
ACM	Copyright	Notice	
© ACM 2000
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from permissions@acm.org.

Published	in:	Proceedings	of	the	ACM	SIGSOFT	International	Symposium	on	
the	Foundations	of	Software	Engineering	(FSE'00),	November	2000	

“Composing Features and Resolving Interactions”

Cite as:

BibTex:

DOI: http://dx.doi.org/10.1145/355045.355061

Jonathan D. Hay and Joanne M. Atlee. 2000. Composing features and resolving
interactions. In Proceedings of the 8th ACM SIGSOFT international symposium on
Foundations of software engineering: twenty-first century applications (SIGSOFT '00/FSE-
8), David S. Rosenblum (Ed.). ACM, New York, NY, USA, 110-119.

@inproceedings{Hay:2000:CFR:355045.355061,
 author = {Hay, Jonathan D. and Atlee, Joanne M.},
 title = {Composing Features and Resolving Interactions},
 booktitle = {Proceedings of the 8th ACM SIGSOFT International Symposium on Foundations
of Software Engineering: Twenty-first Century Applications},
 series = {SIGSOFT '00/FSE-8},
 year = {2000},
 pages = {110--119}
}

Composing Features and Resolving Interactions

Jonathan D. Hay
Department of Computer Science

University of Waterloo
Waterloo, Ontario N2L 3G1 Canada
jd2hay@se.uwaterloo.ca

Joanne M. Atlee
Department of Computer Science

University of Waterloo
Waterloo, Ontario N2L 3G1 Canada
jmatlee@se.uwaterloo.ca

ABSTRACT
One of the accepted techniques for developing and maintaining
feature-rich applications is to treat each feature as a separate con-
cern. However, most features are not separate concerns because
they override and extend the same basic service. That is, “inde-
pendent” features are coupled to one another through the system’s
basic service. As a result, seemingly unrelated features subtly inter-
fere with each other when trying to override the system behaviour
in different directions. The problem is how to coordinate features’
access to the service’s shared variables.
This paper proposes coordinating features via feature composi-

tion. We model each feature as a separate labelled-transition sys-
tem and define a conflict-free (CF) composition operator that pre-
vents enabled transitions from synchronizing if they interact: if sev-
eral features’ transitions are simultaneously enabled but have con-
flicting actions, a non-conflicting subset of the enabled transitions
are synchronized in the composition. We also define a conflict-
and violation-free (CVF) composition operator that prevents en-
abled transitions from executing if they violate features’ invariants.
Both composition operators use priorities among features to decide
whether to synchronize transitions.

Categories and Subject Descriptors
F.3.1 [Logics and Meanings of Programs]: Specifying and Ver-
ifying and Reasoning about Programs—Specification techniques,
Assertions, Invariants; F.3.2 [Logics andMeanings of Programs]:
Semantics of Programming Languages—process models; D.2.12
[Software Engineering]: Interoperability; D.2.11 [Software En-
gineering]: Software Architecture—domain-specific architectures

General Terms
Design

Keywords
Modularity, incremental programming, feature interaction, conflict
resolution

1. INTRODUCTION
Software engineering techniques such as separation of concerns
and incremental programming help software developers to build
feature-rich applications by allowing them to consider new features
as independent increments of the application’s basic service. How-
ever, separately developed features can subtly interfere with each
other because they enhance the same basic service and manipulate
the same service variables. In general, a feature interaction occurs
whenever one feature affects the behaviour of another [11].
Not all interactions are bad. Many are planned. For example,

features are designed to interact with the basic service and any fea-
tures that they override and extend. Conflicts occur when seem-
ingly unrelated features trip over each other while trying to simul-
taneously override system behaviour. The problem is that while
features are treated as separate concerns, they are coupled to one
another through the service that they extend and their access to the
shared service is not well coordinated.
The feature interaction problem is how to rapidly develop and

deploy new features without disrupting the functionality of existing
features. Approaches to this problem include the following

Eliminating interactions during design. The idea is to formally
specify features as separate entities, compose the specifica-
tions, search the composition for interactions, and resolve
interactions by modifying the feature specifications [1, 3, 6,
8, 15, 24]. However, features cannot be re-designed indepen-
dently to eliminate interactions. Also, if the system is evolv-
ing, many of the features under consideration may already be
implemented and not open to re-design [30]. Instead, most
design-time resolutions specify how groups of features be-
have together, either by adding exception clauses to features
[3, 29], adding supervisors that explicitly interleave the ac-
tions of feature combinations [2, 26], adding rules or features
that explicitly define the behaviour of feature combinations
[5, 29], etc. The problem with such resolution techniques is
that they don’t scale to systems that have hundreds or thou-
sands of features because the number of feature combina-
tions to consider grows exponentially. Worse, by specifying
the behaviour of feature combinations, they counteract the
benefits of separation of concerns, making it difficult to re-
solve interactions with future features or to customize reso-
lutions to an individual user’s needs.

Preventing interactions via architectural constraints. An archi-
tecture can help avoid interactions by constraining and coor-
dinating the features’ access to the service’s variables and re-
sources. Distributed Feature Coordination (DFC) [20] orga-
nizes features in a pipe-and-filter architecture where the mes-
sages that are passed among the features act as tokens that

enable features to react to the current system state. However,
pipe-and-filter and layered architectures [6, 7] tend to serial-
ize features’ reactions to each event. This may over-constrain
the features’ access to the basic service and cause features to
miss key events that they would otherwise react to. Also, it
means each feature specification must indicate which input
events are terminated at the feature (i.e, are not forwarded to
the next feature), and such decisions may need to be mod-
ified when new features are introduced to the system [9].
Agent-based architectures [23, 32] and patterns [27] allow
features more flexible access to the basic service and shared
resources. However, architectural solutions cannot prevent
interactions that violate features’ constraints.

Resolving interactions at run-time. If an interaction is not elimi-
nated during design nor avoided by the system’s architecture,
it must be detected and resolved at run-time. Some resolu-
tions are intentionally deferred until run-time – until it can
be determined that an interaction has actually occurred and
corrective action is needed. Once detected, interactions can
be resolved by ranking features by priority [19, 22], negoti-
ating compromises[18], involving the user [16], rolling back
conflicting actions [9, 22], disabling feature activation [19],
terminating features [22], and terminating the application.

Our goal is to develop a feature specification and composition
model that has the advantages of all three approaches: a model that
enforces modular feature development, co-ordinates the features’
accesses to the basic service, and constrains features’ behaviours
only when they conflict. We want to maintain the illusion that fea-
tures are separate concerns because the illusion simplifies the ap-
plication’s design. The illusion also decreases the time-to-market
for new features, because features can be developed in parallel or
contracted out to third-party programmers. This emphasis on mod-
ularity rules out conflict resolution techniques that modify service
or feature specifications or that specify the behaviour of feature
combinations. However, the trick in addressing the feature interac-
tion problem is not in finding resolutions, but in developing general
mechanisms to detect and resolve interactions that are efficient and
that apply in a majority of cases [21].
This paper introduces a model for specifying and composing fea-

tures that detects and resolves interactions during feature composi-
tion. The system’s state is abstracted as a set of relational assertions
about the system’s observable behaviour. For example, assertions
in a telephony system include established voice connections, par-
tial connections, connections on hold, etc. Features are specified as
labelled transition systems that model the features’ effects on sys-
tem behaviour as changes to and constraints on the values of the
assertion variables. Thus, feature interactions manifest themselves
as conflicts over the values of these assertions. We propose com-
position operators that resolve conflicting actions and violations of
constraints, using feature priorities to favour one feature over an-
other.
The paper is organized as follows. First, we describe the types of

assertions we use to model system behaviour and our notation for
specifying feature behaviour in terms of the features’ effects on as-
sertions. We then incrementally present our prioritized composition
operators and apply them to a few telephony features. Although all
of the examples used in this paper involve telephony services, fea-
tures, and interactions, our model can be applied to any feature-rich
reactive system.

2. ASSERTIONS
The state of a system is modelled as a set of relational assertions
that characterize key information about the system’s observable be-
haviour. Example assertions in a telephony system are relations on
connectionsC, users U, resourcesR, time T, money $, etc. Asser-
tions about a connection C relate all of the users, billing infor-
mation, shared resources, and other information associated with a
particular call.
As services and features execute, they monitor and modify the

assertions’ values. We say that a service or feature asserts a new re-
lationship when it adds a relationship instance to an assertion vari-
able (e.g., asserting a new connection would add a new connection
element to the relation of established connections). A service or
feature retracts a relationship when it removes a relationship in-
stance from an assertion.
For convenience,we divide assertions into state assertions, event

assertions, and ordinary assertions.

State and event assertions differ from ordinary assertions in that
there are extra constraints on how and when they change value.

2.1 States
State assertions are relations that describe the control state of a ser-
vice or a feature. Every executing service and feature has a current
state, and is thus represented as an element in some state assertion
variable.
Consider Plain Old Telephone Service (POTS), which provides

voice connections between pairs of users. We model POTS as two
coordinating services: O POTS, which provides service to callers,
and T POTS, which provides service to callees1. A caller in con-
nection is in exactly one of the following states of O POTS. In the
following, the left column lists states and the right column gives the
states’ definitions. We distinguish among callers (
U), callees (U), and arbitrary users (U)
who may be either callers or callees.

o newcall(c, o) Start a new call for caller
o dial(c, o) Wait for to dial number
o analyze(c, o, n) Analyze dialed number
o request(c, o, t) Request a connection
o wait(c, o, t) Wait for response to request
o ring(c, o, t) Alert that ’s phone is ringing
u voice(c, u) Voice connection is established
u dead(c, u) Connection is dead; wait for hang up
u disconn(c, u) User hangs up

A callee in connection is in exactly one of the following states
of T POTS. (Note that the last three states are identical to the last
three states of O POTS.)

t newcall(c, o, t) Process new call request
t ring(c, o, t) ’s phone is ringing
u voice(c, t) Voice connection is established
u dead(c, t) Connection is dead; wait for hang up
u disconn(c, t) User hangs up

The names O POTS and T POTS refer to the names of the basic
call model, Originating Call Model and Terminating Call Model,
used in telephony. The Originating Call Model is so called because
it “originates” calls on behalf of the caller. The Terminating Call
Model is so called because a call request may establish several net-
work connections between the caller’s exchange and the callee’s
exchange, but eventually “terminates” at and is handled by this ser-
vice at the callee’s exchange.

In addition, a feature specification may introduce state assertions
that reflect the various stages of its execution. For example a Call
Waiting feature executing on behalf of a callee is in exactly one
of the following state assertions.

cw newcall(c, t) Accept second call
cw notify(c, t) Notify of second call
cw twocalls(c1,c2,t) User connected to two calls

The values of state assertions are constrained so that an executing
service or feature is always in exactly one of its state assertions.
Thus, if a service’s (feature’s) state is asserted, all of its other state
assertions are implicitly retracted.

2.2 Events
Event assertions are relations that model events, messages, and
other transient assertions. Examples include:

OffHook(u) User picks up the phone’s handset
OnHook(u) User hangs up
Dial(o,t) User dials user ’s number
DialTone(u) DialTone emitted to user
CW Notify(u) User is notified of a Call Waiting call

Event assertions are distinguished from ordinary assertions be-
cause they are transient. They are asserted for one system state –
long enough for the services and features to react to their occur-
rence – and then are automatically retracted.

2.3 Ordinary Assertions
(Ordinary) assertions are relations that model observable proper-
ties of the system. Some assertionsmodel POTS-specificor feature-
specific data. For example, POTS keeps track of which phone num-
bers are valid and which users are allowed to initiate or receive
calls; Call Forwarding keeps track of forwarded numbers; etc.

CanCall(u) User may originate calls
CanReceive(u) User may receive calls
InService(u) User ’s phone number is in service
OCS(o, t) User screens calls made to user
TCS(t, o) User screens calls from user
CFNA(t, t2, n) Unansweredcalls to are forwarded to after

time units

Other assertions model observable properties of the system’s exe-
cution.

Conn(c, u) User participates in connection
Alias(u1,u2) and refer to the same user2
Redirect(t, t2) Calls to are redirected to user
Reveal(c, u1, u2) ’s phone number is revealed to .
Hold(c, u) User places connection on hold.
CWHold(c, u) User puts connection on hold to answer

second call
3WayHold(c, u) User puts connection on hold to start

second call
As features introduce variations of the same ordinary assertion,

it becomes necessary to organize the assertions into generalization
hierarchies. For example, Call Waiting (CW) and Three-Way Call-
ing (3WC) both have stages in their execution where a user places

A user is identified by his telephone number; if a user has more
than one number, he is treated as a user who has multiple aliases.

one connection on hold. By modelling feature-specific assertions
CWHold and 3WCHold, each feature can assert or retract its re-
spective hold assertion without affecting hold assertions issued by
other features. The advantage of having an abstract Hold assertion
is that a feature like 911 can forbid a connection from being put on
hold without listing all of the forbidden feature-specific assertions.
Otherwise, we would need to modify 911 every time a new feature
introduced a new type of hold.
An assertion hierarchy defines concrete assertions as instantia-

tions of abstract assertions.

Childless nodes represent concrete assertion variables that can be
directly manipulated by services and features. Internal nodes repre-
sent abstract assertions whose values cannot be explicitly asserted
or retracted. Instead, an abstract relationship is indirectly asserted
whenever one of its concrete instantiations is asserted, and is re-
tracted when all of its descendents are retracted. Example hierar-
chical assertions include:

Orig: callers in a connection
Term: callees in a connection

CFNA: call forward (no answer)
CFB: call forward (when busy)
VoiceMail: Voice Mail

In our approach, the introduction of new abstract assertions poses
the greatest threat to modular feature development because it re-
flects that a new observable property has been added to the sys-
tem. Adding a new abstract assertion does not necessitate changes
to existing features, but it does present an opportunity to enhance
existing features so that they take advantage of the new shared vari-
able. For example, the specification for Call Waiting introduces all
of the assertions it needs to specify how its user receives and alter-
nates between two calls. However, the introduction of an abstract
Reveal assertion may lead to a new Call Waiting Display feature
that displays the second caller’s number. In general, proactive fea-
ture designers will attempt to invent new features whenever a new
abstract assertion is introduced, by integrating the new assertion
into existing features.

3. SPECIFICATIONS
Specifications describe how services and features affect assertion
values. They consist of sets of transition rules whose guards de-
scribe assertion valuations that the service or feature reacts to and
whose actions describe the transitions’ corresponding reactions.

Definition 1. A service or feature is a labelled transition system
(,), where

is a finite set of state, event, and ordinary assertions
is a set of transitions with labels , where
– is a guard that characterizes the states in which the
transition is enabled. Guards are predicates defined by
the following grammar:

::= R(,) !R(,) +R(,) –R(,)
::= x !x
where R is an assertion variable, x is an element in
R’s domain or range, and is a wildcard that matches

any element in R’s domain or range. The operators
‘,’ and ‘ ’ specify conjunction and disjunction, respec-
tively, with disjunction having higher precedence than
conjunction.

– is a set of actions that specify changes to assertion
values when the transition executes. Actions have the
following grammar:

::= +R(,) –R(,)
::= x
::= x !x

The operator ‘,’ specifies action composition3.

The guard R(x,y) holds whenever (x,y) R, and its complement
!R(x,y) holds whenever (x,y) R. Wildcard elements and !x are
used to write existentially quantified guards:

R(x,*)
!R(x,*)
R(x,!z)
!R(x,!z)

Guards +R(x,y) and –R(x,y) hold when the predicate R(x,y) has
just changed value: +R(x,y) holds whenever R(x,y) is true but was
false in the previous state, and –R(x,y) holds whenever R(x,y) is
false but was true in the previous state.
Actions either add new elements to or remove elements from

assertion relations. Action +R(x,y) adds the element-pair (x,y) to
assertion R, and –R(x,y) removes the element-pair (x,y) from the
assertion. Quantified actions specify the removal of several ele-
ments from the assertion: action –R(x,*) removes from the relation
all pairs whose domain is . And action –R(x,!z) removes from
the relation all pairs whose domain is – except for the pair (x,z),
whose membership in R is not affected by this action.
To improve the readability of service and feature specifications,

we use delimiters and fonts to distinguish between state, event, and
ordinary assertions: states are surrounded by square brackets [],
events are italicized, and ordinary assertions are not delimited.

Example 1. O POTS
The following are a few rules from the service specification of
O POTS.

Offhook(o), !Conn(*,o) [+o newcall(c,o)], +Orig(c,o)
[+o newcall(c,o)], CanCall(o) [+o dialing(c,o)],+DialTone(o)
[o dialing(c,o)], Dialed(o,t) [+o analyze(c,o,t)]
[+o analyze(c,o,t)], InService(t) [+o request(c,o,t)]
[+o analyze(c,o,t)], !InService(t)

[+o dead(c,o)],+WrongNumber(o)

The first rule is triggered if the caller picks up the phone’s handset
and is not already involved in a call. As soon as the call enters state
[o newcall], the service determines whether the caller has permis-
sion to initiate calls. If so, the service proceeds to state [o dialing]
and a dial tone is issued. The third rule is triggered when the caller
dials a number. The fourth and fifth rules describe the behaviours
when the dialed number is and is not a valid number in service, re-
spectively; in the latter case, an announcement is made to the caller.

While the grammars for guards and actions are expressed in terms
of binary relations, assertion variables can also be sets and relations
of higher order.

Scoping rules restrict which assertions the services and features
may access. A service specifications may reference and modify
only the assertions that it declares (i.e., the basic service’s states,
events, and assertions). A feature specification may reference and
modify the new assertions that it declares (i.e., the feature’s states,
new input and output events, and assertions for new types of con-
nections, screening lists, etc.) plus the service’s assertions, plus the
abstract assertions. Thus, features override the behaviour of the ba-
sic service by manipulating the abstract and service assertions; and
features extend the system’s behaviour by introducing new asser-
tions and manipulating their values. If a feature overrides or ex-
tends the behaviour of another feature (e.g., Call Display Blocking
overrides Call Number Display), it can access the second feature’s
assertions as if the second feature were part of its underlying ser-
vice. In general, features should not access each other’s declared
assertions.

Example 2. Originating Call Screening
Originating Call Screening is invokedas soon as the caller’s service
enters state [o analyze] to test the dialed number.

[+o analyze(c,o,t)], OCS(o,t) [+o dead(c,o)], OSCDeny(o)

If the dialed number is on the caller’s screening list, then the feature
terminates the call (by forcing the O POTS service to transition to
state [o dead]) and sends an error message to the caller.

Definition 2. Semantics
The system state of a service or feature is an assertion valuation
of the service’s (feature’s) assertions . The semantics of a service
(feature) is defined by a transition relation between system states.
A transition executes if the assertion valuation satisfies
the transition’s guards:

and if the actions , when applied to assertion valuation , pro-
duce the new assertion valuation :

We derive for each transition a predicate that characterizes how
the transition’s actions are expected to affect assertion values. For
example, if a transition’s actions assert +R(x,y), then we expect

to hold after the transition executes, and if the actions
assert –R(x,y), then we expect to hold. The effects

of a transition’s actions is the conjunction of such relation-
membership tests, one test for every element added or removed
from a relation.
To ensure that the actions applied by a single transition do not in-

terfere with each other, we impose a correctness criterion on spec-
ifications that states a transition’s effects must hold in the transi-
tion’s destination state

CORRECTNESS CRITERION 1. For all transitions ,

4. FEATURE COMPOSITION
A complete telephony system consists of several services and fea-
tures executing in parallel. At any point in time, there could be sev-
eral instances of the basic service, each executing on behalf of some
user, and several instances of various features, each overriding or
extending some service instance. In practice, we are interested in
composing only the services and features pertaining to groups of
related calls (i.e., calls that have common users).

Figure 1: Composition of parallel features

When composing features, we want to synchronize enabled tran-
sitions to maximize the number of features that react to each sys-
tem state. AND-synchronization [4] satisfies this requirement: it
synchronizes transitions exactly when the conjunction of the transi-
tions’ guards is enabled. Thus, if transitions and from parallel
features (Figure 1) are both enabled by assertion valuation , then
they execute synchronously andmodify assertion values simultane-
ously. Otherwise, one transition, or the other, or neither executes.

Definition 3. Composition with AND-synchronization synchron-
izes two transitions and iff the
transitions’ guards are simultaneously enabled (the operator de-
notes function composition). A transition executes alone () if it
is the only enabled transition.

Note that the enabling conditions of transitions and give
synchronized transitions priority over interleaved transitions.
The problem with this definition for feature composition is that

synchronized transitions may assert conflicting actions.

Definition 4. A feature interaction occurs when two transitions
and are synchronized, but their

actions’ expected effects are not realized:

The actions in and counteract one another, either by assert-
ing that some service or feature must transition into different states,
or by asserting and retracting the same assertion. The result is that
the effects and are not both realized after the actions are
executed. The composition order of action sets and may
affect which effects predicate is not realized, but it does not affect
the value of the predicates’ conjunction.

4.1 Conflict-Free Composition
We propose an alternate rule for synchronizing transitions called
CF-synchronization that allows features to simultaneously react to
a particular call situation, but disables transition combinations that
conflict. We assume a total priority ordering on features, and we
use these feature priorities to select which of the conflicting transi-
tions will execute.
Consider two rules and , where ’s feature has priority over
’s feature. We allow transitions and to synchronize if and

only if their guards are simultaneously enabled and their actions do
not conflict. If the transitions conflict, then transition , from the
higher priority feature, executes alone; it also executes alone if only
its guard is enabled by the current assertion valuation. Transition
, from the lowest priority feature, executes alone only when it is

the sole transition enabled by the current assertion valuation.

Definition 5. Composition with CF-synchronization synchron-
izes two transitions and iff their
guards are enabled and their actions do not conflict. A transition
executes alone () if it conflicts with lower-priority features or
if it is the only enabled transition.

The interaction check in the above guard expressions simply evalu-
ates a number of relation-membership tests and thus is not compu-
tationally expensive.
In general, given a collection of transitions enabled by an as-

sertion valuation , we can find a maximal combination of non-
conflicting transitions by applying the transitions in order of de-
creasing priority. Each transition is considered in turn and is se-
lected for execution if and only if its actions do not conflict with
the actions of transitions that have already been selected (since the
selected transitions are of higher priority and would win any con-
flict). In the end, the set of transitions selected for execution is a
maximal, non-conflicting subset of the enabled transitions. This
algorithm allows the maximum number of features to react to a
system state, while avoiding conflict.

Generalized Algorithm
CF Composition

Input: the current assertion valuation
prioritized set of enabled transitions

Algorithm:
Let next assertion valuation
Let set of non-conflicting transitions
Let effects of non-conflicting transitions

For each in order of decreasing priority
If then

{ }

else ignore t

Output:

5. WEAK INVARIANTS
The above feature model and composition operator resolves only
those interactions in which features attempt to simultaneouslymod-
ify the same assertion variables. More subtle feature interactions
occur when one feature makes what are supposed to be persistent
changes to the assertion variables, but another feature at a later
time modifies those variables. To reflect features’ intentions to con-
strain assertion values beyond the execution of a single transition,
we augment our feature specification notation by adding weak in-
variants to transition rules. Weak invariants specify constraints on
assertion values that are expected to hold until the invariants are
explicitly retracted by the feature that asserted them. We call the
invariants weak because they can be overridden by transitions of
higher-priority features.

Definition 6. A weak invariant is a constraint on assertion val-
ues that is expected to hold from the time the invariant is asserted to
the time it is retracted. Weak invariants are specified in three parts:

Name = Condition : Violation Event

where Name is a unique identifier that may have parameters, the
Condition specifies a constraint on assertion values, and the Viola-
tion Event is an event assertion that is output whenever the invari-
ant prevents a violating action from occurring. Invariant conditions
have the following grammar:

::=
::= R(,) !R(,)
::= x

where R is an assertion variable, x is an element in R’s domain
or range, and is a bound variable over elements in R’s domain
or range. The operators ‘ ,’ and ‘ ’ specify conjunction and disjunc-
tion, respectively, with disjunction having higher precedence.

Weak invariants can be asserted or retracted as a side effect of a
transition rule. Thus, we extend our specification model to include
actions on invariants.

Definition 1. (Revised) A service or feature is a labelled transi-
tion system (,), where

is a finite set of state, event, and ordinary assertions
is a set of transitions with labels where
– is a guard on assertions in A
– is a set of actions
– is a set of actions on invariants that assert and retract
weak invariant constraints

Weak invariants express the features’ intentions to control assertion
values. However, a feature’s invariants can be overridden by the ac-
tions of a higher-priority feature. When this happens, the invariant
is said to be relaxed – the invariant is violated, but remains asserted
in order to keep lower-priority features from re-violating it. For ex-
ample, a high-priority emergency call could violate a call screening
invariant, but the relaxed invariant would continue to screen con-
nection attempts made by lower-priority features.
We delimit weak invariants in transition rules with angle brackets
, to distinguish them from guards and actions. An invariant

named may be asserted + or retracted – as a side effect
of a service or feature transition.

Example 3. Originating Call Screening
The intention of the Originating Call Screening feature is to con-
strain which users a caller can be connected to:

OSCInv(c,o)= .(!OSC(o,) !Conn(c,o) !Conn(c,)) :OSCDeny

Every user is either not on ’s screening list or not in a connec-
tion with . Whenever the invariant prohibits a requested connec-
tion, an OSCDeny event is sent to the user whose feature tried to
establish the screened connection. This invariant is enforced when-
ever user is considered the originator of a connection, either via
POTS or some other feature (e.g., Call Transfer):

+Orig(c,o) + OSCInv(c,o)
–Orig(c,o) – OSCInv(c,o)

Example 4. 911
One of the constraints of being connected to a 911 operator is that
only the 911 operator can put the call on hold or end the call.

911Hold(c) = .(!Hold(c,)) : 911DenyHold
911Conn(c) = .([u voice(c,)]) : 911DenyHangup

These invariants are asserted whenever a user establishes a con-
nection with a 911 operator and are retracted whenever the 911
operator ends the call.

[+u voice(c,u2)], Conn(c,u), 911(u)
[+911 Call(c,u)], + 911Conn(c), 911Hold(c)

[911 Call(c,u)],OnHook(u) – 911Conn(c), 911Hold(c)

Because the set of asserted invariants varies and (as will be seen)
affects the behaviour of services and features, we revise our defini-
tion of semantics to incorporate weak invariants.

Definition 2. (Revised) The system state of a service or feature
is a pair (,), where is a valuation of the service’s and fea-
ture’s assertions , and is a set of asserted invariants. We de-
fine a transition relation between system states, such that transition

executes if (1) the assertion valuation
satisfies the transition’s guards:

(2) the actions , when applied to assertion valuation , produce
the new assertion valuation :

and (3) the actions on invariants , when applied to invariant set ,
produce the new invariant set :

5.1 Violating (and Re-violating) Invariants
At this point, we would like to assert a second correctness crite-
rion on service and feature specifications stating that a transition’s
actions must not interfere with the transition’s own asserted invari-
ants. One might try to express this correctness criterion by evaluat-
ing the invariants before and after the transition executes:

However, if any of the invariants is unsatisfiedwhen the transi-
tion executes, the above expressionwill evaluate to true, whether or
not the transition’s pwn actions violate the invariant. Similarly,
if we try to use only the conclusion of the above expression, this
subexpression will evaluate to false whenever contains an unsat-
isfied invariant. We are interested in detecting new violations in the
presence of relaxed invariants, which means that we want to detect
when some instantiation of an invariant becomes false.
To do this, we evaluate invariants with respect to a pair of con-

secutive assertion valuations . We define a four-valued as-
signment function on atomic expressionsR(x,y) in assertion val-
uation , such that

where denotes the value of a relation in assertion valuation
and denotes the value of the same relation in valuation .

R(x,y) !R(x,y)
T F
+T +F
+F +T
F T

, T +T +F F
T T +T +F F
+T +T +T F F
+F +F F +F F
F F F F F

T +T +F F
T T T T T
+T T +T T +T
+F T T +F +F
F T +T +F F

Table 1: Four-valued-logic truth tables for non-membership,
conjunction, and disjunction.

The values of expressions !R(x,y), conjunctions, and disjunctions
are defined in truth tables in Table 1. For convenience, we define
an operator on universally quantified invariant expressions that is
true whenever some instantiation of the expression evaluates to +F:

Our correctness criterion, then, states that a transition’s actions
should not cause any instantiation of the transition’s own asserted
invariants to become false.

CORRECTNESS CRITERION 2. For all invariants as-
serted by a transition ,

Correctness Criteria 1 and 2 ensure than any interactions detected
and resolved when combining transitions are inter-feature interac-
tions and not intra-feature interactions.

5.2 Conflict and Violation-Free Composition
We propose a second composition operator that supports Conflict-
and Violation-Free (CVF) synchronization. This operator resolves
four types of feature interactions:

action conflicts - This is the same interaction we had previously,
in which two transitions’ actions attempt to change assertion
variables to conflicting values:

As before, CVF composition resolves action conflicts by ex-
ecuting the maximal set of non-conflicting transitions, using
feature priorities to select the transitions.

assertions violate invariant - This occurs when a rule asserts an
invariant that does not hold in the current assertion
valuation:

We allow such rules to execute and assert their weak invari-
ants as relaxed invariants. Future actions may cause the re-
laxed invariants to become satisfied. More importantly, re-
laxed invariants can continue to prevent actions from lower-
priority features from re-violating the invariant.

actions violate invariant - This occurs when the actions of an
enabled rule violate either an invariant in the current state or
an invariant asserted by a simultaneously enabled rule.

We use feature priorities to resolve these interactions. If the
violating actions are from a rule whose feature has a priority
equal to or higher than that of the violated invariant’s fea-
ture, then the rule is executed and the invariant is relaxed.
Otherwise, the rule is not selected for execution.

invariants conflict - A newly asserted invariant is said to
conflict with other asserted invariants if it causes the con-
junction of invariants in to become false:

We allow such rules to execute for the same reason that we
allow rules that assert violated invariants to execute: they
may keep lower-priority features from performing actions
that violate the invariants. Since the conflicting invariants
have different priorities, the lower-priority invariants are the
ones that are relaxed. But they are ready to take effect if the
higher-priority invariants are retracted before they are.

Figure 2 contains the formal definition of CVF composition for
two transitions. In general, for a given set of enabled transitions, we
can find a maximal combination of non-conflicting, non-violating
transitions by analyzing the transitions in order of decreasing pri-
ority. A transition is selected for execution if and only if its actions
do not conflict with the actions of transitions that have already been
selected and its actions do not violate any invariant asserted by a
higher-priority feature. When all of the enabled transitions have
been considered, the set of transitions selected for execution is our
maximal set of synchronized transitions.

Generalized Algorithm
CVF Composition

Input: the current assertion valuation
set of asserted invariants , with priority
set of enabled transitions , with priority

Algorithm:
Let next assertion valuation
Let next set of asserted invariants
Let set of transitions selected for execution
Let effects of the selected transitions

For each in order of decreasing priority
If then

If) or ()) then

else ignore t
else ignore t

Output:

Example 5. Call Forward vs. Originating Call Screening
Call Forward on Busy (CFB) has a rule that redirects calls if its
subscriber receives a call when he is already on the phone.

CFB:
CallRequest(c2,o,t), Conn(c,t), CFB(t,t2) [+o analyze(c2,o,t2)]

Rules for Originating Call Screening (OSC) appear in Examples 2
and 3. Suppose a caller screens calls to user and user has
forwarded his calls to . If caller phones while is talking on
the phone, CFB and T POTS both react to the CallRequest event.
However, because Call Forwarding has priority over T POTS (fea-
tures have priority over the basic service), the feature forwards the

Definition 3. Composition with CVF-synchronization synchronizes two transitions and iff (1) their
guards are enabled, (2) their actions do not conflict with each other, and (3) their actions to not violate any invariants asserted by higher-
priority features. Otherwise, the transition from the higher-priority feature, say , executes alone () if it is enabled and its actions do not
violate any higher-priority invariants. Otherwise, the transition from the lower-priority feature executes alone, if it is enabled and its actions
do not violate any higher-priority invariants. In the following, is a function that maps a transition or invariant to the priority of the feature
that executes the transition or asserts the invariant.

Figure 2: Definition of Composition with Conflict- and Violation-Free Synchronization

call, by asserting that the caller return to state [o analyze] with the
forwarded number as the new call destination.
Now O POTS and Originating Call Screening both want to react

to this new system state where the caller has entered the [o analyze]
state:

O POTS:
[+o analyze(c,o,t)], InService(t) [+o request(c,o,t)]

OCS:
[+o analyze(c,o,t)], OCS(o,t) [+o dead(c,o)], OSCDeny(o)

Since the call screening feature has priority over O POTS, the call
is terminated with an announcement to the caller indicating that
their call was screened.

Example 6. Call Display Call Display Blocking
Call Display (CD) reveals the phone number of the caller to the
callee. (The first line declares assertion Display to be a descendent
of abstract assertion Reveal.)

CD:
Display : Reveal
[+t ring(c,o,t)] +Display(c,o,t)

As soon as the caller lifts the handset, Call Display Blocking (CDB)
asserts an invariant stating that the caller’s number not be revealed
to other parties of the connection.

CDB:
CDBInv(c,o) = !Reveal(c,o,*) : NumBlocked
+Orig(c,o) + CDBInv

When caller picks up the handset, O POTS asserts +Orig(c,o);
this addition to the system state triggers CDB’s rule that asserts its
invariant. If the caller dials user , who subscribes to Call Display,
and ’s T POTS enters state [t ring], then CD attempts to execute its
rule, which violates CDB’s invariant. If Call Display Blocking has
priority over Call Display, then CD’s rule does not execute. Note
that Call Display is an enhancement to T POTS; it does not try to
override any rule in T POTS. Thus the callee’s phone continues to
ring whether or not Call Display executes its rule.

6. DISCUSSION AND RELATED WORK
The main contributions of this work are the composition operators
and how they resolve conflicts and prioritize invariant violations.
Thus, while our specification notation resembles other relational
languages like Prolog [25] and tuple-space coordination languages
like Linda [17], our semantics for services and features executing in
parallel are very different. Rather, our composition operators form
the basis of a sophisticated coordination model [14] that dictates
how concurrent agents synchronize and coordinate their actions.
Many researchers have looked at using formal methods to model

components or viewpoints and compose them into coherent sys-
tems. To give a few examples, Zave and Jackson [31] propose writ-
ing different views of a specification in (possibly different) appro-
priate formalisms and conjoining the first-order representations of
the partial specifications. Burns, Mataga, and Sutherland [8] model
features as service transformers whose transitions are composed se-
quentially. Cameron and Lin [12] model features as labelled tran-
sition systems whose composition operator resembles composition
with AND-synchronization [4]. These techniques promote mod-
ular feature development, but detect only those interactions that
are similar to our action conflicts, and they do not address reso-
lution. Our ideas on composition were inspired by Bornot, Sifakis,
and Tripakis’s work [4] on composing prioritized timed labelled

transition systems. However, their goal was to maximize compo-
nents’ progress to meet real-time deadlines, and their models ab-
stract away components’ actions on system variables. Thus, our
composition operations are very different from theirs.
We are certainly not the first to propose using priorities to resolve

conflicts [2, 6, 13, 19, 20, 22, 27]. However, their results address
only conflict interactions and do not resolve interactions that vio-
late features’ constraints. van Lamsveerde, Darimont, and Letier
propose the notion of temporarily violating invariants [28, 29] as a
manual technique for resolving conflicting requirements goals. To
our knowledge, we are the first to provide a model and a means for
automatically detecting and resolving constraint violations.
A promising approach to conflict resolution is preliminary work

by Finkelstein, Gabbay, Hunter, Kramer, and Nuseibeh [16] on a
meta-language for expressing generic rules to detect conflict and
specify corrective action. While their work is aimed at resolving
conflicts during the requirements phase of software development,
one can imagine using such a language to map appropriate run-time
resolutions to different types of conflict. In contrast, we currently
hard-code such mappings into our composition operators.

7. CONCLUSION
In conclusion, this paper has described a compositional approach
to adding new features to an existing application. It supports mod-
ular development of features and resolves conflicts and constraint
violations during feature composition. While all of the examples
in this paper come from telephony, our design model and compo-
sition operators could be used to build feature-rich applications in
other domains. The designmodel is most useful in domains such as
word-processing, games, travel reservation systems, banking ser-
vices, etc., where a product’s success is highly dependent on its
feature set. The first step in applying the model is to identify the
application’s basic service and the set of assertions that represent
the service’s shared variables. All other aspects of the model are
application independent.
We have used our specification model and CVF composition op-

erator to specify and compose telephony features from Bellcore’s
IN Feature Interaction Benchmark [10]. We had no difficulty rank-
ing the benchmark features by priority, such that the behaviours
of the composed features seemed reasonable and desirable. We in-
tend to run a more formal experiment in which CVF resolutions are
compared with users’ expectations for how a collection of features
should behave.
In preparation for this experiment, we are constructing a reach-

ability analyzer that accepts a prioritized collection of features and
computes the system’s reachability graph, consisting of all the sys-
tem states and state-transitions in the features’ composition. The
reachability graph will contain enough information for the analysis
tool to report all of the features’ conflicts and invariant violations
as well as their resolutions. We also expect to be able to analyze the
computed reachability graph to verify that features work correctly
when composed with the underlying service specification and to
check if desired invariants hold in various feature combinations.

8. ACKNOWLEDGEMENTS
We would like to acknowledge Tom Gray, Serge Mankovski, and
Michael Weiss, of Mitel Corporation. Our discussions with them
on resolving interactions at run-time helped us to formulate our
ideas of composition. We thank Dan Berry for his comments on
early versions of this work. We also gratefully acknowledge MI-
TEL and Communications and Information Technology Ontario
(CITO) for their financial support.

9. REFERENCES
[1] A. Aho, S. Gallagher, N. Griffeth, C. Schell, and D. Swayne.

“SCF3 /Sculptor with Chisel: Requirements Engineering
for Communications Services. In International Workshop on
Feature Interactions in Telecommunications Systems V,
pages 45–63, 1998.

[2] D. Amyot, L. Logrippo, R. Buhr, and T. Gray. “Use Case
Maps for the Capture and Validation of Distributed Systems
Requirements”. In International Symposium on
Requirements Engineering, 1999.

[3] J. Blom, B. Jonsson, and L. Kempe. Using Temporal Logic
for Modular Specification of Telephone Services. In
International Workshop on Feature Interactions in
Telecommunications Systems II, pages 197–216, 1994.

[4] S. Bornot, J. Sifakis, and S. Tripakis. “Modelling Urgency in
Timed Systems”. In International Symposium:
Compositionality – The Significant Difference, LNCS 1536,
1997.

[5] M. Boström and M. Engstedt. Feature Interaction Detection
and Resolution in the Delphi framework. In International
Workshop on Feature Interactions in Telecommunications
Systems III, pages 157–172, 1995.

[6] K. Braithwaite and J. Atlee. “Towards Automated Detection
of Feature Interactions”. In International Workshop on
Feature Interactions in Telecommunications Systems II,
pages 36–59, 1994.

[7] R. Brooks. “A Robust Layered Control System for a Mobile
Robot”. IEEE Journal of Robotics and Automation,
RA-2:14–23, April 1986.

[8] G. Burns, P. Mataga, and I. Sutherland. Features as Service
Transformers. In International Workshop on Feature
Interactions in Telecommunications Systems V, pages 85–97,
1998.

[9] M. Cain. “Managing Run-Time Interactions Between
Call-Processing Features”. IEEE Communications,
30(2):44–50, February 1992.

[10] E. Cameron, N. Griffeth, Y. Lin, M. Nilson, W. Schnure, and
H. Velthuijsen. A Feature Interaction Benchmark in IN and
Beyond. Technical Report TM-TSV-021982, Network
Systems Specifications Research, Bell Communications
Research, September 1992.

[11] E. Cameron, N. Griffeth, Y. Lin, and H. Velthuijsen.
“Definitions of Services, Features, and Feature Interactions”,
December 1992. Bellcore Memorandum for Discussion,
presented at the International Workshop on Feature
Interactions in Telecommunications Software Systems.

[12] E. Cameron and Y.-J. Lin. “A Real-Time Transition Model
for Analyzing Behavioural Compatibility of
Telecommunications Services”. In Proceedings of the ACM
SIGSOFT’91 Conference on Software for Critical Systems,
pages 101–111, 1991.

[13] Y.-L. Chen, S. Lafortune, and F. Lin. “Resolving Feature
Interactions Using Modular Supervisory Control with
Priorities”. In International Worksohp on Feature
Interactions in Telecommunications Systems IV, 1997.

[14] P. Ciancarini. “Coordination models and languages as
software integrators”. ACM Computing Surveys,
28(2):300–302, June 1996.

[15] L. du Bousquet. Feature interaction detection using testing
and model-checking. In Formal Methods 99, 1999.

[16] A. Finkelstein, D. Gabbay, A. Hunter, J. Kramer, and
B. Nuseibeh. “Inconsistency Handling in Multiperspective
Specifications”. IEEE Transactions on Software
Engineering, 20(8):569–578, August 1994.

[17] D. Gelernter and N. Carriero. “Coordination languages and
their significance”.Communications of the ACM,
35(2):97–107, February 1992.

[18] N. Griffeth and H. Velthuijsen. “The Negotiating Agents
Approach to Runtime Feature Interaction Resolution”. In
International Workshop on Feature Interactions in
Telecommunications Systems, pages 217–235, 1994.

[19] S. Homayoon and H. Singh. “Methods of Addressing the
Interactions of Intelligent Network Services with Embedded
Switch Services”. IEEE Communications, 26(12):42–70,
December 1998.

[20] M. Jackson and P. Zave. “Distributed Feature Composition:
A Virtual Architecture for Telecommunications Services”.
IEEE Transactions on Software Engineering,
24(10):831–847, October 1998.

[21] K. Kimbler. “Comprehensive approach to service interaction
handling”. Computer Networks and ISDN Systems,
30:1363–1387, 1998.

[22] D. Marples and E. Magill. “The use of Rollback to prevent
incorrect operations of Features in Intellent Network Based
Systems”. In International Workshop on Feature Interactions
in Telecommunications Systems V, pages 115–134, 1998.

[23] D. Pinard, M. Weiss, and T. Gray. “Issues in Using an Agent
Framework for Converged Voice/Data Applications”. In
Practical Applications of Intelligent Agents and
Multi-Agents, 1997.

[24] B. Stepien and L. Logrippo. Representing and Verifying
Intentions in Telephony Features Using Abstract Data Types.
In International Workshop on Feature Interactions in
Telecommunications Systems, pages 141–155, 1995.

[25] L. Sterling and E. Shapiro. The Art of Prolog. MIT Press,
Cambridge, Mass., 1986.

[26] J. Thistle, R. Malhame, H.-H. Hoang, and S. Lafortune.
“Feature Interaction Modelling, Detection and Resolution: A
Supervisory Control Approach”. In International Worksohp
on Feature Interactions in Telecommunications Systems IV,
pages 93–107, 1997.

[27] G. Utas. “A Pattern Language of Feature Interaction”. In
International Workshop on Feature Interactions in
Telecommunications Systems V, pages 98–114, 1998.

[28] A. van Lamsweerde, R. Darimont, and E. Letier. “Managing
Conflicts in Goal-Driven Requirements Engineering”. IEEE
Transaction on Software Engineering, 24(11):908–926,
November 1998.

[29] A. van Lamsweerde and E. Letier. “Integrating Obstacles in
Goal-Driven Requirements Engineering”. In Proceedings of
the 20th International Conference on Software Engineering,
pages 53–63, 1998.

[30] P. Zave, February 2000. Presented at the IFIP WG 2.9
Workshop on Requirements Engineering.

[31] P. Zave and M. Jackson. “Conjunction as Composition”.
ACM Transactions on Software Engineering and
Methodology, 2(4):379–411, October 1993.

[32] I. Zibman, C. Woolf, P. O’Reilly, L. Strickland, D. Willis,
and J. Visser. “Minimizing Feature Interactions: An
Architecture and Processing Model Approach”. In
International Workshop on Feature Interactions in
Telecommunications Systems III, pages 65–83, 1995.

	FSE00.Copyright
	FSE00

