary among di-
verse stakeholders (e.g., marketers, customers, other engi-
neers) in a way that other types of software fragments–such
as modules, objects, or components–cannot.

Although features are considered individually, they are
often not truly separate concerns and problems arise when
developers try to integrate them into a coherent product.
A feature interaction occurs when one feature a↵ects the
behaviour of another. For example, the software controllers
for the braking features on the 2010 Toyota Prius interacted
badly, reducing drivers’ overall ability to brake and leading
to multiple crashes and injuries [29]. To be safe, software
developers must consider how features interact and must re-
solve undesired interactions. Because features are optional
in many products, or can be turned on and o↵ dynamically,
the number of feature combinations to be analyzed and man-
aged is exponential in the number of features. As a result, a
software team finds that the development of new features is
eventually dominated by the Feature Interaction Prob-
lem: the need to analyze, resolve, and verify interactions [4].

Researchers have proposed a number of general-purpose
strategies for resolving interactions, such as resolution by
feature priority [14, 18, 24], feature precedence [2, 7, 17],
negotiating compromises [12], involving the user [10], rolling
back conflicting actions [24], disabling feature activation [16],
terminating features [24], and terminating the application.
These strategies address the scalability aspect of the Feature
Interaction Problem directly by providing a default strat-
egy for resolving interactions, thereby reducing the num-
ber of interactions that need to be individually addressed
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by the developers. However, most of these strategies are
coarse grained (e.g., based on the priority or precedence of
the features themselves rather than the features’ interact-
ing actions); they provide suboptimal win/lose resolutions
in which some features’ actions are sacrificed in favour of
other features’ actions; and they often require an upfront
total or partial ordering on features [32].

In this paper, we propose a new approach to resolving fea-
ture interactions that (1) maintains feature modularity and
obliviousness, (2) allows the developer to specify a generic
resolution strategy for each output variable, and (3) is ag-
nostic to the number and to the specifics of features in the
system or the number of possible feature interactions. Each
feature specifies actions and outputs, in response to system
inputs and environmental conditions. All of the actions that
apply to a particular output variable are input to a resolu-
tion module designed for that variable, and the resolution
module produces a conflict-free sequence of actions that are
based on the input actions and the developer-provided reso-
lution strategy. Examples of simplified resolution strategies
include assigning an output variable to the average or the
minimum or the maximum of the values specified by the
features’ actions. A key benefit of this approach is that the
default resolutions for conflicting actions on a variable are
appropriate for that variable.

The contributions of this paper are as follows:

• We introduce a new approach to resolving features’ in-
teractions, in which the resolution strategies are spe-
cific to the variables being acted on.

• We present an implementation of the approach, in which
feature actions and resolution strategies are encoded in
situation calculus [25] and are executed by a GOLOG
intrepreter [23]. We identify su�cient and necessary
conditions on the developer-provided resolutions that
ensure that a resolution has desired properties (e.g., is
deterministic, is conflict-free, terminates).

• We performed a case study in which we used our ap-
proach and implementation to model the actions of 24
automotive features and to specify appropriate resolu-
tions for 6 distinct output variables. The results of the
case study demonstrate that di↵erent output variables
require di↵erent resolution strategies. The case study
also assessed the expressiveness of situation calculus
as a suitable language for encoding feature actions and
resolution strategies.

Our paper is organized as follows. In the next section, we
give an overview of feature-oriented requirements modelling
and the feature-interaction problem. In Section 3, we de-
scribe our approach to resolving feature interactions in terms
of resolution strategies per output variable, including how to
encode feature actions and resolution strategies in situation
calculus. In Section 4, we prove that the developer-provided
resolutions have desired properties (e.g., are deterministic,
are conflict-free, terminate), and we present the results of
our case study. In Section 5, we review the advantages of
our resolution and discuss future work. Section 6 summa-
rizes related work, and Section 7 concludes our work.

2. PRELIMINARIES
Throughout this paper, we use examples from the automo-

tive domain. Each feature extends a Basic Driving Service

(BDS), which serves as a base system [6]. An automotive
system comprises BDS and a subset of optional features.

2.1 Feature-Oriented Requirements
We are primarily concerned with the requirements stage

of feature-oriented software development. Behavioural re-
quirements for each feature are modelled independently and
then composed into a system. There are many ways to
model feature behaviour, but we focus on state-machine
approaches [13]. The language we describe here is based
on the Feature-Oriented Requirements Modelling Language
(FORML) [26] as it provides a rich syntax for expressing
feature behaviour.

A system’s behaviour is expressed in terms of its reactions
to changes and conditions in its environment, and its actions
on environmental variables. Monitored variables such
as car.speed represent environmental phenomena that are
sensed by or act as inputs to the system. Changes to mon-
itored variables prompt reactions in the system behaviour.
Controlled variables represent environmental phenomena
that are controlled or a↵ected by system outputs. For ex-
ample, the variable car.acceleration represents the current
acceleration of the vehicle and is a↵ected by actuators such
as the throttle or vehicle brakes. Often, related variables
are packaged into objects. These variables are referred to
as object attributes. For example, acceleration and speed
are both attributes of a car object. This relationship be-
tween objects and attributes is expressed using a dot nota-
tion (as in car.speed). Together, the values of world variables
comprise the world state. Of particular importance is the
current world state, wsc, which represents the current valu-
ations of all environmental variables. The current value of
attribute a of the object o is denoted wsc :: o.a. Changes in
variable values between the previous world state, wsp, and
the current world state, wsc, represent events.

A feature’s behaviour is modelled as a state machine,
called a feature machine. Figure 1 shows feature machines
for BDS and two optional features, Cruise Control (CC) and
Speed-Limit Control (SLC). A state in a feature machine
reflects the current state of a feature’s execution. States
may be hierarchical, containing several sub-states that more
finely describe feature behaviour. Superstates may also con-
tain concurrent regions that execute in parallel. For exam-
ple, the CC feature has Active and Inactive superstates that
reflect the feature’s conditional behaviour. The Active state
contains three concurrent regions responsible for monitoring
and controlling di↵erent phenomena. A world state reflects
the execution states of all feature machines, as well as valu-
ations of all monitored and controlled variables.

Transitions between states may be labelled with an iden-
tifier id, a triggering event te, a guard condition gc, and one
or more actions a1, . . . , an.

id : te [gc]/a1 . . . an

A transition from state s1 to s2 is enabled if the machine is
currently in state s1, the guard condition evaluates to true,
and the triggering event occurs. For example, in the CC
feature machine, the transition between Inactive and Active
states executes only if the triggering event ccActivate occurs.
Triggering events refer to changes in variable values between
the previous world state, wsp, and the current world state,
wsc. Guard conditions are boolean expressions over current
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Basic Driving Service

Inactive

Active

acceleration
 
 
 
 
 
 
 
 

deceleration
 
 
 
 
 
 
 
 

steering

t1: ignitionOn/
a1: car =
     +Vehicle(acceleration=0,
     steering=0)

t2: ignitionOff
a1: -Vehicle(car)

Control

t3: gasPressed/
a1: car.acceleration := 
          Acceleration()

Control

t4: brakePressed/
a1: car.acceleration := 
          Acceleration()

Control

t5: [steering != wheel.angle]/
a1: car.steering := Steering()

Cruise Control

Inactive

Active

Speed Limit Control

Inactive

Active

 

Monitor Control

t2: [car.speed != setSpeed]
a1: car.accleration := 
��ccAcceleration()t1: ccActivated

t1: slcActivated

Monitor Control

t2: [car.speed > speedLimit]
a1: car.accleration := 
��slcAcceleration()

Figure 1: Behaviour model of BDS and some automotive features

values of variables in wsc. A feature action corresponds to
a prescribed change to the current world state.

Features a↵ect the world state of a system by executing
actions on controlled variables. An action can add an ob-
ject to the world, remove an object from the world, or as-
sign a value to a controlled variable. For example, many
automotive features modify vehicle acceleration to maintain
driver preferences or respond to safety concerns. This is
modelled by actions that assign values to the controlled vari-
able car.acceleration. Often, the details of calculating these
values are abstracted as uninterpreted functions:

a1 : car.acceleration := CCAcceleration()
An execution step of a feature machine consists of the

execution of all concurrently enabled transitions and their
actions. The behaviour of a system is the parallel execution
of its feature machines. An execution step of a system is the
simultaneous execution of each feature’s transitions. The
resulting world state is determined by the new states in each
feature machine and the e↵ects of the transitions’ actions on
the controlled variables.

2.2 Feature Interactions due to Conflicts
Composing independently developed features naturally leads

to feature interactions. The literature [6] lists multiple types
of feature interactions, but in this paper we are concerned
with conflicts that occur in a single execution step. A con-
flict [20] occurs when the set of actions in an execution step
are impossible to execute simultaneously (e.g., incompatible
assignments to the same controlled variable).

In Figure 1, we see the potential for conflict when both
SLC and CC are Active and setSpeed > speedLimit: SLC
will try to decrease acceleration at the same time that CC
tries to increase it:

CC.t2.a1 : car.acceleration := ccAcceleration()

SLC.t2.a1 : car.acceleration := slcAcceleration()

3. RESOLUTION
Our aim is to resolve feature interactions in a way that

addresses key aspects of the feature interaction problem. We
developed a strategy with the following high-level goals.

1. Maintain the advantages of feature-oriented software
development. This includes feature modularity and
obliviousness to the presence of other features.

2. Enable conflict-free feature composition. Feature com-
position should resolve feature interactions if they are
present and should preserve feature behaviour in the
absence of interactions.

3. Allow resolutions to be based on all conflicting actions
rather than on the features that perform them. This
limits the impact that adding or removing features has
on the specification of resolutions.

4. Resolutions should be agnostic to the number of fea-
tures in the system and the number of features in an in-
teraction. In addition, the number of resolutions spec-
ified by developers should be small with respect to the
number of interactions and should not grow linearly or
super-linearly with the number of features.

5. The resolutions we devise should be deterministic and
total. Determinism guarantees that, given a current
world state and a set of changes to monitored variables,
there is only one possible next world state. As a result,
system behaviour is predictable. Totality guarantees
that there will always be a valid next world state.

We first give an overview of our approach to resolving
feature interactions due to conflicting actions and describe
how it fits into the execution model of a system composed
of feature machines. We then present the details of our
implementation and provide examples of resolutions in the
automotive domain.
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Figure 2: Architectural model

3.1 Overview
We draw inspiration for our approach from the Software

Cost Reduction (SCR) [15] requirements method. SCR spec-
ifications follow a dataflow execution model [19], in which re-
quirements are represented as a directed graph. Each node
in the graph is a function that calculates the current value
of a particular variable. Edges indicate the flow of data be-
tween nodes. A node executes its function as soon as all of
its input data are available along incoming directed edges,
and it outputs the result along outgoing directed edge(s) to
the next node(s).

Thus, an SCR specification defines a unique function for
each controlled variable. This function calculates what the
value of the variable will be at the end of an execution step.
Each function takes as input the current values of all moni-
tored variables, the most recently computed values of local
variables, and the current modes of all mode classes (analo-
gous to the current states in a state-machine) and determin-
istically calculates the next value of the variable for which
it is defined. There are no conflicts among variable assign-
ments in an SCR specification because they are resolved
during specification: each function e↵ectively encodes all
contributions to a controlled variable’s next value, and com-
putes a single next value.

In our approach, we similarly define a unique function
(called a resolution module or resolver) for each con-
trolled variable that computes the variable’s next value. How-
ever, in our approach, the sources of the inputs to a function
(that is, the features that are executing actions) do not need
to be known in advance. Each controlled-variable resolver
takes as input the features’ actions on the variable and em-
ploys a feature-independent resolution strategy to assign a
conflict-free value to the variable.

Figure 2 depicts the architectural structure of our ap-
proach. We define a feature module for each feature. In
each execution step, the feature machines in their modules
execute in parallel, reacting to changes in the values of mon-

itored variables. Each feature module outputs the set of
actions on the transitions that execute in that step. The
actions are partitioned according to the controlled variable
that they modify. For each controlled variable in the current
world state, we define a resolution module that is given as
input all of the features’ actions on the controlled variable.
The resolver computes and outputs a sequence of actions to
be executed atomically on the variable.

The next world state, wsn, is the result of executing in
parallel the output actions of each resolver, together with
the next states of each feature machine. Thus, a complete
execution step proceeds as follows:

1. Changes occur to the values of one or more monitored
variables.

2. Feature machines react in parallel by executing tran-
sitions and outputting transition actions.

3. Our resolution introduces a third phase in the execu-
tion step, in which the feature-machine actions pass
through resolver modules, one resolver per controlled
variable. The output of each resolver is a sequence
actions to be performed atomically.

4. The next world state, wsn, is determined by the result
of performing the transitions in step 2 and the feature
actions produced in step 3.

There are a couple of details about the resolution modules
worth noting. First, our resolvers di↵er from the controlled-
variable functions in SCR in that they take as input not
only the current values of monitored variables, but also an
arbitrary number of possibly conflicting actions on the con-
trolled variable in question. In contrast, SCR functions take
only values as input.

Second, recall that a feature’s actions can add a new ob-
ject to the world or remove an object from the world. As
objects are added (and removed), resolution modules for the
objects’ attributes are instantiated (and removed). Thus,
the set of resolvers in the system is dynamic.

3.2 Details
In this section, we focus on the details of the resolution

modules. We describe a language that is suitable for ex-
pressing the inputs and outputs of a resolver as well as for
specifying a resolver’s resolution strategy. We then provide
an implementation that uses situation calculus and a subset
of the GOLOG programming language.

3.2.1 Input Action Language
Our resolution language needs to be rich enough to encode

the inputs to a resolver. This includes values of monitored
variables and feature actions. An assignment assigns a vari-
able to the value of an expression. An expression may be a
simple value, or it may be a computation on other variables
or uninterpreted functions1. The resolution language must
be able to encode any relevant information about assignment
expressions, as the inputs to a resolver.

3.2.2 Resolution Language
How conflicting assignments to a controlled variable are

resolved depends on multiple factors, including the variable’s
1The details of uninterpreted functions may be specified
later in development.
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Table 1: Domain independent situation calculus symbols

Symbol Type Description

Sc constant starting state
do(a, s) function result of performing action a in s

Poss(a, s) predicate a can be performed in s

range of values, the system domain, and the e↵ect the vari-
able has on the behaviour of the system or on the system’s
environment. As such, the developer or domain expert are in
the best position to determine the most appropriate resolu-
tion strategy for conflicting actions on a controlled variable.
Our goal is to provide a language that is suitable for them
to program appropriate resolutions.

Consider two features, A and B, that control vehicle sta-
bility. Feature A monitors lane markings and detects that
the vehicle has veered too far to the left and compensates by
turning the vehicle to the right. Simultaneously, feature B
monitors oscillation (the sway of the vehicle), detects that
the vehicle is over-steering to the right, and attempts to
correct this by turning the vehicle to the left. In order to
achieve maximum stability, an appropriate resolution needs
to consider the actions from both features. A reasonable
resolution might be to set car.steering to the average of the
values assigned by features A and B.

In general, the resolution language needs to be expressive
enough to reason about a collection of actions and compute
a conflict-free resolution. Examples of resolution strategies
include computing the minimum, average, or sum of the
assignment expressions that are output by the feature mod-
ules. Each resolution module considers only the actions on
its controlled variable, and not the sources of the actions.
Such strategies incorporate all assignments in the compu-
tation of the result value and thus o↵er an alternative to a
win/lose resolution in which only one feature’s actions (e.g.,
those of the highest-priority feature) are preserved in the
final resolution.

Even when it is possible to specify variable-specific resolu-
tions, priorities sometimes still play a role and our resolution
language should support them. For example, in automotive
systems, it is common to give higher priority to actions that
preserve driver safety, such as Speed Limit Control (SLC),
compared to actions that maintain driver-set preferences,
such as Cruise Control (CC). Additionally, we may wish
resolutions to prioritize driver actions over feature actions.
As such, we categorize actions as being driver-controlled,
safety, or non-safety and devise a resolution language that
supports reasoning about action categories as well as the
values of assignment expressions themselves. We stress that
these resolutions depend on an action priority, not a priority
ordering on features.

3.2.3 Situation Calculus
Situation calculus [25] is a first-order language that is well-

suited to expressing actions, domain-knowledge, and the ef-
fects that actions have on the current domain state. We
chose to use situation calculus as a proof-of-concept imple-
mentation language because it naturally supports our re-
quirements with respect to both the input action language
and the resolution language.

Situation calculus constructs are grouped into three basic
categories: situations, fluents, and actions. A situation is a
first-order term that represents a world state, or a valuation
of all variables. A situation is the result of performing a
sequence of actions on a defined starting state2, Sc.

Actions in situation calculus are first-order logic terms
that reflect a prescribed change to a situation, or world state.
These actions may take one or more arguments as inputs.
For our purposes, situation-calculus actions are analogous
to feature actions. Performing an action a on a situation Sc

is expressed using the special function do, and results in a
new situation sn = do(a, Sc).

Fluents are functions and predicates that take a situation
as one of their arguments; they are referred to as fluents
because their valuations depend on the situation to which
they are applied. Fluents can be used to refer to the values
of variables in a particular world state. For example, the
functional fluent carSpeed(s) returns the value of the car’s
speed in the world state represented by situation s.

The developer uses a combination of situations, actions,
and fluents to specify allowable steps in the execution of a
system. These specifications are the axioms that constitute
a domain theory D. Starting-state axioms are assertions
on the values of fluents in a starting state Sc. Successor-
state axioms define the e↵ects of performing an action a in a
situation s. Precondition axioms specify whether an action a

may be performed in a given situation s; they are expressed
with the special predicate Poss(a, s). Table 1 contains a
summary of special situation-calculus constructs.

3.2.4 Encoding Inputs to a Resolution Module
The inputs to a resolution module for a controlled variable

o.a are (1) the values of monitored variables at the start of
the execution step (i.e., the values of the monitored variables
in the world state wsc), and (2) the set of actions that are
output by all the feature modules and that assign values to
o.a.

The developer encodes the inputs to a resolution module
as starting-state axioms, which assert constraints on the val-
uations of fluents in the starting situation Sc. The starting
situation of each resolver will reflect the current world state,
wsc. Given a monitored variable m in wsc, the developer as-
serts the relational fluentm(v, Sc) to be true if the value ofm
in wsc is equal to v (wsc :: m = v). To express the set, in list
form, of input actions, she asserts another relational fluent
assignRqst(L, Sc) where L represents the set of assignment
expressions output by the feature modules. That is, if the
features perform the actions o.a := e1, . . . , o.a := en, then
L = [e1, . . . , en]. Note that the number n of actions output
by the feature modules depends on the transitions that ex-
ecute in the feature machines and varies between execution
steps.

To distinguish between safety, driver, and non-safety ac-
tions, the developer may define assignRqst fluents for each
category. The fluents assignRqstSafety(L, Sc),
assignRqstDriver(L, Sc), and assignRqstNonSafety(L, Sc)
correspond to lists of assignment expressions partitioned ac-
cording to the above categories. In general, the developer
may define a fluent for every level of prioritization she wishes
to express.

2We deviate from the traditional situation-calculus termi-
nology of “initial-state” to avoid confusion with the concept
of the initial state for a state-machine model.
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Table 2: Domain independent resolution symbols

Symbol Type Description

empty(L) Predicate list L is empty
member(L, e) Predicate element e is in list L
append(L, e) Function append element e to list L
remove(L, e) Function remove element e from list L
average(L, v) Predicate average value in L is v
minimum(L, v) Predicate minimum value in L is v
maximum(L, v) Predicate maximum value in L is v
sum(L, v) Predicate sum of values in L is v
<, >, =, 6= Predicate equality and inequality
+, �, ⇤, / Function arithmetic operations

Example 1. Suppose a developer is responsible for pro-
gramming the resolution module for the controlled variable
car.acceleration. Relevant monitored variables include car.-
speed and car.acceleration. The developer distinguishes be-
tween three levels of prioritization: safety, non-safety, and
driver features.

In a particular world-state wsc, the Cruise Control feature
module outputs the action car.acceleration := ccAccelera-
tion(), Speed Limit Control outputs the action car.accelera-
tion := slcAcceleration(), and the driver presses the accel-
erator to produce the action car.acceleration := Accelera-
tion()+5 The starting-state axioms that encode these inputs
are:

car.acceleration(wsc :: car.acceleration, Sc)

assignRqstSafety([slcAcceleration()], Sc)

assignRqstDriver([Accleration() + 5], Sc)

assignRqstNonSafety([ccAcceleration], Sc)

3.2.5 Encoding the Resolutions of a Resolver
Each resolution module is responsible for assigning a value

to one controlled variable. Therefore, the developer defines
only one situation-calculus action assign(v) per resolver; the
action assigns the value v to the controlled variable in ques-
tion.

The developer uses precondition axioms to specify the out-
put of a resolution module. A precondition axiom dictates
the conditions under which a situation-calculus action may
be performed in a given situation. The special predicate,
Poss(a, s) signifies that the action a may be performed in
situation s. We characterize these precondition axioms us-
ing the fluents described above. Some helper predicates and
functions that we deem useful for specifying resolutions that
are listed in Table 2. This list is by no means exhaustive —
the developer may define any first-order logic predicate and
function needed to provide appropriate resolutions for her
domain.

Example 2. Recall the acceleration example discussed in
Example 1. There are several safety and convenience fea-
tures that modify the controlled variable
car.acceleration. These include Cruise Control (CC) and
Speed Limit Control (SLC), which aim to keep the moni-
tored variable car.speed at a driver-set preference and below
the speed limit of the road, respectively. Additionally, the
headway control (HC) feature changes the vehicle’s acceler-
ation in response to upcoming obstructions or other cars on

the road; and the driver can a↵ect vehicle acceleration by
pressing her foot on the accelerator pedal.

Based on our understanding of how these features ought
to interoperate with each other, we devised the following
resolution3. Our resolution considers three di↵erent levels
of priority: driver, safety, and non-safety actions. Driver
actions to modify the car’s acceleration have the highest
priority, followed by actions from safety features, followed
by actions from non-safety features. If there are multiple
driver-related input actions, the resolver module will assign
the minimum value. If there are no driver-related actions,
then safety actions will be considered. If there is more than
one safety action, then the minimum value is selected to
be the output action. For example, if there are no driver-
related actions and the two safety features, Speed-Limit con-
trol and Headway Control, both contribute input actions
car.acceleration := e1 and car.acceleration := e2, then the
output action will be the minimum of these two values.

Our resolution is expressed in situation calculus as follows:

Poss(assign(v), s) ⌘
(9l.assignRqstDriver(l, s) ^minimum(l, v))_
(8l.(assignRqstDriver(l, s) ! empty(l))^

9l2.assignRqstSafety(l2, s) ^minimum(l2, v))_
(8l.(assignRqstDriver(l, s) _ assignRqstSafety(l, s) !

empty(l))) ^ (9l3.assignRqstNonSafety(l3, s)^
minimum(l3, s))

The interpreter will first see if there are any elements in
the list of input driver actions and take the minimum value
of this list. If the list of driver actions is empty, it will
attempt to find the minimum value of the list of input safety
actions. Finally, if there are no driver or safety actions,
the interpreter will output the minimum value of non-safety
actions.

As long as there is at least one enabled action, there will
be a value v that satisfies the above formula. If there are
no input actions, the resolver will not output any actions
and the value of the controlled variable will not change. In
Section 4, we discuss the necessary and su�cient conditions
to ensure that resolutions are deterministic and total.

3.2.6 Implementation in GOLOG
GOLOG is a programming language for situation calcu-

lus. It provides procedures for outputting sequences of ac-
tions from a starting state that satisfy a collection of ax-
ioms. Given a domain theory D, comprising situation cal-
culus facts, fluents, and axioms; and given a starting state
Sc and a GOLOG procedure �, the GOLOG interpreter will
find terminating situations Sn result from the program �

executing from the starting state Sc:

D |= Do(�, Sc, Sn)

If the interpreter can find a situation Sn that satisfies this
entailment, then the output of � is a conflict-free sequence
of actions to be applied to the resolver’s controlled variable.

We now explain how a single resolution module is imple-
mented in a combination of situation calculus and GOLOG.
3For the purposes of this paper, it does not matter whether
or not we have a correct understanding of how feature inter-
actions ought to be resolved. What matters is whether our
proposed resolution language is expressive enough to specify
interesting, non-trivial resolution strategies.
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As we walk through the explanation, we will refer to the
resolution of car.acceleration given in Examples 1 and 2.

At the very beginning of an execution step, the values of
all monitored variables in the current and previous world
states, wsc and wsp, are input to the feature machines. The
changes in these variables will trigger transitions in the ma-
chines, resulting in actions on controlled variables. For ex-
ample, an increase in vehicle speed may prompt SLC to as-
sign a negative value to the car’s acceleration if the vehicle’s
speed exceeds the speed limit of the road. All of the actions
on car.acceleration from di↵erent features are then input to
the same resolver, along with the current values of relevant
monitored variables.

These inputs represent the state of the world before the
resolution takes place and are encoded in situation calculus
as starting-state axioms. In the car.acceleration example,
the inputs to the resolution module are exactly the axioms
given in example 1.

The resolution strategy for the resolver’s controlled vari-
able is encoded as a precondition axiom in situation calculus.
This axiom, Poss(assign(v), s), encodes when it is possible
to execute an action of the form

car.acceleration := v.

The precondition axiom was given in Example 2. Note that
its value depends on the evaluations of the starting state
axioms given in example 1.

The GOLOG procedure specifies how the resolution strat-
egy is used to determine the resolver’s output. The GOLOG
procedure to execute the acceleration resolution is:

proc resolve ⇡v. assign(v)

This procedure nondeterministically explores all possible as-
signments v to the controlled variable of the resolver, looking
for a value that satisfies the precondition axiom (i.e., the res-
olution strategy). The output of this procedure will be the
result of performing a single action Sn = do(assign(v), Sc).
In simple cases, as in this example, the procedure invokes
the resolution strategy once to determine a single output
action. In more complicated cases, a developer may wish to
iterate the strategy to output sequences of actions.

Example 3. As a separate example, there are a number
of features that a↵ect the direction in which the car is trav-
elling. The controlled variable is car.steering and the af-
fecting features include Lane Centring Control (LCC), and
several stability features such as Traction Control (TC) and
Stability Control (SC). The driver can also a↵ect car.steering
by rotating the steering wheel.

For this resolution, we distinguish only between driver and
non-driver actions. Driver-related actions have the highest
priority. If there are multiple assignments at the same pri-
ority level, the variable car.steering is set to the average
of the assignment expressions. Thus, in this resolution, the
actions from all features contribute to the outcome of the
resolution. The inputs to the resolver are:

car.steering(wsc :: car.steering, Sc)

assignRqstDriver(L, Sc)

assignRqstNonDriver(L, Sc)

The resolution is encoded as a precondition axiom that pri-
oritizes driver-related actions and computes the average of
the relevant steering actions:

Poss(assign(v), s) ⌘
(9l.assignRqstDriver(l, s) ^ average(l, v))_
(8l.(assignRqstDriver(l, s) ! empty(l))^

9l2.assignRqstNonDriver(l2, s) ^ average(l2, v))

The GOLOG procedure

proc resolve ⇡v. assign(v)

executes the resolver module for a given set of input actions
and starting state Sc, and outputs a terminating state Sn =
do(assign(v), Sc).

The resolution examples discussed up to this point output
a single action to be performed on a controlled variable. The
next example uses iteration of a resolution strategy to out-
put a sequence of actions. We use successor-state axioms in
situation calculus to express the e↵ects of a single iteration.
For example, performing the action assign(vn) on the con-
trolled variable car.acceleration will result in a new situa-
tion do(assign(vn), Sc) in which the value of car.acceleration
is now vn. We specify this e↵ect in the domain theory D of
the resolution with the successor-state axiom

car.acceleration(vn, do(a, s)) ⌘ a = assign(vn)

We express the iteration as part of the GOLOG program.

Example 4. The variable car.warningLightType is con-
trolled by alert features that try to get the driver’s atten-
tion. If multiple features want to set a particular light to
di↵erent values, one possible resolution is to satisfy all re-
quests sequentially. For example, if one feature turns a light
o↵ and another turns the same light on, the resolution is to
have the light blink on and o↵, to alert the driver to a possi-
ble conflict among the features associated with the warning
light. The inputs to the resolution are:

car.warningLight(wsc :: car.warningLight, Sc)

assignRqst(L, Sc)

Because the resolution is a sequence of more than one ac-
tion, the developer needs to write the successor state axioms:

car.warningLight(v, do(a, s)) ⌘ a = assign(v)

assignRqst(l, do(a, s)) ⌘ a = assign(v)^
l = remove(k, v) ^modifyRqst(k, s)

The first axiom encodes how the warning-light variable changes
with each assignment. The second axiom specifies that as
each assignment is made, the value of the assignment is re-
moved from the list of feature actions. The warning-light
assignments must be executed in some order.

In our resolution, in each situation, the light is always
assigned to the maximum light value in the list.

Poss(assign(v), s) ⌘ modifyRqst(l, s) ^maximum(l, v)

This resolution is deterministic, and it intuitively sets the
warning light to the strongest value first. The GOLOG pro-
cedure is iterates through the list of input actions until the
list is empty:

proc resolve

while (modifyRqsts(l, now) ^ ¬empty(l))

do ⇡n.assign(n)
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4. ANALYSIS
In this section, we demonstrate that our resolutions to fea-

ture interactions have the desired properties that we listed in
the beginning of Section 3: that the resolutions are conflict-
free, are deterministic and total, and preserve the features’
actions in the absence of an interaction.

The most important goal of our work is to enable conflict-
free feature composition. Recall that a feature interaction
due to conflict occurs when two or more features attempt to
simultaneously execute a set of incompatible actions. The
resolution approach that we have devised eliminates conflicts
by computing a conflict-free sequence of actions. Such a
computation is performed for the actions on each controlled
variable in each execution step of the system.

Theorem 1. The set of action sequences output by the
resolver modules are conflict-free.

Proof. A feature may execute one or more actions in
each step. These actions each belong to one of three cate-
gories: adding an object to the world, removing an object
from the world, and modifying the value of a controlled vari-
able. Possible conflicts occur when:

1. Two or more features attempt to set the value of the
same controlled variable to di↵erent values, or

2. One feature attempts to remove an object while an-
other feature attempts to modify it.

Case 1: All of the features’ assignments to the same con-
trolled variable are forwarded to the same resolution mod-
ule. The resolver outputs one action or one sequence of
incremental actions that computes the resolved value; thus
the actions of an individual resolver do not interact. Fur-
thermore, each resolver produces a resolution for a distinct
controlled variable; thus the outputs of di↵erent the resolu-
tion modules do not conflict.

Case 2: An action to remove an object results in the re-
moval of all resolver modules associated with the object’s
controlled variables. All attempts to assign a value to any
of these variables are ignored. In this way, object removal
has priority over assignment.

In both cases, the set of output actions is conflict-free.

A second goal of our work is that resolutions should be
deterministic and total: (1) for each set of features’ actions,
a resolver produces a unique sequence of assignments to the
corresponding controlled variable; and (2) for any set of fea-
tures’ actions on a controlled variable, there exists a (pos-
sibly empty) sequence of conflict-free actions output by the
variable’s resolution module. Determinism and totality are
not guaranteed by the approach itself and are dependent on
the developers’ implementations. Specifically, the develop-
ers’ resolution modules must meet the following obligations.

Ob 1. 8v1.8v2.8s.Poss(assign(v1), s)

^ Poss(assign(v2), s) ! v1 = v2

Ob 2. 8s.9v.Poss(assign(v), s)

Then there is always exactly one possible sequence of output
actions from the resolver and one possible next world state
wsn.

Note that particular attention must be paid to computa-
tions that have loops: the developer must prove that every
loop terminates:

8s.9s0.(8P.(8s1.P (s1, s1)) ^ (8s1, s2, s3.P (s1, s2) ^ �[s2]

^Do(�1, s2, s3) � P (s1, s3)) � P (s, s0)) ^ ¬�[s0]

Theorem 2. Given the set of situation-calculus facts, flu-
ents, and axioms D for a resolution module, Ob 1 on the
precondition axiom in D, and the corresponding resolution
procedure �, then the following entailment holds:

D |= 8sc, s, s0.Do(�, sc, s) ^Do(�, sc, s
0) ! s = s

0

Proof. This is proven by structural induction on the
GOLOG resolution program �.

Theorem 3. Given the set of situation-calculus facts, flu-
ents, and axioms D, for a resolution module; Ob 2 on the re-
solver’s precondition axiom; the corresponding GOLOG pro-
gram �; and obligations for each loop in �, then the following
entailment holds:

D |= 8sc.9s.Do(�, sc, s)

Proof. This is proven by structural induction on the
GOLOG program �.

Finally, a resolution should preserve the functionalities
of the features as much as possible. If the set of features’
actions on a controlled variable in an execution step are non-
conflicting, then the resolution should include all actions on
that variable.

Ob 3. If in an execution step the features produce ex-
actly one action o.a := v on the controlled variable o.a then
Poss(assign(v), s) for that variable.

Theorem 4. If Ob 3 holds for every resolver function,
then feature functionality will be preserved in the absence of
feature-interaction conflicts.

Proof. This is proven by structural induction on the
GOLOG program �.

4.1 Case Study
We conducted a case study to analyze the expressive power

of our resolution language. We examined 24 automotive fea-
tures and identified six di↵erent controlled variables that are
modified by multiple features. In Section 3, we presented the
resolutions for three of these variables; their resolutions were
created during the development of our resolution language.
The other three controlled variables described below serve
as a test of our language’s expressive power.

We now provide the details of the variables in our case
study and their appropriate resolutions. We base these res-
olutions on feature specifications provided by our industrial
partner, although the feature names we give are based on
common features found on the internet.

4.1.1 Brake Pressure
There are three categories of actions that modify the con-

trolled variable brake.hydraulicPressure. The first cate-
gory of actions enhances driver preferences and inputs. For
example, the Automatic Braking (AB) feature performs ac-
tions that minimize stopping distance when triggered by
the driver applying a large amount of pressure to the brake
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pedal. The second category includes safety or stability ac-
tions such as those enacted by Trailer Stability (TS) and
Stability Control (SC). These features apply brake pressure
to each of the four wheels to maintain a straight vehicle
path and counteract vehicle oscillation. The third category
of actions maintains driver-set acceleration preferences or
provides feedback to the driver. These are grouped into a
non-safety action category.

We give the highest priority to safety and stability actions.
There are two ways in which safety actions a↵ect brake pres-
sure. Some safety actions reduce vehicle speed by apply-
ing an even application of brake pressure to all four wheels.
Other safety actions apply brake pressure unevenly with the
goal of controlling vehicle oscillation or stability. Our resolu-
tion di↵erentiates between these cases by observing the mon-
itored variable car.oscillation. If car.oscillation is less than
a low threshold value, the resolution sets brake.hydraulicPres-
sure to the maximum of all assignment values. If it is greater
than the threshold, we assume that multiple stability actions
are working to correct the oscillation of the vehicle and our
resolution sets brake.hydraulicPressure to the average of
all assignment values.

The precondition axiom for the resolution is

Poss(assign(v), s) ⌘
(9l.assignRqstSafety(l, s) ^ ((maximum(l, v)^
car.oscillation(s) < threshold) _ (car.oscillation(s) �
threshold ^ average(l, v))))_

(8l.(assignRqstSafety(l, s) ! empty(l))^
(9l2.assignRqstDriver(l2, s) ^maximum(l2, v)))_

(8l.(assignRqstSafety(l, s) _ assignRqstDriver(l, s)

! empty(l)) ^ (9l3.assignRqstNonSafety(l3, s)

^maximum(l3, v)))

4.1.2 Warning Chime
Features such as Cruise Control (CC), Basic Braking (BB),

Parking Brake (PB), Manual Park Brake (MPB), and Road
Change Alert (RCA) use the controlled variable alert.chime-
Type to alert the driver. As the primary purpose of this vari-
able is to capture the driver’s attention, we operate under
the assumption that values for this variable can be ranked
from less to more urgent. We define the function rankList(L)
that takes a list of values and returns a corresponding list
of rankings, and we define the function getType(x) that re-
turns the chime type that corresponds to the ranking x.
The inputs to the resolution are encoded in the predicate
assignRqst(L, sc).

The resolution will set alert.chimeType to the most ur-
gent chime value. The precondition axiom is

Poss(assign(v), s) ⌘ 9l.assignRqst(l, s) ^ r = rankList(l)

^maximum(r, x) ^ v = getType(x)

4.1.3 Air Flow Rate
There are several features that control cabin temperature

and air quality. Each of these features modifies the variable
cabin.airF lowRate. The Air Quality System (AQS) circu-
lates air to reduce pollution levels, Air Conditioning (AC)
and Heater Control (HC) use air flow to circulate cooler or
warmer temperatures, and Air Recirculation (AR) recircu-
lates air at the driver’s request.

We prioritize actions that circulate air to improve air qual-
ity over actions that circulate air to improve the air tem-
perature. Input actions for air-quality are encoded in the
predicate assignRqstQuality(L, sc). Inputs actions for air-
temperature are represented as
assignRqstTemp(L, sc). In both cases, we set the air flow
rate to be the maximum assigned value. The precondition
axiom for this variable is

Poss(assign(v), s) ⌘
(9l.assignRqstQuality(l, s) ^maximum(l, v))_
(8l.(assignRqstQuality(l, s) ! empty(l))^
9l2.assignRqstTemp(l2, s) ^maximum(l2, v))

5. DISCUSSION
In this section we summarize the results of our case study

and the advantages of our approach.

5.1 Utility
One goal of our resolution approach is to provide the mod-

eller with a language that is powerful enough to express res-
olution functions that are tailored to fit the domain and the
behaviour of each controlled variable in a system. The pur-
pose of our case study was to gauge the expressiveness of our
approach by specifying variable-specific resolutions for a di-
verse set of controlled variables. We found that the variables
in our case study called for unique variable-specific resolu-
tions, and we were able to express all desired resolutions.
Moreover, we were able to express resolutions, in which all
features contribute to the resolution result and not just those
with the highest priority. In the vehicle steering example,
every feature’s assignment to car.steering is used to com-
pute the variable’s next value. Thus, all features “win” in
that resolution.

5.2 Scalability
One of the major advantages of our approach is the ab-

sence of a required priority scheme among features. The
developer still has the option to define priorities between
types of actions, as we did in our examples by grouping ac-
tions into safety and non-safety categories. However, this
classification is coarse and does not require a total or par-
tial ordering on all features. When adding new features or
removing existing features from the system, the developer
need only determine to which category the feature’s actions
belong. Classification decisions do not need to be revised as
new features are added to the system.

Additionally, the developer does not need to know how
many features modify each controlled variable. Our resolu-
tion approach is agnostic to the number of features in the
system as well as the number of feature interactions that
arise from their composition. Thus, features can be devel-
oped independently and can be added to the system incre-
mentally. If a feature introduces a new type of controlled
variable, the developer does need to introduce a new reso-
lution module. However, our case study suggests that the
introduction of new controlled variables are rare; we discov-
ered a total of only 8 controlled variables, 6 of which are
modified by more than one feature, in a group of 24 auto-
motive features. The number of resolution modules that the
developer writes can be further reduced by identifying the
set of controlled variables that are assigned values by mul-
tiple features and writing resolvers only for these controlled
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variables rather than for all controlled variables. A simple
static analysis can identify these variables.

5.3 Threats to Validity
The requirements documents on which we base our resolu-

tions provide information on a subset of automotive features.
We specified what we considered to be appropriate resolu-
tions to conflicting assignments made by these features. It is
possible that other features could modify the same variables
in a way that would warrant a di↵erent resolution strat-
egy. This would weaken our claim that the addition of fea-
tures does not impact the resolution strategies. These claims
should be validated with future case studies.

5.4 Future Research Directions
Some of the resolutions we considered suggest that there

are dependencies among controlled variables. For example,
brake.hydralicPressure a↵ects car.acceleration. Our res-
olution does not consider dependencies or interactions be-
tween controlled variables. We conjecture that such interac-
tions could be addressed by clustering related variables and
resolving their conflicts or by imposing a partial ordering on
controlled variables and using the resolutions of some vari-
ables as inputs to the resolver modules of others. We leave
these investigations to future work.

There is also the possibility for race conditions when fea-
tures execute at di↵erent speeds or asynchronously. For
example, actions by the features ABS and cruise control
can produce a shuddering e↵ect on the vehicle by bouncing
back-and-forth between increasing and decreasing the vehi-
cle acceleration. It may be possible to mitigate flip-flops or
reversals in assignments by remembering a short history of
resolutions and taking them into account when computing
new resolutions. We leave the investigation of this problem
to future work.

While situation calculus and GOLOG serve as an intuitive
proof-of-concept implementation of our resolution modules,
we believe there to be simpler and faster languages to accom-
plish the same goal. By relying on a deterministic language,
many of the proofs in the analysis section would be made
much simpler. Future research in this area will be to develop
and refine a more appropriate implementation language.

6. RELATED WORK
The majority of related work on resolving feature inter-

actions relies on a priority ranking among features [8, 11, 14,
16, 18, 24]. Priority-based approaches need a total or par-
tial ordering on features to support the resolution strategy.
When a new feature is developed, its place in the prior-
ity ordering must be determined, making it di�cult to add
new features. In the case of a conflict, only the actions of
the highest-priority feature are executed, blocking the be-
haviour of all other features. Our resolution considers all
enabled actions, regardless of feature priority.

Some priority-based approaches o↵er finer-grained reso-
lutions. Laney et al. [21, 22] propose resolutions in which
priorities are considered at the granularity of individual fea-
ture requirements. During feature composition, the devel-
oper specifies which aspects of a feature’s behaviour may
be left unsatisfied in the event of a conflict. Interactions
are resolved on a case-by-case basis. Thus, this approach
does not address the the feature interaction problem: the
number of interactions to consider, resolve, and verify is po-

tentially exponential in the number of features. In addition,
the resolutions are win/lose in that only the highest-priority
requirements are satisfied in case of a conflict.

Precedence-based resolution strategies [2, 7, 17], in which
features are executed in a specified order, display similar
problems to priority-based approaches. Features are given a
total or partial precedence ordering, and the task of deter-
mining a precedence order for n features requires that the
developer consider up to n! orderings.

Some work has been done to mitigate the task of spec-
ifying priorities or precedences among large collections of
features by categorizing features [32] and using automated
detection of feature interactions to find acceptable order-
ings [32]. However, these approaches still su↵er from course-
grained resolutions based on feature priorities and o↵er only
win/lose resolutions to feature interactions.

Gri↵eth and Velthuijsen reduce a developer’s work by re-
solving conflicts through automated negotiation [12]. The
general idea behind negotiation-based resolution is to o↵er
alternative feature behaviours in the event of a conflict, to
maintain the essential intent of the feature developer. This
approach has been applied to multi-agent systems [27] us-
ing situation calculus as the action language. Negotiation
requires multiple rounds of communication between negoti-
ating agents that act on the behalf of features. Many safety-
critical systems have strict timing requirements and cannot
a↵ord of multiple rounds of communication. Our approach
resolves interactions in a single multi-phase execution step,
by calculating variable-specific resolutions to conflicting as-
signments. These calculations are fast and each resolver is
independent, so all resolvers may execute in parallel. Fur-
thermore, features themselves do not need to interact with
each other. This promotes feature modularity and oblivi-
ousness — key attributes of feature-oriented software devel-
opment.

7. CONCLUSIONS AND FUTURE WORK
We have presented an approach for resolving feature in-

teractions that addresses key aspects of the feature interac-
tion problem by providing means for developers to specify
an appropriate resolution strategy for each controlled vari-
able rather than for each possible feature interaction. Our
approach exhibits several advantages: the developer of a re-
solver module does not need to be aware of the number of
features in the system, and there is no need to impose a
partial ordering on features. This eases the task of adding
features to the system

We show that the desired resolution for a controlled vari-
able depends on the roles that the variable plays in over-
all system behaviour. Our approach allows for resolution
strategies that are tailored to the specifics of each controlled
variable. We provide evidence, in the form of a case study
that di↵erent controlled variables warrant di↵erent resolu-
tion strategies.
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