IEEE Copyright Notice

Copyright (c) 1996 IEEE

Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material
for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in
other works.

Published in: Proceedings of the 9th Conference on Software Engineering
Education (CSEE'96), April 1996

“A Joint CS/E&CE Undergraduate Option in Software Engineering”

Cite as:

J. M. Atlee, P. P. Dasiewicz, R. Kazman, R. E. Seviora, and A. Singh. 1996. A Joint
CS/E&CE Undergraduate Option in Software Engineering. In Proceedings of the 9th
Conference on Software Engineering Education (CSEE '96). IEEE Computer Society,
Washington, DC, USA, 16-28.

BibTex:

@inproceedings{Atlee:1996:JCU:525263.793934,

author = {Atlee, J. M. and Dasiewicz, P. P. and Kazman, R. and Seviora, R. E. and Singh, A},
title = {A Joint CS/E\&CE Undergraduate Option in Software Engineering},

booktitle = {Proceedings of the 9th Conference on Software Engineering Education},

series = {CSEE '96},

year = {1996},

pages = {16--28}

DOI: http://dx.doi.org/10.1109/CSEE.1996.491359

A Joint Option in Software Engineering Page 1/14

A Joint CS-E& CE Undergraduate Option in Software Engineering

JM.Atlee’, PPDasiewicz’, R.N.Kazman”, R.E.Seviora and A.Si nthr

* Department of Computer Science
TDepartment of Electrical and Computer Engineering
University of Waterloo
Waterloo, Ont., Canada N2L 3G1

1. Introduction
1.1 Institutional Setting

The University of Waterloo is a medium size university with 16,000 full-time undergraduates,
2,000 graduate students, 800 faculty members and 2,200 staff. The university receives some
75% of itsincome from the provincial government; tuition fees provide most of the remainder.
Many undergraduate programs operate on a co-op bases; students alternate between four month
teaching and four month work terms.

Organizationaly, the University is composed of seven Faculties. The Computer Science
department is a part of the Faculty of Mathematics; the Electrical and Computer Engineering
department belongs to the Faculty of Engineering. Even though the two departments are in
different Faculties, they are housed in one building, the W.G.Davis Computer Center.

The CS department has over 40 faculty members and graduates 200+ Bachelors each year. It
offersa4-year Honours CS program and anumber of optionsand joint programs (e.g., Honours
Computer Science/lnformation Systems option, Joint Honours Actuarial Science and
Computer Science, etc.). Its undergraduate course offering contains 30 course titles, not
including service courses. The E& CE department has over 40 faculty members. It offers two
undergraduate degree programs, Electrical Engineering and Computer Engineering. Its
undergraduate course list has about 50 course titles. The department graduates close to 200
Bachelors annually, with roughly 2:1 ratio between EEs and CompEs.

The CS programs are accredited by the Computer Science Accreditation Council (an
autonomous body of the Canadian Information Processing Society); E& CE programs by the
Canadian Engineering Accreditation Board (a board of the Canadian Council of Professional
Engineers).

Although one department has Engineering and the other Science in its name, both have faculty
members with scientific as well as engineering orientation. Thisis a source of strength; history
of educational institutionsin these fields shows that this composition bringsin complementary
perspectives and creative tensions and reduces the likelihood of drifts into excessive
pragmatism or irrelevance.

DRAFT 8/27/95

A Joint Option in Software Engineering Page 2/14

1.2 Rationalefor the Option

In order to fullfil their roles and keep public support, educational institutions must respond to
societal needs. In the case of software engineering, there has been growing and increasingly
visible demand from industry and governments for graduates with stronger software
engineering qualifications. Furthermore, the jobs available to graduates and co-op studentsin
the two departments have led to a similar but perhaps less strident demands for stronger
software engineering exposure in the curricula.

These pressures have been present for some time. Until recently, however, there was a concern
whether a sufficient body of knowledge (principles, models, methods and techniques) existed
to form afoundation for moreintensive undergraduate education in software engineering. Over
the last several years, it has become evident that there is indeed an emerging body of such
knowledge, even though it is still rapidly evolving and lacking in synthetic perspectives.

1.3 Departmental Response

The mere presence of such pressures and knowledge does not result in action. Other factors
must be present. At Waterloo, these factors included the positive attitude of the two
Departments and Facultiestowardstheideaof an SE option. What was crucial wasthe presence
of sufficient number of faculty members with interests in software engineering and its
subdisciplines. There was, furthermore, an accumulated body of experience with in-depth
instruction in software engineering topics at the graduate and to some extent undergraduate
levels. The idea of establishing an undergraduate option in Software Engineering was thus an
evolutionary step, as opposed to aleap into a largely unexplored territory.

These positive factors were, to some extent, offset by the budgetary constraints under which
the University operates. The teaching load at Waterloo is already higher than the North
American average and the institutional mood isto cut rather than add.

Theinitial discussions about the establishment of the option took place in early 1993 under the
umbrella of the Waterloo Initiative in Software Technology [2]. Towards the end of 1993, a
joint CS-E& CE option committee was set up. The committee produced its recommendations
in early 1995. The SE option has since been approved by the two departments. It is presently
in the approval process at the faculty level, with one approval aready in place. The pilot
version of the first new core course (a 3B course on Software Requirement Analysis and
Specification) will be given in Fall 95. First option students are expected to graduate in 1997.
Their degrees will carry the designation (Option in Software Engineering).

In the development of the option, the committee benefited from the wealth of information
recorded in past proceedings of this conference. Particularly influential on committee’s
thinking were the SEI report on Undergraduate Software Engineering Education [1] and the
reports and accreditation guidelines of professional societies [3][4].

DRAFT 8/27/95

A Joint Option in Software Engineering Page 3/14

2. Option Goals and Overall Constraints
In the design of the option, the two principal goals were:

GL1. to provide an option-level exposure to software engineering principles, models, methods,
techniques and application classes;

G2. to ensure a satisfactory level of competence in the application of the principles, models
methods and techniques to software devel opment and maintenance.

The option curriculum had to satisfy a number of constraints:

C1. the minimum increment constraint - the number of new course titles had to be kept to a
minimum. This constraint was primarily dueto budgetary considerationswhich limited the
number of additional teaching tasks the option would require.

C2. the total course count constraint (for base programs) - a base program student should be
able to graduate with the option designation without having to exceed the number of
courses needed for graduation in the base program (40 for each base program). This
constraint was particularly tight for the Computer Engineering program; the Honors CS
had more room.

C3. the accreditation constraint - the base programs with the option had to be accreditable by
both CEAB and CSAC.

C4. the acceptability constraint - the option had to be acceptable to both Departments and both
Faculties.

C5. the A-accessibility constraint (for non-base programs) - the option had to be accessible to
A-level students in other engineering programs, in particular to Electrical Engineering
students. The total course count constraint did not apply; instead, the N+1 constraint did.
A student from a non-base program should be able to complete the option if he/she took
one additional course per term. (In Engineering, an A-level student can take, with
permission of the Department, one course per term over and above the normal load).

During option development, constraint C1 was quantified as no more than four new courses
(four coursesis 10% of the total course count). Because of C3, only three of these were made
compulsory for option students. The implications of the other constraints are discussed below.

---RES: should the above paragraph be moved to Sect 4 (Option Curriculum)?

The above constraints presented a severe limitation on option design. What made the option in
the end possible was the fact that the base programs already covered afair fraction of what we
saw as the necessary minimum for the option designation.

To characterize the degree of existing coverage, we will use the framework presented in the SEI
undergraduate software engineering curriculum [1]. The framework has four segments -
Mathematics/Natural Sciences (at least 9 courses); Software Engineering Science/Software

DRAFT 8/27/95

A Joint Option in Software Engineering Page 4/14

Engineering Design (15); Humanities and Social Studies (10), and Electives. The SE Science/
SE Design segment is further divided into four blocks - Software Anaysis (3 courses);
Software Architecture (4); Computer Systems (3); and Software Processes (4).

In the key SE Sciences/SE Design segment, the two base programs already offered fairly high
coverage for the first three blocks (generaly in the 50-75% range, although the coverage
differed somewhat between the two). The coverage of the Software Processes block was
significantly lower, perhapsin the 25-33% range.

Although we were designing an option and not a full degree program, it was evident that the
option design had to substantially increase the coverage of the Software Processes block.

3. Curricular Philosophy and Program Constraints

The option design had to accommodate the philosophies of education of the two departments
and their specific curricular constraints. These are summarized below.

3.1 Computer Science Department

---RES. Rick, here are the constraints relevant to CS. Could you add something on the
departmental philosophy (cf. below for E& CE)

o Mathematics faculty regulations: all CS students are Mathematics majors, which means that
they must take 1.5 years of Mathematics coursesin a4 year degree;

0 departmental regulations. both departments added their own course requirements to the
faculty pool;

o Computer Science Accreditation Council (CSAC) requirements: the CSAC isan autonomous
accreditation body established by the Canadian Information Processing Society. We wanted
this option to be fully accreditable by the CSAC;

CSAC requires:

0 1.5 years of study in computer science/computer engineering;

0 0.5 years of study in mathematics/statistics;

0 1.0 years of study in subjects other than computing and mathematics/statistics.

The combination of Mathematics faculty and Computer Science departmental regulations
imposes adlightly different set of constraints:

0 1.3 years of study in mathematics/statistics,
0 1.3 years of study in computer science;

0 1.0 years of study in subjects other than computing and mathematics/statistics.

DRAFT 8/27/95

A Joint Option in Software Engineering Page 5/14

3.2 Electrical and Computer Engineering Department

The educational philosophy of the E& CE department is largely determined by its mission to
prepare students for professional practice of engineering. Historicaly, this resulted in certain
curricular content distributions and certain style of delivery of course content.

In content distribution, the minimato be satisfied under CEAB accreditation criteriawere[3]:

- 1/2 year of Mathematics;
- 1/2 year of Basic (Natural) Sciences,
- 2 years of Engineering Sciences and Engineering Design
(with at least 1/2 year of Engineering Sciences and 1/2 year of Engineering Design);
- 1/2 year of Complementary Studies
(humanities, social sciences, arts, management, engineering economics, communication).

The criteria a'so require appropriate laboratory experience. It is important to note that the
criteriado not define what specifically hasto be covered in theindivigual segments. The current
content ofa segment is the result of historical evolution of the engineering discipline. In
harmony with many other EE/E& CE departments, the E& CE department philosophy is to
include in the Engineering Science/Engineering Design segment:

a. two or more implementation technologies; and
b. two or more common application areas.

A major reason for [a is the likelihood of technological change during the student’s
professional career. A student who has been exposed to more than one implementation
technology will find it easier to adapt to another when it comes. The rationale for [b] is the
broadening of the student’s perspective on the engineering process. The students see how the
requirement specification for a product are derived and tie in with the needs of the application.

For the base Computer Engineering program, block [a] includes digital hardware(5 courses)
and software(5), with some coverage of the light-current analog technology(2). Block [b]
contains Communications(1) and Automatic Control(1).

In terms of packaging, atechnology specific course in the E& CE department tends to include
both analytical and synthetic components (and also the mathematical foundations if not
covered elsewhere). This results in better comprehension and better linkages, but carries the
potential for the loss of general perspectives due to the specifics. Because of the ‘preparation
for practice’ philosophy, courses expose students to relevant industrial standards. Where
possible, commercial tools are used in projects and laboratories.

4. Option Curriculum

The combination of all three sets of requirements|left uswith little flexibility. What has resulted
IS an option that, while not ideal, is palatable to both faculties and both departments--a

DRAFT 8/27/95

A Joint Option in Software Engineering Page 6/14

significant accomplishment in our estimation.

In particular, we had wanted to design four new software engineering courses, covering all
aspects of the software development life cycle. These courses were:

o Software Requirements Specification and Analysis
o Software Design and Architecture

o Software Quality Assurance, Testing, and Process
o Software Maintenance and Reverse Engineering.

However, we eventually reduced these four courses to just three. We did this because it was
easier to fit three new courses into our curricula given the constraints listed above,

---RES: refer to constraint C2 above (Sect 2)??

and because we felt that there were an inadequate amounts of pedagogical materials to support
separate courses in Quality Assurance, Testing and Process (as one course) and Maintenance
and Reverse Engineering (as the other). As a result, these two previously proposed courses
have been combined into a single course, Software Testing, Quality Assurance and
Maintenance.

4.1 Curriculum Design

The central software engineering skills which we do want to teach in the combined CSYECE
option are as follows:

0 System design and the design of changes to systems;
---RES: system is avery broad spectrum term; do we talk here about Software systems?

0 Requirements analysis, specification, design, construction, verification, testing, maintenance
and modification of programs, program components, and software systems,

o Algorithm design, complexity analysis, safety analysis, and software verification;
0 Database design, database administration and maintenance;
0 Design and construction of human-computer interaction systems,

o Management of projects that accomplish the above tasks, including estimating and
controlling their cost and duration, organizing teams, and monitoring quality;

0 Selection and use of software tools and components;

o Appreciation of commercial, financial, legal, and ethical issues arising in software
engineering projects.

DRAFT 8/27/95

A Joint Option in Software Engineering Page 7/14

Furthermore, two of the goals of the software engineering option are:

o to foster non-computer science and non-technical skills which are crucia to successful
software devel opment--things like critical thinking, technical writing, presentation skills, etc.

0 to broaden a student’s background, through recommending (and, in fact, demanding) a broad
range of non-technical courses

---RES: thefirstitem (to foster) go to Goals and Limitations (Sect 2) - please rephrase neutrally,
without reference to CS. The second item (to broaden) has a problem - broad range may
apply perhapsto CS, with its 10 non-CS, non-CE courses, for CompE the limit is 5, which
isnot a‘broad range’.

4.2 Option Outline

4.2.1 Technical Courses

Given this basis of core software engineering courses, the software engineering option
curriculum consists of

0 8 core technical courses
0 3 courses focussing on the software development life cycle

0 3 courses from ashort list of software intensive courses (compilers, operating systems, real-
time systems, networks, etc.)

The core technical courses differ in the CS and ECE versions of the option, but remain
consistent with the cores of the respective departments.

4.2.2 Nontechnical

In addition this core, we are also requiring that studentstake one coursein each of thefollowing
areas. Communications (both written and oral), Societal 1ssues (legal and ethical implications
of computing), Business Issues, and Reasoning Methodologies (critical thinking and formal
reasoning).

4.3 New SE Courses

One of the initial issues to be addressed while developing the curriculum was to decide the
number of software engineering courses that would cover al the salient topics in the area.
Major guiding parameters on this issue were: the breadth and depth at which the topics would
be covered, the undergraduate level pedagogical material that was available for each of the
proposed courses, and the number of new courses that can be put into already existing
schedules of the undergraduate curricula of the CS and the E& CE departments. We toyed with
the idea of three or four new courses. In the end, keeping above constraints in view, it was

DRAFT 8/27/95

A Joint Option in Software Engineering Page 8/14

decided to propose three new courses.

The three new courses form the core of the SE-option. The underlying theme in this endeavour
was to develop a curriculum that not only covers al the phases of the software development
cycle (requirements modelling, specification, design, testing, maintenance), but also puts an
equal emphasis on fundamental principles in software engineering. The courses should make
it possible to illustrate the application of principles and rigor in the practice of software
engineering. At the same time, the courses also include discussions of commonly employed
informal techniques.

Ordering of topicsin the curriculum posed another challenge. Most of the topics covered in the
three courses are so interrelated that it is impossible to find a sequence that would eliminate
referencesto topicsthat areto be covered later in the curriculum. Therefore, it was decided that
the first course should also include an overview of the overall objectives, quality issues and
processes in the software development. Also, the latter two courses should devote part of their
time and effort on relating the material covered in the course with other phases of the software
development cycle. The three courses developed for the SE-option are:

1.Software Requirements Specification and Analysis

2.Software Design and Architecture

3.Software Testing, Quality Assurance, and Maintenance

4.

Following subsections present a brief outline of the courses. Each course aso includes a
substantial project. The projects associated with these courses are described in section 4.4. It
should be noted that although in this section we discuss only the three new courses dedicated
to central issues in software engineering, the complete undergraduate curricula of the two
departments contain courses covering topics such as data structures, algorithm analysis,
programming paradigms, various computer systems (such as operating systems, user
interfaces, file and database systems, real-time systems, computer networks, paralel and
distributed systems, computer architecture), etc.

4.3.1 Software Requirements Modelling and Analysis

The course is intended to introduce students to the requirements definition part of software
development. It discusses models, notations, and processes for software requirements
identification, representation, validation and analysis. In addition, for the reasons outlined
previoudly, the course also provides an overview of the quality issues, software development
process and life-cycle models. The course covers following topics:

- Overview of software development process and life-cycle models

- Overview of the processes, products, and tools of requirements phase of software
development

DRAFT 8/27/95

A Joint Option in Software Engineering Page 9/14

- Requirement elicitation

- Overview of notations and representations

-.Informal and formal notations for behavioral requirements
- Specification of non-behavioral requirements

- Requirement validation

- Miscellaneous topics, such as reusability of specifications, relationship between
requirements and design specifications

- Case studies

4.3.2 Software Design and Architecture

The course is intended to concentrate on software design activity. In addition, it executes a
second pass through the various phases of the software development cycle with an emphasis
on the relationship of software design with other activitiesin software development.

- Relationship of software design to software quality and other phases of the life cycle
- Models of software design process

- Informal and formal representation of software design and architecture

- Canonical design plans

- Design strategies and methods

- Design assessment

- Design quality assurance and verification

4.3.3 Software Testing, Quality Assurance, and M aintenance

Asthe title implies, this course deals with testing, maintenance, and quality assurance related
issues in software devel opment. It also executes athird pass through the software devel opment
cycle. Issues related to project and cost management, reverse engineering and software reuse
are covered in this course. The topics covered under this course are:

- Foundations of software testing

- Methodologies for systematic testing

- Testing of parallel, distributed, and real-time embedded systems
- Evaluation of Nonfunctional requirements

- Formal and informal methods for software verification

- Software debugging

- Quality assurance

- Software Maintenance

- Project Management

- Software reuse, reverse engineering
4.4 Project
The project is based on a project which has been successfully used in a 4th year software

DRAFT 8/27/95

A Joint Option in Software Engineering Page 10/14

engineering course in the Department of Electrical and Computer Engineering. The project
consists of the specification, design and implementation of the call processing and
administrative software for a Private Branch Exchange (PBX). Figure X (a) depicts a system of
PBXsinterconnected by trunks. Each PBX controlsitsown local callswith all off premisecalls
using the trunk lines. All PBXs are connected (via a seria data link) to the Operations,
Administrative and Maintenance (OAM) unit. The OAM unit provides a graphical user
interface to perform the functions of administration (maintaining the PBX database, metering,
etc.) and maintenance (request for manual maintenance functions, line in/out of service
indication, etc.).

Figure X(b) depicts a block diagram of a typical PBX consisting of the control software
subsystem and the controlled hardware subsystem. The controlled hardware subsystem
consists of a voice/signaling unit composed of: a Voice Switching Network (time-space-time
switch), two line interface shelves (30 line interfaces/shelf), a Service shelf (with digit
receivers, cal in progress tone generators), a Ringing Generator and a Tester. Each line
interfaces A/D and D/A converter is connected to time-multiplexed links carrying 32 channels
(32 8-bit samples) in a 125 microsecond frame. Each line interface is configurable in addition
to controlled test and ring relays, on/off-hook |oop detector and voice channel selection control.

Figure X(c) depicts the major subsystems from the project perspective. The Control Program
is the real-time call control software specified, designed and implemented by the students.
Sincethereal PBX hardwareisnot available, aHardware Subsystem Emulator isprovided. The
Hardware Emulator software emulates all the controlled hardware and provides status and
receives control from the control software through a shared memory interface. The Customer
Acceptance Tester (CAT) is a software subsystem used to automate the validation of the
students control software. The CAT eliminates the extensive manual testing involved to ensure
that the control software meets the customer requirements and performance specifications.

Since we do not have the actual PBX hardware in the departmental |aboratories, a network of
UNIX-based workstations is used for both the development and emulation environment. The
UNIX workstations are interconnected by a campus wide Ethernet-based LAN.

The project isdivided into two major software subsystems; primarily driven by the interest and
backgrounds of the two streams of students. The first is that of real-time reactive software
control, Control Program (Figure X(c)) for the ECE students. The second is information
systems software, the OAM (Figure X(@)) for the CS students. Appropriate CASE tools are
used to support the unique development requirements of both software systems. The real-time
software system is modeled as communicating finite state machines while object oriented
analysis and modeling techniques are used for the information subsystem.

The project consists of three primary phases. First, during SE-1, the software requirement and
specifications are generated for each software subsystem with the primary deliverable being the

DRAFT 8/27/95

A Joint Option in Software Engineering Page 11/14

SRS document. Secondly, during SE-2, adesign document (based on the SRS) is produced and
each subsystem is coded and validated using the automated customer acceptance tester. At this
stage, the students would use what ever techniques that they are familiar with to perform unit
and integration level testing of their implementation. Thirdly, in SE-3, additional PBX and
OAM functionality is introduced (i.e. requirement of handling trunks, additional features,
advanced administrative and system maintenance facilities). This reflects the maintenance
activities in the software lifecycle. At this stage, the formal testing methods (discussed in the
course) are applied to the modified subsystems to ensure that the enhancements were
implemented correctly.

[From JA; to be merged by PD]
Administration functions include

* HCI interface between operator and switching software, to maintain switch’'s image of the
enchange’s environment: subscriber lines, type-of-line information, trunks, subscribers' set of
allowable services, etc. For now, subscriber services will be limited to originating-calls-only,
terminating-calls-only, originating-and- terminating calls, and local calls (within exchange)
only. One possibility for extending the system during maintenance would beto introduce new
features, such as call forwarding.

* HCI interface between operator and switching software, to maintain trandation (and
routing?) tables.

* Maintenance of customer database: name, address, phone number, # lines, subscribed
Services, etc.

* Acquisition of billing data from switch
Billing functions include
* Generation of customers’ bills.

- HCl interface between operator and billing software, to maintain billing rates, discount times-
of-day and days-of-week, query customer’shill, etc.

M ai ntenance functions include

* HCI interface between operator and switching software to execute certain maintenance tests,
outside of the normal, automated testing process: test single parameter of 1 subscriber line, run
all tests on 1 subscriber line, run series of automated tests NOW.

- HClI interface between operator and switching software, to maintain automatic testing: update
interval of testing, update which tests are to be run automatically.

DRAFT 8/27/95

A Joint Option in Software Engineering Page 12/14

5. Pragmatics of Option Delivery

Many delivery issues, such asthe allocation of teaching resources and CA SE tool procurement,
are made more complex by the fact that the Option is being developed jointly by two
departments in different Faculties. Decisions must conform to the philosophies and policies of
both departments.

5.1 Teaching Resources

Most of the Option’s technical courses are either explicitly computer science or explicitly
electrical and computer engineering courses. The resources needed to deliver each of these
courses are clearly the responsibility of the respective department offering the course.
However, the option introduces four new courses, mentioned above, that will be offered jointly
by the CS and E\& CE Departments to students from both departments.

Our current plan is that the two departments will contribute equally to the delivery of the four
new courses. Each department will be responsible for developing and initially offering two of
the courses, and for designating ‘local’ course coordinatorsfor the other two courses. Teaching
responsibilities for subsequent offerings will be divided evenly between the departments.

Eventually, however, the departments may decide to re-allocate teaching resources for Option
courses, based on the distribution of studentsin the option.

---RES: Jo, prefix this sentence with something like* Given that the CS department admitsthree
times as many students then the Comuter Engineering program’

We anticipate that twice as many computer science students as computer engineering students
will register for the Option. If our estimates are correct, it will be difficult to justify dividing
the departments’ teaching responsibilities evenly.

5.2 Teaching Assistantsvs. Lab Technicians

The two departments differ in how graduate students and staff are used to support teaching
efforts. The Computer Science Department grants half-time teaching assistantships to most
incoming graduate students. Thus, there are always a large number of available teaching
assistantsto help mark course assignments, projects and exams. In the Electrical and Computer
Engineering Department,

---RES. Jo, a more accurate phrasing would be: “a certain number of teaching assistant
positions are allocated to a course. These positions are awarded on the basis of expertise
and merit.”

teaching assistantships supplement a student’s research assistantship. Because students
volunteer to be teaching assistants, and because such assi stantships are awarded on the basis of
merit, there are fewer teaching assistants for E\& CE courses.

Instead, the E\& CE Department uses teaching resources to employ several full-timelaboratory

DRAFT 8/27/95

A Joint Option in Software Engineering Page 13/14

technicians. Laboratory technicians are responsible for maintaining and answering questions
about hardware used in courses that have laboratory assignments. In addition, technicians are
responsible for tutorials and consultant-support for software in programming courses.

Because the CS Department does not employ the equivalent of laboratory technicians, a
technician from the E\& CE department will be assigned to the each of the software engineering
core courses, regardless of the course's instructor. Teaching assistants, however, that are
assigned to an Option course will come from the same department as the course instructor. This
arrangement will help to ensure a high rapport between instructors and assistants.

---RES: Jo - this may result in potential ‘usvs. them’ problems - e.g. the CS students may feel
that the E& CE profs and TAs give preference to their home students. 1t would be better if
we had amix of TA's.

5.3 CASE Tool Procurement

The use of CASE tools has become an integral part of the software development process.
Furthermore, we feel that it is important to expose our students to the capabilities and
limitations of commercial-grade CASE tools. Because we want to emphasi ze the capabilities
of tools, we spent months deliberating the merits of various specification and design tools. In
the end, we recommended the procurement of both SDT

---RES: we should say what the abbreviation means

and Software through Pictures (StP)/Object Modeling Technique (OMT); based on the
information available, we decided that these were the most appropriate CASE tools for
developing the Option proj ectst.

SDT supports the design, analysis, validation, and conformance testing of designs written in
the Specification and Description Language (SDL), standardized by the International
Telecommunications Union. The SDL notation was developed specifically for designing
telecommunication and networking software, which makes SDT a particularly appropriate
CASE tool for the embedded-software project.

StP/OMT is a general-purpose analysis, specification and design tool. It supports several
editors for specifying different views of a software system: the system’s data objects and
relationships between data objects, the system’s modes of operation and the events that cause
the system to change modes of operation, the system’sfunctional requirements, the architecture
of the system’s components, etc. The specification of the administrator project requires all of
these different modeling capabilities. In addition, StP’OMT maintains a common data
dictionary, to help ensure consistent use of termsin all of the project’s specification and design

1. At present, we have only considered CASE tools for the requirements and design
phases.

DRAFT 8/27/95

A Joint Option in Software Engineering Page 14/14

diagrams.

The major drawback of these tools is their expense. Although the educationa discounts are
very generous, it will cost us about $50,000 to purchase a sufficient number of licenses and to
upgrade the memory and disk capacities of the undergraduate machines. During a time of
financial cutbacks, it is politically difficult to justify spending tens of thousands of dollarson a
single program. Fortunately, one of the Faculties has an industrial grant for enhancing
information-systems education. Money from this grant are being used to procure the CASE
tools and to upgrade the machines; the other Faculty will reimburse the grant using future
University Academic Development Funds.

Lastly, because of our endeavors to choose the most appropriate CASE tools and because of
our difficulties finding funding for the tools, purchase orders for the CASE tools were not
written until four weeks before the start of classes. We do not know how much time the
Faculties system administrators will have to install and test the tools before students are
granted access.

6. Concluding Observations

--RES: should we throw in the following observation? Software is an implementation
technology; so is steel. There are no ‘steel engineering’ programs at universities; instead
Civil and Mechanical use this technology, but for differrent applications. Will the same
happen to Software Engineering programs?

Acknowledgment

Curricular changes do not take place in vacuum. The authors would like to acknowledge the
assistance and contributions of their many colleagues to the curriculum presented above, in
particular those of PA.Buhr, Chair of the CS Curriculum Committee, W.M.Loucks, Associate
Chair for Computer Engineering in E& CE, and the two departmental chairs, FW.Tompa (CS)
and S.K.Chaudhuri (E& CE).

7. References

[1] G.Ford, 1990 SEI Report on Undergraduate Software Engineering Education, Software
Engineering Institute, Carnegie Mellon University Tech. Report #CMU/SEI-90-TR-3.

[2] P. Koch, Waterloo Inititative in Software Technology (WIST), University of Waterloo,
1993.

[3] Computer Science Accreditation Council: Objectives, Procedures and Criteria, Canadian
Information Processing Society, 1994.

[4] Canadian Engineering Accreditation Board, 1994 Annual Report, Canadian Council of
Professional Engineers, Ottawa, Ont., 1995.

DRAFT 8/27/95

	CSEE96.Copyright
	CSEE96

