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ABSTRACT
We propose a unifying framework for model-based specification
notations. Our framework captures the execution semantics that
are common among model-based notations, and leaves the distinct
elements to be defined by a set of parameters. The basic com-
ponents of a specification are non-concurrent state-transition ma-
chines, which are combined by composition operators to form more
complex, concurrent specifications. We define the step-semantics
of these basic components in terms of an operational semantics
template whose parameters specialize both the enabling of transi-
tions and transitions’ effects. We also provide the operational se-
mantics of seven composition operators, defining each as the con-
current execution of components, with changes to their shared vari-
ables and events to reflect inter-component communication and syn-
chronization; the definitions of these operators use the template
parameters to preserve in composition notation-specific behaviour.
By separating a notation’s step-semantics from its composition and
concurrency operators, we simplify the definitions of both. Our
framework is sufficient to capture the semantics of basic transition
systems, CSP, CCS, basic LOTOS, ESTELLE, a subset of SDL88,
and a variety of statecharts notations. We believe that a description
of a notation’s semantics in our framework can be used as input to
a tool that automatically generates formal analysis tools.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Formal methods; D.2.1
[Requirements/Specifications]: Languages; F.3.2 [Semantics of
Programming Languages]: Operational semantics

General Terms
Languages, Verification

Keywords
Model-based notations, Operational Semantics, Composition, Con-
currency, Communication, Formal analysis
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1. INTRODUCTION
Software practitioners find the semantics of model-based nota-

tions to be relatively intuitive, and their composition operators pro-
vide facilities for decomposing large problems into modules and
for expressing concurrency, synchronization, and communication
among modules. Examples of model-based notations include state-
based notations (e.g., statecharts [15, 16], RSML [21]) and process
algebras (e.g., CSP [17], CCS [24], LOTOS [18]).

There are many well-established analysis tools, such as model
checkers, for automatically verifying model-based specifications.
Either an analyzer is customized for a particular notation [9, 16] or
a translator is written that maps the notation to the input language of
one or more analyzers [1, 2, 7]. To reduce the number of translators,
we can translate specifications into an intermediate language, from
which we translate to the input languages for different tools [3, 6].
In all of these cases, an analyzer or translator needs to be written for
each notation and rewritten whenever the notation or its semantics
changes. To help ease this effort, we and others [10, 12, 27] are
working toward generating analyzers and translators automatically
from a description of a notation’s semantics.

We propose an operational semantics template for model-based
specification notations, in which the template captures the common
behaviour among notations and parameterizes notations’ distinct
behaviours. The template represents a specification as a concurrent
collection of non-concurrent hierarchical transition systems, each
of whose operational semantics is its transition relation at both the
micro-step and macro-step levels. An instantiation of this template
specializes a notation’s choice of which transitions occur in a given
execution state. We define composition operators separately, as re-
lations that constrain how collections of components can execute in
parallel, transfer control to one another, and exchange events and
data; the operators’ definitions use the template parameters to spe-
cialize updates to the components’ step-semantics variables. We
are able to define most of the semantics of seven popular specifica-
tion notations (CSP [17], CCS [24], LOTOS [18], basic transition
systems (BTS) [22], ESTELLE [19], a subset of SDL88 [20], and
several variants on statecharts [15, 16, 21]) as instantiated variants
of our template. We have not attempted to handle all of the features
of each notation (e.g., we does not address state actions, activities,
or history in statecharts), but we believe that we could unify fea-
tures that map to transition-relation semantics (e.g., we should be
able to unify state actions and history, but probably not activities).

Our framework effectively isolates composition as a separate
concern of a notation’s execution semantics, thereby simplifying
the definitions of both step-semantics and composition operators.
A secondary effect is progress towards standardizing the seman-
tics of model-based notations: by parameterizing the notations’ dis-



tinct behaviour, it is easier to see precisely the semantic differences
between two languages. Our main goal is to provide a means to
describe a notation’s semantics succinctly, so that it can be input
to a tool or process that generates notation-specific analysis tools.
We believe that our operational semantics template and pattern for
defining composition operators may be such a description.

This paper is organized as follows. Section 2 presents the syntax
and semantics for hierarchical transition systems (HTS), which is
our model for basic components. In Section 3, we give operational
semantics for several interesting composition operators. Section 4
shows how the semantics of different model-based notations can
be described as instantiations of our framework. Related works are
discussed in Section 5, and we conclude in Section 6.

2. HIERARCHICAL TRANSITION SYSTEM
In this section, we introduce hierarchical transition systems (HTS)

to represent model-based notations minus their composition op-
erators. An HTS is a hierarchical, extended finite state machine,
adapted from basic transition systems [22] and statecharts [15, 16].
An HTS supports no concurrency; that is, in statecharts terminol-
ogy, it supports OR-state hierarchy but not AND-state hierarchy.
Concurrency is introduced by the composition operators, which are
defined in the next section. We use HTSs to model the basic com-
ponents of a composite model-based system.

2.1 Syntax of HTS
A hierarchical transition system (HTS) is an 8-tuple, � S � H � I � F �

E � V � VI � T � . S is a finite set of states, H is the state hierarchy, and
each state s � S is either a basic state or a super state that contains
other states. I � S is the non-empty set of initial states. F � S is
the set of final basic states. No transition can exit a final state. E
is a finite set of events, including both internal and external events.
We assume that event names are distinct across components. V is
a finite set of data variables, with an initial value assignment of VI .
T is a finite set of transitions, each of which has the form,�

src � trig ev � cond � act � dest � prty �
where src � dest � S are the transition’s source and destination states,
respectively; trig ev � E is zero or more triggering events; cond
is an optional predicate over V ; act is zero or more actions that
generate events and assign values to some data variables in V ; and
prty is the transition’s optional priority. We use identifiers S � H � I �
F � E � V � VI � T throughout the paper to refer to these HTS elements.

The state hierarchy consists of two kinds of states: super states
and basic states. A super state is a state that contains other states,
whereas a basic state contains no other states. Each super state
has a default state, so that its default state is entered if the super
state is the destination state of a transition. A state hierarchy H
defines a partial ordering on states, with the root state of an HTS
as the maximal element and basic states as minimal elements. For
example, in the HTS in Figure 1, S ��� S �	� S 
�� S � are super states, and
the others are basic states. The top state S � is the root state of the
HTS, and its default state is S � . The function rank assigns a number
to a state based on the HTS’s hierarchy:

rank 
 s ��� rank 
 parent 
 s �������
where rank 
 root ����� . In Figure 1, the rank of S � is 3.

To access the elements of a transition � , we use helper functions:
� source
���� is the source state of � .� exited 
���� are the states exited when � executes, including the

source’s ancestor and descendant states that are also exited.
� entered
���� are the states entered when � executes, includ-

ing the destination’s ancestor and descendant states and all
relevant default states that are also entered.
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Figure 1: The state hierarchy of an HTS

� ev trig 
���� are the events that trigger � .� ev gen 
���� are the events generated by � ’s actions.� asn 
���� are variable-value assignments in � ’s actions.� scope 
���� is the lowest common ancestor state of the transi-
tion’s source and destination states.� priority 
���� is the transition’s priority over other transitions.

We will also apply these functions to sets of transitions. Their
meanings are the same, but those functions that return a single re-
sult (e.g., source) will return a set of results.

2.2 Semantics of HTS
We define the semantics of an HTS as a snapshot relation, which

relates two snapshots ss and ss � if the system can move from ss to
ss � in a step. Informally, a snapshot is an observable point in an
HTS’s execution. We define two types of steps between snapshots:
a micro-step is an HTS’s incremental response to some external
event(s), and a macro-step is a sequence of zero or more micro-
steps. At the beginning of each macro-step, a new set of external
events EE � E is sensed from the environment, and these events
remain active for that macro-step.

We formally define micro-step and macro-step semantics as tem-
plates that are instantiated with specifier-provided parameter func-
tions to reflect the semantics of a particular notation. We also pop-
ulate the snapshot with a small set of history variables that the pa-
rameter functions can use and manipulate. Specifically, these his-
tory variables and parameter functions capture the semantic differ-
ences among notations, by parameterizing how to determine which
transitions are enabled in a snapshot and how to select an enabled
transition to execute. The parameter functions are also used in Sec-
tion 3 to help define the semantics of composition operators.

2.2.1 Snapshots
A snapshot is an 8-tuple � CS � IE � AV � EEg � CSh � IEh � AVh � EEh � .

CS is the set of current states (CS � S), such that if any state s � CS,
then so are all of s’s ancestors. IE � E is the set of events gener-
ated by transitions executing in the previous micro-step. AV is a
function that maps each data variable in V to its current value. EEg

is the set of external events that were generated by past transitions
in the current macro-step; EEg will not be important until we dis-
cuss composition operators. Elements CSh � AVh � IEh and EEh are
history variables that accumulate data about the states, the variable
values, and the internal and external events, respectively, that were
used in past transitions. The template parameters use these history
variables to derive the set of enabling states CSe, the set of enabling
variable values AVe, and the sets of enabling internal events IEe and
external events EEe, which in turn determine the transitions that
are enabled in the current snapshot. External events EE are not part
of the snapshot because they lie outside of the system. Instead, the



Resulting Start of Macro-step Next Micro-step
Snapshot initsimple 
 ss � EE � initstable 
 ss � EE � apply 
 ss �����

CS � ss � CS ss � CS 
 ss � CS
�

exited 
�������� entered 
����
IE � ss � IE � ev gen 
����

F
ix

ed
AV � ss � AV ss � AV assign 
 ss � AV � resolve conflicts 
 asn 
��������

EEg � � � 
 ss � EEg � ev gen 
������ � ev trig 
����
CSh � init states his 
 ss � n states his 
 ss � ���
IEh � init int ev his 
 ss � EE � n int ev his 
 ss �����
AVh � init var val his 
 ss � n var val his 
 ss � resolve conflicts 
 asn 
��������
EEh � init ext ev his 
 ss � EE � n ext ev his 
 ss � ���
CSe � en states 
 ss �

Pa
ra

m
et

ri
c

IEe � en int ev 
 ss �
EEe � en ext ev 
 ss �
AVe � en var val 
 ss �

Table 1: Definitions of init and apply based on parameter functions. Sample parameter functions are shown in Tables 2-5.

snapshot maintains history variable EEh, which helps to define how
long external events remain enabling events. If a notation does not
need some snapshot element (e.g., some process algebras have no
variables), then the template parameters must be defined so that the
extraneous element does not affect the enabling of transitions.

2.2.2 Micro-step Semantics
The micro-step relation Nmicro 
 ss � ss � � ��� means that the HTS

can move from snapshot ss to a next snapshot ss � by executing tran-
sition � . Because an HTS is non-concurrent, only one transition can
execute in a step. Nmicro is defined as:

Nmicro 
 ss � ss � � ��� �
� � pri 
 enabled trans 
 ss � T ����� ss ��� apply 
 ss �����

where
� The function enabled trans returns the set of transitions that

are enabled in a snapshot ss:

enabled trans 
 ss � T � �� � � T �
� � � src � trig ev � cond � act � dest � prty � ��	��

��
 
 src � CSe � � 
 trig ev � IEe � EEe �

� 
 AVe � � cond���
CSe, IEe, EEe, and AVe are computed by the parameter func-
tions listed in the last four rows of Table 1; each is described
in more detail below in a separate sub-section. x � � y means
condition y is true given variable assignments x.

� The function pri finds the maximal subset of transitions with
the highest relative priority. Function pri is a template pa-
rameter and is also described in more detail below. If pri re-
turns a set with more than one transition, then one transition
� is nondeterministically selected from this set to execute.

� The function apply determines the next snapshot based on
a current snapshot ss and a transition � ; it is defined in the
first eight rows of the column labelled “Next Micro-step” of
Table 1.

The rows labelled “Fixed” of Table 1 define the functions for snap-
shot elements CS � IE � AV � and EEg; these definitions apply to all
notations. The rows labelled “Parametric” in Table 1 list the pa-
rameter functions that a specifier provides to instantiate the step-
semantics of his or her model-based notation.

The functions in the column labelled “Start of Macro-step” of
Table 1 are used at the beginning of a macro-step. These functions
clear accumulated information about transitions that executed in

the previous macro-step. In Section 2.2.3, we distinguish between
two different kinds of macro-steps: simple and stable.

The definition of apply used for calculating the next micro-step
depends on both fixed functions and parameter functions. In the
snapshot resulting from an application of apply, the set of current
states is updated according to the states that the executing transition
� exits and enters. The set of internal events is exactly those events
that were generated by the previous transition. Variable values are
updated by function assign 
 X � Y � , which takes two variable-value
assignments X and Y and updates the assignments in X with the
assignments in Y . Any assignments in Y to variables not in X are
ignored. The function resolve conflicts resolves any conflicts aris-
ing from multiple assignments to the same variable. The set of
generated external events accumulates events that are generated by
transitions executing in the current macro-step, minus any event
that subsequently triggers a transition within the same macro-step
(thereby making the event an internal event).

The parameter functions specialize the sets of states, events, and
variables values that can enable transitions and define how these
sets change as an HTS executes. For example, three parameter
functions work together to determine which states can enable tran-
sitions:

� en states computes the set of enabling states CSe, using in-
formation in current states CS and/or history variable CSh

� init states his resets CSh at the beginning of a macro-step
� n states his updates CSh after a micro-step

There are similar parameter functions for each of the other en-
abling elements (internal events, external events, and variable val-
ues). There are thirteen (13) parameter functions in total, the twelve
functions listed in Table 1 plus the priority function pri.

The following five sub-sections describe how a specifier can use
these parameter functions to define the step-semantics for some
popular notations. Tables 2–6 provide example definitions. The
abbreviations “n/a” means “not applicable”.

Enabling States

Table 2 defines parameter functions for deriving the set of en-
abling states. In RSML and STATEMATE, the enabling states are
always the current states. Unfortunately, these semantics allow in-
finite loops in a macro-step. Harel et al.’s [15] original formulation
of statecharts avoids infinite loops by monotonically decreasing the
set of enabling subsets: at the beginning of each macro-step, CSh is
initialized to the set of current states CS, and with every transition
the sets of exited and entered states are removed from CSh. We can



Notations init states his 
 ss � � n states his 
 ss � ��� � en states 
 ss � �
STATEMATE, RSML, LOTOS, SDL, CCS, CSP, BTS n/a n/a CS
statecharts [15] CS CSh

� 
 exited 
���� � entered 
������ CSh

Table 2: Sample Definitions for State Semantics. CS and CSh mean ss � CS and ss � CSh respectively.

Notations init int ev his 
 ss � EE � � n int ev his 
 ss � ��� � en int ev 
 ss � �
STATEMATE, RSML n/a n/a IE
LOTOS, CSP, CCS
statecharts [15] � IEh � ev gen 
���� IEh

SDL append 
 IEh � EE � append 
 remove 
 IEh � � IEh
� ��� � � � � IEh

�
j� ��� � ev gen 
������ ,

where j � min 
 i � � � IEh
�
i� ��� IEe

�
IEh

�
j � � j � min 
 i � ��� � � T �
IEh

�
i� � ev trig 
���� �

source
���� � CSe �
Table 3: Sample Definitions for Internal Event Semantics. IE and IEh mean ss � IE and ss � IEh respectively.

Notations init ext ev his 
 ss � EE � � n ext ev his 
 ss � ��� � en ext ev 
 ss � �
STATEMATE,RSML, LOTOS, CSP, CCS EE � EEh

statecharts [15] EE EEh EEh

Table 4: Sample Definitions for External Event Semantics. EE and EEh mean ss � EE and ss � EEh respectively.

Notations init var val his 
 ss � � n var val his 
 ss � a � � en var val 
 ss � �
STATEMATE, RSML, SDL, BTS n/a n/a AV
statecharts [15] AV AVh AVh

Table 5: Sample Definitions for Variable Value Semantics. AV and AVh mean ss � AV and ss � AVh respectively.

Priority Scheme pri 
�� � �
scopeO

� � ��� �	� t �
� � rank 
 scope
�������� rank 
 scope
 t �����
scopeI

� � ��� �	� t �
� � rank 
 scope
�������
 rank 
 scope
 t �����
sourceO

� � �
� ��� t �
� � rank 
 source 
�������� rank 
 source 
 t �����
sourceI

� � �
� ��� t �
� � rank 
 source 
�������
 rank 
 source 
 t �����
explicit

� � �
� ��� t ��� � priority 
������ priority 
 t ���
no priority �

Table 6: Options and Semantics for Priority Schemes

envision a simpler state semantics that prevents infinite loops by
allowing no state to be exited more than once in a macro-step.

Enabling Internal Events

Table 3 defines parameter functions for deriving the set of en-
abling internal events. In STATEMATE and RSML, only internal
events generated in the previous micro-step can trigger a transition,
whereas in the original statecharts semantics, internal events gen-
erated by transitions remain enabling events throughout the macro-
step. The last row shows how to model SDL “input queues” as
ordered lists that contain both internal and external events: at the
start of each macro-step, the new external events are appended to
the end of the event list; the enabling event is the event closest to
the head of the list that triggers an enabled transition; and an ex-
ecuting transition removes from the head of the list all events up
to and including the enabling event (thereby losing events to which
the HTS was not ready to react), and appends all of the events that
the transition generates.1

� SDL’s save and priority-event constructs could be incorporated
into the above semantics. Note that these features would add save
and priority-event to the list of transition elements.

Enabling External Events

Table 4 defines parameter functions for deriving the set of the
enabling external events. At the beginning of each macro-step,
all of the new external events EE are enabling events. In RSML
and STATEMATE, external events can trigger transitions only in
the first micro-step of a macro-step. In statecharts, external events
remain enabling events throughout the macro-step. We can also
imagine a notation in which an external event remains an enabling
event until it triggers a transition or until the macro-step ends.

Enabling Variable Values

Table 5 defines parameter functions for variable value semantics.
This function takes a snapshot and set of assignments (a) as input.
In most notations, the current variable-value assignments are used
to evaluate transitions’ enabling conditions. But in the original stat-
echarts semantics, only those variable assignments that hold at the
beginning of the macro-step can enable transitions.

Priority

Table 6 provides sample definitions for parameter function pri,
which returns the subset of transitions of highest priority. In scope-
based priority, the priority of a transition is the rank of its scope,



where rank and scope are defined in Section 2.1. The priority of
transition t 
 in Figure 1 is the rank of scope 
 t 
���� S � , which is 1.
Lower-ranked scopes may have priority over higher-ranked scopes
(scopeO, for “outer” transitions), or vice versa (scopeI, for “in-
ner” transitions). In source-based priority, the priority of a tran-
sition is the rank of its source state. In this case, the priority of
transition t 
 is the rank of source 
 t 
 � � S � , which is 2. Source-
based priority favours either lower-ranked source states (sourceO)
or higher-ranked source states (sourceI). Priority schemes scopeO
and sourceO favour super-state behaviour, whereas schemes scopeI
and sourceI favour sub-state behaviour. In explicit priority, a tran-
sition’s priority is explicitly defined by the specifier, where a low
rank is considered a high priority.

Some notations use a combination of priority schemes. For ex-
ample, a language may have a scope-based or source-based priority
scheme that can be overridden by explicit priorities.

2.2.3 Macro-Step Semantics
We have identified two macro-step semantics, which we call

“simple” and “stable”. A simple macro-step is equal to one micro-
step. A “stable” macro-step is a maximal sequence of micro-steps,
such that the sequence ends only when there are no more enabled
transitions.

Simple Macro-Step

In simple macro-step semantics, an HTS takes a micro-step if
one is enabled, and otherwise makes no change to the snapshot.
Each step is a reaction to a new set of external events EE. (Recall
that external events are not part of the snapshot.)

Nmacro 
 ss � ss � � EE � �
let startss � � initsimple 
 ss � EE � in

 � � � Nmicro 
 startss � ss � � ����� � 
 startss � ss � �

The first line in this definition creates a new starting snapshot startss
for the macro-step. The function initsimple removes accumulated
information about transitions that executed in the last macro-step.
In simple macro-step semantics, there is no need to accumulate
information about micro-steps within a macro step, which means
snapshot elements CSh, AVh, and EEg can be ignored. The enabling
states CSe is the set of current states CS, and the enabling variable
values AVe is the current variable values AV . We still distinguish be-
tween current and enabling events because, even in simple macro-
step semantics, a notation may allow transitions to be enabled by
past events that have not yet triggered transitions (e.g., as in SDL).

Stable Macro-Step

In stable macro-step semantics, a macro-step is a maximal se-
quence of micro-steps. A snapshot with no enabled transitions is
called a stable snapshot. When a stable snapshot is reached, a
new macro-step starts with a new set of external events EE. We
define a relation (N i) that is true for a pair of snapshots if there is
a sequence of length i of micro-steps from the first snapshot to the
second, where the second snapshot is a stable snapshot.

N � 
 ss � ss � � �
� 
 � ss � � � � � Nmicro 
 ss � ss � � � ����� � 
 ss � ss � �

Ni � � 
 ss � ss � � �
� ss � � � � � Nmicro 
 ss � ss � � � ��� � Ni 
 ss � � � ss � �

We can now define Nmacro 
 ss � ss � � for stable macro-steps.
Nmacro 
 ss � ss � � EE � �

let startss � � initstable 
 ss � EE � in

if 
 � i � � � � ss � � � Ni 
 startss � ss � � ���
then 
 � i � � � N i 
 startss � ss � ���
else startss � ss �

There is a macro-step from snapshot startss to ss � only if there is
a non-empty sequence of micro-steps starting from the initialized
snapshot and ending in stable snapshot ss � . Otherwise, the only
possible macro-step is the idle step (startss � ss � ).
Initial Snapshot

The initial state of an HTS is the same for both kinds of macro-
step semantics:

ssI � � I � � � VI ��� � I ��� � VI ��� �
where I and VI are the HTS’s initial set of states and variable as-
signments, and the sets of internal events and generated events are
initially empty. The history elements are initialized by their respec-
tive parameter functions at the start of the first macro step. This
definition could easily be generalized if there are multiple possible
initial states or multiple possible initial variable assignments.

3. COMPOSITION OPERATORS
In this section, we describe the semantics of a number of well-

used composition operators. The operands of a composition oper-
ator are components. A component may be either a basic compo-
nent (i.e., an HTS) or a collection of components that have been
composed using a composition operator. Operators use the compo-
nents’ next-step relations rather than constructing a new machine,
which means that abstraction techniques like partial order reduc-
tion [14] can examine the basic components.

We specify each composition operator at the micro-step level,
and infer the semantics at the macro-step level as a sequenceof zero
or more composed micro-steps. For operators that can compose at
the macro-step level, we provide explicit definitions for composi-
tion for stable macro-step semantics only. At the beginning of such
a macro-step, the external events generated by each component in
the previous macro-step must be added to the set of external events
sensed by the other component.

The composition operators make intricate changes to the ele-
ments of the components’ snapshots to represent inter-machine com-
munication. For example, the operator must ensure that assign-
ments to shared values made by any component machine are re-
flected in all appropriate snapshots. In addition, the composition
operator is responsible for “message passing” among components,
making events generated by one component visible to the other
component. We modify snapshots using substitution, where ss � xy
refers to a snapshot that is equal to ss except for element x, which
has value y. Substitution over a set of snapshots �ss � xy defines a
substitution to each snapshot in �ss. For example,

�ss � AV
assign ���ss � AV 	 resolve conflicts � asn �
��
��� ����������

updates the variable assignments (AV) in each snapshot in �ss with
the variable values assigned in transition sets �� � and �� 
 , letting
function resolve conflicts handle multiple assignments to the same
variable.

In Figure 2, we introduce two abbreviations to describe how
components communicate. Function update is used to update the
snapshot of a non-executing component with changes to shared
variables and events made by transitions taken in the other, exe-
cuting component. Function communicate is similar, but it is used
when both components execute so it starts from an intermediate
snapshot �iss that reflects the effects of one component’s transitions
but not yet the shared effects of the other component’s transitions.
In both functions, the set of internal events IE in the returned snap-
shot is the set of events generated by the executing transitions.
The history of internal events (IEh ) is updated using the parame-
ter function n int ev his. The variable values are updated using
resolve conflicts and assign, and the history of variable values is



updated according to the parameter function n var val his. By
using the parameter functions described in the previous section, we
ensure consistency with the choices for how internal and external
events and variable assignments persist within a micro-step.

In all cases but two (interrupt and sequence composition), the
initial snapshot for the composed machine is the composite of the
component machines’ initial snapshots:

�ssI � 
 �ssI � � �ssI 
 �
We assume that shared variable assignments are initially consistent
in different components.

We present three composition operators in detail: parallel, en-
vironmental synchronization, and interrupt. The semantics for the
remaining composition primitives are described informally in the
text with their formal definitions in Appendix A.

3.1 Parallel
In parallel composition, two parallel components can execute en-

abled transitions simultaneously; otherwise only one component
executes and the other updates shared variables and events (Fig-
ure 3). If both componentsexecute, then their next snapshots should
satisfy N �micro and N 
micro, except for the values of shared variables
and events that must be communicated to each other. We introduce
intermediate snapshots �iss � and �iss 
 that are reachable in the com-
ponents’ Nmicro relations, and we use the function communicate
to describe how the components’ next snapshots in the composed
machine differ from these intermediate snapshots.

If only one component’s transitions are enabled, then that com-
ponent executes and the other component’s snapshot stays the same,
except for updating shared variables and events. The case where
both components do not change is not a possible micro-step.

In parallel composition at the macro-step level Npara
macro, both com-

ponents must take macro steps (although one or both may take idle
steps) and must agree on the shared variables and events in the
resultant snapshots. Because the history variables are only rele-
vant for micro-steps, it is not necessary to update their values at the
macro-step level.

3.2 Environmental Synchronization
Our environmental synchronization composition operator cap-

tures LOTOS’s and CSP’s parallel compositions (
�
). These oper-

ators do not distinguish between events triggering a transition and
events generated by a transition, so we consider only triggering
events in the semantics of this operator.

There are two cases for micro-step environmental synchroniza-
tion (Figure 4). In the first case, all transitions are triggered by the
same event e, which is in the set of events, sync events, on which
the two components synchronize (line 1). All processes that lis-
ten for this event must participate in the step (line 2). This clause
refers back to the basic components’ sets of transitions �T � and �T 
 ,
and tests that each HTS that synchronizes on event e contributes a
transition to either �� � or �� 
 . In the second case, there are no events
on which the two components can synchronize, so one or the other
component takes a step in isolation; this step cannot include transi-
tions triggered by synchronization events. We call this second case
the unsynch case and will refer to it in subsequent definitions.

3.3 Rendezvous Synchronization
Rendezvous synchronization (Appendix A, Figure 6) is similar

to environmental synchronization, except that in the synchronized
case exactly one transition in the sending component generates a
synchronization event that triggers exactly one transition in the re-
ceiving component.

3.4 Interleaving
In interleaving composition, only one component can execute its

transitions at a time. At the micro-step level, it is equivalent to
the unsynch case in synchronization composition. The two syn-
chronization operators above degenerate to interleaving semantics
when their set of synchronization events is empty. At the macro-
step level (Appendix A, Figure 7), interleaving composition inter-
leaves the macro steps of each machine.

3.5 Sequence
In sequence composition (Appendix A, Figure 8), the first com-

ponent executes in isolation until it terminates (i.e., reaches its final
basic states), and then the second component executes in isolation.
If component one is a composite component, then all of its basic
components must reach final basic states before the second com-
ponent can start. (Recall that no transition can exit a final state
in an HTS.) We use the function basic states to isolate the basic
states from the set of current states. There are three stages to a se-
quence composition. In the first stage, component one executes and
the shared variables of component two are updated. In the second
stage, component one has reached its final states: the composition
operator updates component two’s current snapshot with appropri-
ate information from component one so that component two can
take a step, and it clears the states from component one’s snapshot
so that component one can no longer execute. In the third stage,
component two executes and, for consistency, the snapshot of com-
ponent one is updated.

3.6 Choice
In choice composition (Appendix A, Figure 9), the composition

operator nondeterministically chooses one component to execute
in isolation, and the other component never executes. This choice
is made in the initial snapshot, and thereafter the composite ma-
chine behaves only like the chosen component. We capture these
semantics by clearing the set of current states from the unchosen
component’s snapshot to keep it from executing. For consistency,
we continue to update the unchosen component’s snapshot.

3.7 Interrupt Composition Primitive
Interrupt composition (Figure 5) combines two components via a

pre-defined set of interrupt transitions (Tinterr). These transitions
may have sources and destinations that are sub-states of the compo-
nents rather than their root states. Interrupt transitions are similar to
HTS transitions in our basic components, except that they transition
between components that may have concurrent sub-components.

There are four cases in interrupt composition. In the first case,
component one can take transitions and any enabled interrupt tran-
sition has lower priority than these transitions. Therefore, compo-
nent one takes transitions and component two’s shared variables
are updated. We introduce the function higher pri 
 x � y � to test if
the highest priority transition in the set x has equal or higher prior-
ity than the highest priority transition in the set y; this function is
defined in terms of the priority semantics given in Table 6 and in
terms of the ranks of states, which increase as components are com-
posed. In the second case, one of the interrupt transitions is enabled
and has priority over enabled transitions in component one, which
means that control passes from component one to component two.
The composition operator clears the current states in component
one, so that it will not execute, and it applies the actions of the exe-
cuting transition to component two’s snapshot. Because the seman-
tics of these actions depends on each component’s step semantics,
we use the functions from Section 2 to compute the actions’ affects
on component two’s snapshot. We introduce function ent comp to



update 
 �ss � ���� � �ss � IEev gen � �� � � IEh

n int ev his � �ss 	��� � �
AV
assign ���ss � AV 	 resolve conflicts � asn � �� ������� �

AVh

n var val his ���ss 	 resolve conflicts � asn ���� �����

communicate 
 �iss � �ss � �� � � �� 
 � �
�iss � IEev gen ������ � �� � � � IEh

n int ev his � �ss 	����� � �� � � �
AV
assign � �ss � AV 	 resolve conflicts � asn � ��
� � �� � ����� �

AVh

n var val his � �ss 	 resolve conflicts � asn � ��
� � ����������

Figure 2: Abbreviations used in the semantics

Npara
micro 
�
 �ss � � �ss 
 � � 
 �ss �� � �ss �
 � � 
 �� � � �� 
 ��� �
if 
 � �ss � �� � N �micro 
 �ss � � �ss � �� ��� � 
 � �ss � �� � N 
micro 
 �ss
 � �ss � ������ then (* both can take a step *)

� �iss � � �iss 
 �
��
�

N �micro 
 �ss ��� �iss �	� �� � � � �ss �� � communicate 
 �iss �	� �ss � � �� �	� �� 
��
N 
micro 
 �ss
 � �iss
�� �� 
�� � �ss �
 � communicate 
 �iss 
�� �ss 
 � �� �	� �� 
��

��
(* both take a step *)

else � � N �micro 
 �ss � � �ss �� � �� � � � �� 
 � � � �ss �
 � update 
 �ss 
 ���� � �
(* symmetric case *) � (* only one executes; the other changes

shared variables and events *)

Npara
macro 
�
 �ss � � �ss 
 � � 
 �ss �� � �ss �
 � � EE � �

� �iss � � �iss 
 �
��
�

N �macro 
 �ss � � �iss � � EE � �ss 
 � EEg � � �ss �� � �iss � � AV
assign � �ss � � AV 	 resolve conflicts � �iss � � AV � �iss � � AV ���

N 
macro 
 �ss
 � �iss 
 � EE � �ss � � EEg � � �ss �
 � �iss 
 � AV
assign � �ss � � AV 	 resolve conflicts � �iss � � AV � �iss � � AV ���

��
(* both take
a step *)

Figure 3: Semantics of parallel composition for micro- and macro-steps

Nenv-sync
micro 
�
 �ss �	� �ss 
�� � 
 �ss �� � �ss �
 � � 
 �� � � �� 
 ��� sync events �

� �iss � � �iss 
�� e �
������ ��
�

ev trig 
 �� � � �� 
 � � �
e � � e � sync events (* line 1 *)

� T � �T � � �T 
 � 
 � � � T � ev trig 
���� � �
e ��� ��� 
�
 �� � � �� 
 �
	 T �� � � (* line 2 *)

N �micro 
 �ss � � �iss � � �� � � � �ss �� � communicate 
 �iss � � �ss � � �� � � �� 
 �
N 
micro 
 �ss
 � �iss
 � �� 
 � � �ss �
 � communicate 
 �iss 
 � �ss 
 � �� � � �� 
 �

� ����� (* sync on event in
multiple processes *)

�

����
� 
� �

N �micro 
 �ss � � IE�ss � � IE � sync events � IEh
�ss � � IEh � sync events � EEh

�ss � � EEh � sync events � �ss �� � �� � �
�� 
 � � � �ss �
 � update 
 �ss 
 � �� � � ��

(* symmetric case of above replacing 1 with 2 and 2 with 1 *)

� ��� (* unsync case:
only one component
executes. Reused

in Figure 6 *)

Figure 4: Semantics of environmental synchronization for micro-steps

Ninterr
micro 
�
 �ss � � �ss 
 � � 
 �ss �� � �ss �
 � � 
 �� �	� �� 
 ��� Tinterr �

� �iss � � �t �

��� �
�

�ss � � CS �� � � N �micro 
 �ss � � �iss �	� �t � � higher pri 
 �t � pri 
 enabled trans 
 �ss �	� Tinterr �����
N �micro 
 �ss � � �ss �� � �� � � � �ss �
 � update 
 �ss 
 � �� � �
�� 
 � � � higher pri 
 ���� �t �

� ��
(* component 1

steps *)

�

� � �

���� �
�

� � pri 
 enabled trans 
 �ss � � Tinterr ��� � 
 � �iss ��� �t � N �micro 
 �ss � � �iss �	� �t � �
� higher pri 
 � � � � �t ���
�ss �� � update 
 �ss � � ��� � CS� � �� � � � � �� 
 � �
�ss �
 � update 
 �ss 
 � ��� � CS

ent comp � � � � CSh

n states his � �ss � 	 � � �
EEh

n ext ev his � �ss � 	 � �

� ���
(* transition to
component 2 *)

�
(* symmetric cases of two above replaced 1 with 2 and 2 with 1 *)

Figure 5: Semantics of interrupt semantics for micro-steps



determine the current states of component two; this function uses
the state and composition hierarchy of component two and the set
of states entered by the executing transition to determine which
default states also need to be entered (e.g., default states of concur-
rent sub-components). The final two cases of interrupt composition
semantics are symmetric to the first two cases, in that we now con-
sider transitions whose source states are in component two. Notice
that only one component can ever have enabled transitions.

The initial composite snapshot for interrupted composition re-
quires the designation of one of the componentsas the starting com-
ponent. The current states for this component are set to its default
states, and the current states for the other component are empty.

4. SEMANTICS OF NOTATIONS
We can describe the semantics of several specification notations

concisely as instantiations of our framework. Tables 2–5 instantiate
the parameter functions of several popular model-based notations.
In this section, we list each of those notations’ choice of macro-step
type and transition priority, and we match its composition operators
to our composition operators.

All of basic transition systems (BTS) [22], CSP [17], CCS [24]
LOTOS [18], and SDL88 [20] use the “no priority” priority scheme
and the “simple” option for macro-step semantics, which dictates
the definitions of the parameter functions for step semantics. None
of these languages has a state hierarchy.

BTS’s interleaving (
�
), concatenation (;) and selection (OR) are

our interleaving, sequence, and choice operators, respectively.
CSP’s communication 
 c �

v � P
�
c � x � Q � is our rendezvous

synchronization. CSP’s parallel (
�
), interleaving ( � � � ), sequential

composition (;), and general choice (
� � ) are our environmental syn-

chronization (with the synchronization set consisting of all shared
events), interleaving, sequence, and choice operators, respectively.
We have not yet formalized CSP’s interrupt ( � ) operator; it would
be a modification of our sequence composition where the second
component begins whenever the second component is enabled rather
than waiting for the first component to terminate.

CCS’s summation (+), composition ( � ), sequential (;), and con-
junction (

�
) operators are our choice, rendezvous, sequence, and

environmental synchronization operators, respectively.
ESTELLE hierarchical modules [19] use the “simple” option for

macro-step semantics and the “scopeO” priority scheme, combined
with “explicit” priorities to resolve among transitions that have the
same scope. Components collected into a “process” parent map to
our parallel composition, and components collected in an “activity”
parent map to our interleaving composition.

LOTOS’s parallel composition (
�
), pure interleaving ( � � � ), sequen-

tial composition ( � ), and choice ([ ]) are our environmental syn-
chronization, interleaving, sequence, and choice operators, respec-
tively. We do not yet handle LOTOS’s disabling (

� � ) construct. It
would be a modification of our sequence composition.

SDL’s composition has been described as either our interleaving
or parallel composition. Because SDL88 does not allow shared
variables, these two choices are equivalent for any properties that
do not dependent on a specific time interval.

A statecharts’ state with only OR-substates is an HTS. State-
charts’ AND-states are formed using our parallel composition. Stat-
echarts’ OR-state composition is our interrupt composition. All
statecharts dialects use stable macro-step semantics, but they have
different micro-step semantics as depicted in Tables 2–5. Harel et
al’s [15] original formulation of statecharts corresponds to the pri-
ority scheme of “no priority”. The semantics of STATEMATE [16]
have a priority scheme of “scopeO”. RSML [21] corresponds to a
priority scheme of “no priority’.

5. RELATED WORK
To the best of our knowledge, there has been no comparable at-

tempt to classify formally the step-semantics and composition se-
mantics for model-based specifications. There has been work on
informally classifying the semantics of specifications languages [8,
13], the most famous of which is von der Beeck’s comparison of
statecharts variants [29]. These taxonomies of composition op-
erators (parallel, interleaving, etc.) and communication operators
(synchronous, asynchronous, etc.) are similar to ours, but we go
further and define formally how each operator affects a model’s
behaviour. We also express variations in step-semantics as param-
eters, which makes it easier to define new notations and to identify
both major and subtle differences among notations’ semantics.

A number of researchers have proposed translating specification
notations into more fundamental modelling notations, such as first
order logic [30, 31], hierarchical state machines [23], labelled tran-
sition systems [4], and hybrid automata [2]. Such notations are
general enough to represent a variety of specification notations and
can even accommodate specifications written in multiple notations.
The verification tools and techniques associated with the more fun-
damental modelling notation can be applied to the translated spec-
ification. Researchers have also proposed general semantic models
that are capable of capturing the semantics of multiple notations
and extended features of these notations [11].

Researchers have introduced intermediate languages, such as
SAL [3] and IF [5], that are designed to be elegant yet expressive
target languages that ease translations between notations. In the
case of SAL and IF, there exist translators between several spec-
ification notations and the intermediate language, between the in-
termediate language and the input languages of several verification
tools, and vice versa. These approaches allow the specification to
be analyzed using multiple verification tools. However, a translator
needs to be built for each specification language and needs to be
modified whenever the language’s semantics change.

Work with similar goals to ours is that of Day and Joyce [10],
Pezzè and Young [26, 27], and Dillon and Stirewalt [12, 28]. The
goal of these works is to generate analysis tools automatically from
a description of a notation’s semantics. Day and Joyce embed
the semantics of a notation in higher-order logic and automati-
cally compile a next-state relation from the notation’s semantics
and specification. Embedding avoids the translation step and the ef-
fort to construct and maintain translators. Notations have also been
embedded in the theorem prover PVS [25], and PVS’s connection
to a model checker has been used to analyze these specifications.

Pezzè and Young embed the semantics of model-based notations
into hypergraph rules, which specify how enabled transitions are
selected, and how executing transitions affect the specification’s
hypergraph model. The composition semantics of components that
are specified in different notations can also be described.

Dillon and Stirewalt define operational semantics for process-
algebra and temporal-logic notations, and semi-automatically trans-
late these semantic descriptions into a tool that accepts a specifica-
tion and generates an inference graph. This inference graph cal-
culates all of the specification’s possible next configurations, ex-
pressed as specifications, which in turn can be fed into the tool to
produce their respective inference graphs. Their approach cannot
accommodate model-based notations with data variables.

In contrast to these approaches, our paper separates step-semantics
and composition operators. This separation allows us to simplify
each of these aspects of semantics, to the point where one can de-
fine the semantics of a new notation as parameter values rather than
an embedding. Also, our work is expressed using traditional state-
transition relations rather than introducing a new execution model.



6. CONCLUSIONS
We have introduced an operational semantics template for model-

based specification notations that parameterizes a notation’s step-
semantics. Using this template, one can define the semantics of a
new notation simply by (1) instantiating the template’s thirteen pa-
rameter functions and by (2) defining how composition operators
control components’ executions and change snapshot elements to
reflect inter-component communication and synchronization. We
expect the degree of parameterization to grow as we survey more
notations, but we believe it will grow to support new snapshot ele-
ments (e.g., to augment states with entry or exit actions) rather than
grow in the number of parameter functions on existing snapshot el-
ements. That said, one candidate for future parameterization is the
function resolve conflicts: a specifier may want to specialize how
a notation resolves conflicting, concurrent variable assignments.

We believe that our template, with its separation of fixed and pa-
rameteric semantics, may be a suitable input language for a tool
or process that generates notation-specific analysis tools. To eval-
uate this hypothesis, we are currently embedding into higher-order
logic the formal definitions that we presented in this paper. In this
implementation of our framework, an instantiated template would
define a theory for reasoning about specifications in the defined no-
tation, and a finite specification could be transformed into a BDD
representation for model checking.
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Appendix A

Nrend-sync
micro 
�
 �ss � � �ss 
 � � 
 �ss �� � �ss �
 � � 
 �� �	� �� 
 ��� sync events �

� �iss � � �iss
 � e �

���
�
�

e � sync events � � �� � � � � � � �� 
 � � ev gen 
 �� � � � ev trig 
 �� 
 � � �
e �

N �micro 
 �ss � � �iss � � �� � � � �ss �� � communicate 
 �iss � � �ss � � �� � � �� 
 �
N 
micro 
 �ss 
 � �iss
 � �� 
 � � �ss �
 � communicate 
 �iss 
 � �ss 
 � �� � � �� 
 �

� �� (* sync. on one sync event generated
by one transition in component 1,

triggering only one
transition in component 2 *)

�
(* symmetric case of above replacing 1 with 2 and 2 with 1 *)

�
(* unsync case *)

Figure 6: Semantics of rendezvous synchronization for micro-steps

Nintl
macro 
�
 �ss � � �ss � � � 
 �ss �� � �ss �
 � � EE � �� � N �macro 
 �ss � � �ss �� � EE � �ss 
 � EEg � � �ss �
 � �ss 
 � AV

assign � �ss � � AV 	 �ss
� � � AV �

N 
macro 
 �ss
 � �ss �
 � EE � �ss � � EEg � � �ss �� � �ss � � AV
assign � �ss � � AV 	 �ss

�� � AV � � (* either component can take
a step, but not both *)

Figure 7: Semantics of interleaving composition for macro-steps

Nseq
micro 
�
 �ss � � �ss 
 � � 
 �ss �� � �ss �
 � � 
 �� � � �� 
 ��� �

�

�

� � basic states 
 �ss � � CS � �� F � � �� 
 � �
N �micro 
 �ss � � �ss �� � �� � � � �ss �
 � update 
 �ss 
 � �� � � � (* Component 1 steps *)� � basic states 
 �ss � � CS � � F � � �ss � � CS �� � � �ss �� � update 
 �ss � � �� 
 � � CS� � �� � � �
N 
micro 
 �ss 
 � EEh

�ss � � EEh
� �ss �
 � �� 
 � � (* Component 2

starts and steps *)�
�ss � � CS � � � �� � � � � N 
micro 
 �ss 
 � �ss �
 � �� 
 � � �ss �� � update 
 �ss � � �� 
 ��� (* Component 2 steps *)

Figure 8: Semantics of sequence composition for micro-steps

Nchoice
micro 
�
 �ss � � �ss 
 � � 
 �ss �� � �ss �
 � � 
 �� � � �� 
 ��� ����
�

�ss � � CS � I � � �ss 
 � CS � I 
 � �ss � � CS �� � � �ss 
 � CS �� �� � � N �micro 
 �ss � � �ss �� � �� � � � �� 
 � �
�ss �
 � update 
 �ss 
 � �� � � � CS� � � � � N 
micro 
 �ss 
 � �ss �
 � �� 
 � � �� � � �

�ss �� � update 
 �ss �	� �� 
 � � CS� ���
� ��

(* choose a
component *)

�
� � � �ss 
 � CS � � � N �micro 
 �ss � � �ss �� � �� � �

�ss �
 � update 
 �ss 
 � �� � � � �� 
 � � � � (* symmetric case of left replacing
1 with 2 and 2 with 1 *) � (* chosen component steps *)

Figure 9: Semantics of choice composition for micro-steps
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