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Abstract

This paper presents a formal modeling and analysis technique for automatically de-
tecting interactions in feature specifications. The model is based on state-transition
machines annotated with logic assertions that express constraints on the behavior
of the system. Specifications are composed into a reachability graph, and the graph
is searched for feature interactions. The new model and analysis techniques are
evaluated with respect to the Feature Interaction Detection Contest benchmark.
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1 Introduction

Modern software engineering techniques facilitate the development of feature-
rich applications. For example in incremental programming, one first imple-
ments the application’s core functionality — its basic service — and adds new
functionality in small increments — as features of the service. In separation of
concerns, one decomposes a problem into several weakly-coupled sub-problems,
each of which is smaller and simpler than the original and can be considered in
isolation. Using these two techniques, the designer of a feature-rich application
can consider each feature as an independent increment of the basic service.

The problem is that seemingly unrelated features can subtly interfere with
each other because they enhance the same basic service and manipulate the

1 This research is supported by MITEL, with matching funds from Communications
and Information Technology Ontario.
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same state variables. For example, Plain Old Telephone Service (POTS) es-
tablishes voice connections between pairs of users; Three-Way Calling (3WC)
1s a feature that enhances POTS by enabling conference calls among 3 users;
Terminating Call Screening (TCS) is a feature that prohibits calls from num-
bers on a user-defined list. If a user A invokes SWC to establish a conference
call with user B and someone on B’s screening list, then a connection is made
that violates the intention of B’s call screening feature. In general, a feature
interaction occurs when one feature affects the behaviour of another [8].

The benefits of incremental programming and separation of concerns outweigh
the problems of feature interactions. Applying incremental programming and
separation of concerns simplifies the application’s design and helps prevent
architectural decay as the application is maintained and extended. It also
decreases the time-to-market for new features, because independent features
can be developed in parallel or contracted out to third-party programmers.

Our goal i1s to automatically detect feature interactions during the require-
ments phase of feature development. In this paper, we introduce a hybrid
model for specifying and analyzing features that augments our previous state-
machine model [1, 3, 12] with logic formulac. We model services and features
as state-transition machines, whose transitions are annotated with logic asser-
tions that specify constraints on service behaviour. Our analysis tools compose
feature specifications into a reachability graph and test each reachable state
for violations of logic assertions and other interactions.

This paper describes our feature model, our model of composition, and our
analysis tools. It also describes and evaluates the performance of our models
and tools at the first Feature Interaction Detection Contest.

2 Features, Combining Features, and Feature Interactions

We use the terminology presented in the Bellcore Memorandum for Discussion
titled Definitions of Services, Features, and Feature Interactions [6].

Definition 1 A service provides stand-alone functionality.

The basic service in call processing is Plain Old Telephone Service (POTS),
which establishes and maintains voice connections between pairs of users. The
service is specified as two cooperating machines (see Figure 1), one that models
service provided to the caller (the Originating Call Model, or OCM) and one
that models service provided to the callee (the Terminating Call Model, or
TCM). The environment for each machine is the human user (i.e., the caller
or callee) and the connection to the other machine.
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Definition 2 A feature provides added functionality to an existing feature or
service; a feature cannot operate stand-alone.

A feature (see Figure 2) is modelled as a machine that intercedes between
some basic service and the service’s environment. It interposes its behavior by
intercepting and possibly modifying communication between the service and
the environment and by controlling the service’s reactions to events. Features
are not independent components. Rather, the composition of a feature with
its basic service creates a new virtual service to the environment.

Definition 3 A feature interaction is a discrepancy between a feature’s spec-
ified behaviour and its actual behaviour when combined with other features.

Some software developers limit their notion of feature interactions to unex-
pected interactions between supposedly unrelated features. Such interactions
are harmless if the feature combination deviates from the features’ planned
behaviours but is still acceptable. A conflict interaction occurs when a feature
combination violates the intentions of the individual features (e.g., the inter-
action between Three-Way Calling and Terminating Call Screening described
in the Introduction). However, feature designers would also like to ensure that
planned interactions continue to occur in the presence of additional features.
We want our tools to report all interactions, so that the human analyst can
verify planned interactions and identify conflict interactions.

2.1 Combining Features

Each feature is specified as an isolated extension of the basic service.? To
understand how features behave in concert, we combine them in different call
configurations. Each call configuration defines which features execute on behalf
of each user and in what order. Different call configurations reveal different
behaviour, so we analyze several configurations when studying a combination
of features. Call configurations are discussed in Section 4.

2 A feature may extend another feature. However, this paper will focus on features
that extend services and only mention features that extend features when necessary.
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Feature compositions are generated incrementally: the features executing on
one end of a call are composed into a half-call, the two halves of a call are
composed into a call, and related calls are composed into a call-group. The
latter composition is needed to study the behaviour of features that affect
more than one call.

A half-call (Figure 3) represents the combined behaviour of all features exe-
cuting on one half of a call. The features are arranged in a pipe-and-filter-like
architecture, where the feature order realizes a priority scheme. The features
closest to the environment have highest priority; they are the first to intercept
inputs and are the last to modify outputs to the environment. The basic ser-
vice is furthest from the environment and has lowest priority. Messages (e.g.,
offhook events, dialed digits, audible tones, etc.) are passed from the environ-
ment to the basic call model, or from the basic call model to the environment,
visiting the intervening features along the way. Each feature can react to a
message or allow it to pass. If a feature reacts to a message, it can re-emit the
same message or emit zero or more different messages.

Intelligent Network (IN) features (not shown) are implemented outside of the
telephone switch and have different composition rules from the other half-call
features. They are activated by state transitions in the call model: IN features
activated by the same transition execute concurrently, suspending normal call
processing until they all terminate. IN features cannot access network services
(e.g., to play an message or forward a call); instead, they send requests and
actions to the call model, which accesses services on the features’ behalf. When
an IN feature terminates, it can resume the call model in an arbitrary state.

A call (Figure 4) is the composition of two half-calls, one based on the Orig-
inating Call Model (OCM) and the other on the Terminating Call Model
(TCM). It represents the combined behaviour of all the features and services
that execute during the call. Analysis at the call level explores the call’s reac-
tions to messages passed between the two half-calls.
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A call-group (Figure 5) represents the combined behaviour of features execut-
ing on two or more related calls. Calls are related by features that apply to
more than one call (e.g., Call Waiting or Three-Way Calling). Such features
are specified as a set of sibling features, one sibling for each affected call, that
coordinate and share data by sending each other sibling events. Analysis at
the call-group level explores the calls’ reactions to sibling events.

3 The Specification Model

Services and features are specified as state-transition machines using a tabu-
lar notation. The State in the first row of a table is the initial state. Every
feature starts in either state Ready (meaning the feature is enabled) or state
Null (meaning the feature is not ready to execute). Each row in the table rep-
resents a transition from the current state to the next state, activated by an
input event. As side effects, a transition can output events, acquire or release
resources, and assert or retract properties about the call.

Table 1 shows a partial specification for the Originating Call Model. The call
starts when the caller takes the phone off-hook (row 1). This event activates the
transition to state AuthOrigAttempt, where the call model decides whether
to authorize the new call; as a side effect, the transition asserts that the caller

‘ State ‘ Input Event ‘ Next State ‘ Output Event ‘ Resources ‘ Assertions ‘
Ready {}yOffHook AuthOrigAttempt ®busyin(s),
®busyout(s)
AuthOrigAttempt | casOriginated | CollectInfo friyDialTone
D> 6 ¢ arOrigDenied | Exception Ny CircuitsBusy
{}z70nHook Ready 6busyin(s),
©busyout(s)
Table 1

Partial specification of the Originating Call Model.



Event Class Notation Description
Message Events Jumsg User Message Event:
jrymsg message is passed to or from the user
Jrmsg Remote Message Event:
TrmSg message is passed to or from the remote
end-of-call
rvmsg IN Feature Message Event:
frrymsg message is passed to or from an IN feature
State Transition O—>f EnabledEvent:
vents
service/feature f is ready to execute
= 45(e) ActivatedEvent:
service/feature f is activated by event e
and is in state S
Sl“—>fS2(e) State TransitionRequest Event:
service/feature f requests a transition
from S1 to S2, triggered by event e
981&]‘82(6) ModifyTransition Event:
feature g forces service/feature f to tran-
sition from S1 to S2 due to event e
Sl°—>fS2(e) OccurredTransition Event:
service/feature f has made a transition
from S1 to S2 due to event e
Forwarded Events | <forward™> Forwarded Event:
abbreviation for input events passed un-
changed to the next feature in a half-call
Sibling Events = p(f)msg Parallel Message Event:
<p()msg message is passed to or from sibling f
Sl“—)P(f)S2 ParallelTransition Event:
sibling f has made a transition to state
S2
NewCall;(BCM) | NewCall Event:
a new sibling half-call is activated, with
basic call model BCM and feature f
Internal Events D sevent Internal Event:
event produced by service/feature f’s in-
ternal computation
Resources ~+resource service/feature needs access to resource
—resource service/feature releases resource
Assertions ®v(x), dv(x,y) inserts x or palir (x,y) into variable v
ov(x), 6v(x,y) removes x or pair (x,y) from variable v
Ef assert constraint expressed as formula f
E f retract constraint expressed as formula f
Table 2

Descriptions of Events and Assertions

is now busy. The second and third rows specify what happens if the call is
authorized and not authorized, respectively. The fourth row specifies what
happens if the user hangs up while the call is being authorized.

3.1 Input and Output Events

Transitions are activated by input events from the environment and from
neighbouring machines. A summary of event types is given in Table 2.



Message Fvents are data passed between the basic service and its environment.
The arrow in a message event specifies the message’s destination: a downward
message 1s passed from the environment “down” to the service, and an upward
message is passed from the service “up” to the environment. The subscript in
a message event designates a particular environment: subscript i refers to the
user, g refers to the remote end of the call, and jy refers an IN feature.

State-transition events announce the call model’s occurred and pending state
transitions, enabling features on the same half-call to react to or override state-
changes in the call model. While such information could be passed via message
events, a message might arrive too late or be distorted by the intervening
features. Each call model implicitly generates an Activated Event when it
activates, a State Transition Request Fvent before every transition, and an
Occurred TransitionEvent after every transition. A feature may delay, deny, or
modify a State Transition Request, in the last case issuing a Modify Transition
FEvent that instructs the service to make an alternate transition. For example
in our model, Call Waiting prevents the Terminating Call Model (TCM) from
rejecting a call request when the callee is busy and, instead, instructs the TCM
to continue setting up the call.?

Sibling features communicate and synchronize with each other via Sibling
Fuvents. Siblings pass data via Parallel Message Events and announce occurred
state-transitions via Parallel Transition Fvents. A New Call Event initiates a
new half-call that includes a newly invoked sibling. For example, our specifica-
tion of Three-Way-Calling outputs event NewCallzi o (OCM), which creates
a new OCM and 3WC sibling that initiates the call to the third party.

Internal Events announce results from a feature’s internal computations, such
as responses to resource requests, timeouts, analyses of dialed numbers, etc.

3.2 Resources

We use Resources to specify a feature’s usage of shared resources (e.g., the use
of a conference bridge). An entry +res specifies when resource res is acquired,
and an entry —res specifies when it is released. During analysis, we compare
the number of each resource with the number acquired by features.

3 Features also issue state-transition events. In addition to the above-mentioned
events, features issue an Enabled Fvent when they are ready to execute. In practice,
few features are designed to cooperate with other features; thus, it is rare for features
to react to other features’ state-transition events.



3.8 Assertions

We use Assertions to specify features’ long-term effects on service behaviour[5].
The system state is modelled as a collection of relations on users, resources,
and other entities. If U is the set of users, some of our state variables are:
veconn C UxU - the set of voice connections between users
busyin C U - users who cannot receive calls (e.g., line is busy)
billing C U x$ - outstanding charges

Features may introduce new relations to model feature-specific state and data:

hold C UxU - the set of calls on hold.
cf CUxU - call-forward destinations

tecs CUxU - calls screened by terminating call screening

As features execute, they modify variable values as a side effect of their state
transitions. An entry @rel(A,B) asserts that ordered pair (A,B) is an element
of relation rel; entry &rel(A,B) retracts the assertion and removes the pair
from rel. Similar notation specifies assertions made to set variables. For ex-
ample, the call model asserts and retracts assertions about vconn as it makes
and breaks voice connections.

Features specify constraints on system behaviour as first-order predicate sen-
tences on the variables.

e Set and relational variables are atomic predicates
o If P and () are both sets or relations, then so are: PUQ, PNQ, P\ Q
o If P is a relation, then:

dom(P) = {s | (s,t) € P}, ran(P)={t|(s,t) € P}
Pt ={(t,s) | (s,t) € P}, P(s)=A{t]|(s,t) € P}

Formulae are defined inductively:

o If wis a term, and P and () are predicates, then the following are atomic
formulae: w € P,P=Q,P C Q,P C Q.

o If f and g are formulae, then so are: =f, fV g, fAg. f =g, f & g.

o If f is a formula, x is a term variable, and P is a predicate, then the following

are formulae: V& € P(f), 3z € P(f).

Features assert or retract constraint assertions as a side effect of their state
transitions. For example, our 911 feature asserts that it cannot be put on hold:

E 911 ¢ ran(hold)



3.4  FEzxamples

‘ State ‘ Input Event Next State | Output Event Assertions

Ready *QTCMAuthTerm(*) Test

Test >1csMatch Ready TCSAuthTermMTCM
Ready(>TermDenied)
>7c sNoMatch Ready ®tes(s,d)
Eveonn—!(d)Ctes~1(d)
*QTCMReady(*) Ready

*QTCMHuntFacility(*) LateTest

Table 3

Partial specification of Terminating Call Screening

‘ State ‘ Input Event Next State | Output Event Assertions
Null *Q ocarActive Ready

Ready {}iyFlashhook Holding NewCallgyw ¢ (OCM) | @hold(s,d)

*Q o o pReady Null

QOCMExceptlon Null
Holding Q PEWCQ) CallCancelled | Ready 6hold(s,d)
Q PEWCQ) Conference Conference 6hold(s,d)
*S oarReady Null Shold(s,d)
QOCMExceptlon Null 6hold(s,d)

Table 4

Partial specification of Three-Way Calling

The specification for feature Terminating Call Screening (TCS) exhibits dif-
ferent aspects of our notation. The feature starts when the Terminating Call
Model is activated (row 1) *. The next two transitions are activated by internal
events produced when the feature tests the caller’s number. If the number is
on the screening list, then the feature outputs a Modify Transition Event that
forces the Terminating Call Model (TCM) to reject the call (row 2). Otherwise
(row 3), the feature allows the call to proceed, but it records that the test has
been performed (first assertion) and it constrains the remainder of the call
to voice connections that have passed the screening test (second assertion).
If the call terminates, then the feature will also terminate (row 4). If the call
model tries to authorize the call before the feature completes its test, then the
feature suspends the call model by not granting its transition request (row 5);
eventually, the feature will decide whether or not to screen the call and will
issue a Modify Transition Event to resume the call model in the appropriate
state (not shown).

4 In state-transition events, event (*) is a wildcard that matches all events.



The specification of Three-Way Calling (3WC) uses sibling features, one for
the original call and one for the call to the third party. Table 4 shows a partial
specification of the first sibling. The feature is enabled when the call model
enters state Active and a voice connection is established (row 1). The feature
is activated by a command from the user (row 2), at which point this sibling
places the call on hold (assertion) and initiates, for the third-party call, a new
half-call and the second sibling (output event). The second sibling (not shown)
is responsible for interacting with the user to establish the third-party call and
for joining the two calls into a conference call. If successful, the second sibling
will transition to its Conference state, and the original sibling will respond by
transitioning to Conference and releasing the held call (row 6). If instead the
third-party call is unsuccessful, then the second sibling will transition to its
CallCancelled state, and the original sibling will respond by releasing the held
call and terminating the feature (row 5). As with most features, the feature
terminates whenever the call terminates (rows 3, 4, 7, 8).

4 Scenario Selection

We have developed a suite of tools that analyze features arranged in a partic-
ular call configuration, in which features execute on particular half-calls in a
particular order. Most interactions can be found by analyzing pairs of features:
given a set of features, if pairs of features do not interact, then larger subsets
usually do not interact. Thus to detect interactions among a set of features,
we typically only analyze pairs of features. How many call configurations we
analyze depends on the number of contexts in which the features can execute
and the number of calls the features can affect.

If two features F and G can execute in the same half-call, with either OCM
or TCM, and in either order, then there are at least four different call con-
figurations to analyze (see Figure 6). The order of invocation determines the
features’ positions in the half-call configuration: the most recently activated
feature is given highest priority because we assume it is freshest in the user’s
mind and is thus the intended destination of the user’s input. The other two
configurations correspond to the cases where each feature executes on one of

the call’s half-calls.

If feature F is made up of sibling features (e.g., Three-Way Calling) and G
is not, then there are 12 possible call configurations to analyze (Figure 7). If
F is composed of more than two siblings, or if both F and G are composed
of siblings (e.g., if we want to analyze Call Waiting and Three-Way Calling),
then the number of call configurations could be larger.

We rarely analyze so many configurations because most features cannot exe-

10
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Fig. 7. Call configurations: feature F is initiated by the caller and spans two calls.

cute in arbitrary contexts. Terminating Call Screening always executes as part
of the callee’s half-call. The Call Waiting sibling that accepts additional calls
always executes on a callee’s half-call. Feature 911 has top priority no matter
when it is activated. Each restriction reduces by half the number of configura-
tions we need to consider. Note that call configurations do not depend on data
values. Data are abstracted in specifications as input events (e.g., an internal
event that decides whether or not a phone number is on a screening list) that
provoke equivalence classes of behaviours.

11



5 Reachability Analysis

Our analysis tools take as input a call configuration and a set of feature spec-
ifications and produce as output a reachability graph, which depicts all of the
configuration’s execution paths. Each node in the reachability graph is a com-
pound state made up of one state from each of the feature specifications. The
initial node is composed of the features’ initial states. Starting with the initial
node, the tools determine for each node which input events the constituent
states are ready to react to; and for each event, they compute the features’ re-
action as a compound transition of features’ transitions to a new graph node.
Each compound state is analyzed for interactions on-the-fly, as it is generated.
But to alleviate the state-explosion problem, only stable states are stored as
nodes in the resultant reachability graph.

5.1 Warning Messages

We have developed a number of tests that analyze reachable states and out-
put messages to warn of possible interactions. A human analyst interprets
the messages and decides whether the warnings reveal an interaction and, if
so, whether the interaction is planned, harmless, or a conflict. Because every
reachable node is tested, the analysis is exhaustive.

o An event loss warning is issued when a feature outputs a message event,
but no feature or service reacts to it An impossible state transition warning
is issued when a feature outputs a Modify Transition Event for an invalid
transition. These coordination warnings reveal errors in planned interac-
tions, where one feature fails to control the service or a second feature.

o A modified state transition warning is issued when a State Transition Re-
quest is denied or modified. The human analyst uses these warnings to ver-
ify planned interactions. If a Modified Transition has output events, then a
side-effect warning is issued for every transition activated by these outputs.

o A modified event warning is issued when some feature intercepts or alters an
input event that other features are ready to react to (e.g., when Three-Way
Calling and Call Waiting are both ready to react to a flashhook event).

o A reachability warning is issued when one of the features being composed
never enters one of its states (e.g., two users who unconditionally forward
calls to each other and thus never reach a voice-connection state).

o A modified data warning is issued whenever a feature reacts to a modified
message event (e.g., when Call Number Display receives caller ID infor-
mation that was modified by Call Number Display Blocking). We explicate
modified message events in specifications by marking the output events. The
analysis tools track the marked events as they are passed among features.

12



o A resource contention warning is issued whenever the number of requested
resources exceeds the number of available resources.

o An assertion violation indicates a constraint has been violated. Each node in
the reachability graph is annotated with the variable values and constraints
that hold in that state. The constraints are evaluated with respect to the
variable values, and a warning is issued if a constraint evaluates to false.

e An IN conflict warning is issued whenever concurrent IN features disagree
on either the requests sent to the service or the state in which call process-
ing resumes (e.g., IN Freephone Routing and IN Freephone Billing request
different connections and charge the call to different users).

o An IN modified state transition warning is issued when an IN feature re-
sumes call processing in a new state (e.g., when IN Teen Line terminates a
call attempted during restricted hours). This warning reveals interactions
between the IN feature and other half-call features that would react to tran-
sitions in the call model that now may not occur.

5.2  FEzamples

Suppose user C subscribes to TCS. Half-call analysis of a call configuration
where C is a callee reveals the following warnings.

CONTROL WARNING: Modified State Transition detected -
forced modification of feature TCM by TCS.
(From state: [Test/AuthTerm] to state: [Ready#*/Ready*])

CONTROL WARNING: Modified State Transition detected -
forced modification of feature TCM by TCS.
(From state: [LateTest/AuthTerm] to state: [Ready*/Ready*])

CONTROL WARNING: Modified State Transition detected -
original request
"r:AuthTerm:TCM:HuntFacility:TCM:CallPresented"
was denied by Feature TCS at state "[Test/AuthTerm]".

CONTROL WARNING: Modified State Transition detected -
forced modification of feature TCM by TCS.
(From state: [LateTest/AuthTerm] to state: [Ready*/HuntFacility*])

The first two messages warn that TCS may terminate the call (i.e., forcs the
call model back to initial state Ready)®. The third message states that TCS,
while in state Test, prevents the call model from prematurely authorizing the
call. The fourth message states that TCS may force the call model to authorize
the call. These warnings confirm all of the feature’s planned interactions.

Suppose that user A calls user B, and then invokes 3SWC to establish a con-
ference call with user C. Half-call and call-level analyses of this configuration
reveal the following side-effect warnings.

> [A/B] denotes a compound state where the feature is in state A and the call
model is in state B. Names with asterisks are new states resulting from a transition.

13



SIDE-EFFECT WARNING: Output CallCleared:u:r result of forced modification
of feature TCM by TCS.
(From state: [Test/AuthTerm] to state: [Ready#*/Readyx*])

SIDE-EFFECT WARNING: Side Effect Interaction detected -
[3WC/0CM] accepted message CallCleared:d:r in state
[[SentCall/SendCalll/[Ready/Exception]]

The first warning states that the Modified Transition outputs event Call-
Cleared towards the remote end of the call (:u:r). The second warning states
that the originating half-call reacts to the CallCleared side-effect message by
terminating both the third-party call and the feature.® In essence, these mes-
sages warn that the third-party call will be rejected if User C screens calls from
User A. The human analyst determines that the rejected call conflicts with
the intentions of SWC and decides that a conflict interaction has occurred.

Call-level analysis of this call configuration also reveals an assertion violation:

Assertion Warning: at state [[Conference/Active]/[Ready#*/Activel],
while the sets and relations are:

vconn: <A,B>,

vconn: <A,C>,

vconn: <B,C>,

tcs: <A,C>,

the constraint is: vconn~{C}:<=:tcs~{C}.

The constraint asserts that callee C may only be connected to callers who have
passed C’s call screening test; the constraint literally says that the inverse of
vconn applied to C (which is the set {A,B}) should be a subset of the inverse
of tes applied to C (which is {A}). The human analyst determines that a
conflict interaction occurs if User C screens calls from User B.

To help the analyst relate warning messages to interactions, we augmented
the reachability analysis tools to produce all of the paths from the initial
graph node to a specified compound state. The analyst can use this program
to understand the scenarios that lead to a warning state.

5.8 The Feature Interaction Detection Contest

We entered our notation and analysis tools in the Feature Interaction De-
tection contest. We specified and analyzed all 12 contest features, though we
had some problems mapping the Chisel diagrams, which have an event-based
model, onto our state-transition-machine model. Our models are based on
the AIN architecture and specify unobservable states between an input and
its corresponding output, whereas Chisel diagrams describe only observable
behaviour. Also, the Chisel specification for POTS is missing some failure

6 [[A/B]/[C/D]] denotes a compound state in a call: [A/B] is a compound state in
the originating half-call, and [C/D] is from the terminating half-call.

14



| [ CFBL [ CND [ INFB | INFR | INTL | TCS | TWC | INCF | CW [ INCC | RC | CELL |

CFBL 2A 3C - 2C 2A 1A 3C 1A
3C 1SIN 1SIN
CND - - 1C - 1C - 1C ~ [ 1S~y | - -
INFB - 1A - - 3A 2A 2A 1A - 1A
1T N
INFR - - 1C 3A 2A 1A 2A - -
1S7n | 1€ 20
INTL - = [ 1S~ | - - - - -
TCS - A 1C 1C | 18;~ | 2C -
TWC 2C 2A 7C 3A 1C 1A
20 1S
INCF 1R 1A 2A 1C -
3C
CwW 2C 2A 2C 1A
1SN
INCC - - 1A
RC - -
CELL -

Interpretation of table entries:

1,2,3: Number of a particular type of interaction

C: Control Interaction — corresponds to occurrences of either control modifications or coordination warnings

A: Assertion Violation

R: Reachability Interaction

Srn: IN side-effect — occurs when features miss a POTS state transition event because an adjunct feature
resumes call processing at a different point-in-call

Tirn: IN conflict — occurs when multiple AIN features are activated at the same point-in-call but have
different outcomes

Table 5

Results of the interaction analysis

scenarios (e.g., phone cannot initiate/accept calls, circuits busy, etc.). This
hidden and missing behaviour is revealed in the Chisel feature specifications,
which means that we needed to decide, for every contest feature, whether the
feature diagram describes POTS-related behaviour and, if so, whether that
behaviour belongs in POTS or whether the feature emulates POTS.

We detected 91 interactions between pairs of features. Table 5 shows the num-
ber and types of interactions we found. The contest organizers compared our
list of interactions against theirs, which they compiled from manual inspec-
tions, and found 40 of our interactions correct, 14 incorrect, and 37 irrelevant
(these were deemed interactions between a feature and POTS rather than
interactions between features). We also missed 46 of their interactions.

One reason why so many of our interactions were ignored is we used a different
definition of feature interaction. We assumed an interaction is a discrepancy
between a feature’s specified behaviour and its behaviour when combined with
other features. The contest rules did not provide a definition, but from exam-
ining their list of interactions we deduce that the contest organizers were only
interested in interactions that adversely affect the behaviour of some feature.

We missed some interactions because we did not strictly adhere to the Chisel
specifications with respect to how features activated. For example the Chisel
specification for the feature Cellular Charge (CELL) specifes the following
behaviour: the caller goes ofthook, the caller dials the CELL subscriber, the

subscriber’s phone rings (i.e., the subscriber’s phone must not be busy), and
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the subscriber answers the call. Call Forward Busy Line interacts with CELL
because the subscriber is not charged for airtime when the call is forwarded,
since the caller does not dial the subscriber’s number. We missed this inter-
action because we assumed a CELL subscriber would be charged for airtime
whenever the subscriber received and answered a call.

Other interactions were missed or rejected because we adopted the wrong
interpretation of ambiguous specifications. For example, they rejected our in-
teraction between IN Freephone Billing (INFB) and CELL because we wrongly
assumed that the intention of feature INFB was to bill the callee for the entire
cost of the call; thus, we thought that the CELL feature, when applied to
caller, violated INFB’s intention by charging the caller for airtime.

We have examined the organizer’s partial list of interactions and have used
their explanations to interpret specifications, resolve ambiguities, and identify
call configurations that reveal interactions. Of the 51 interactions described
in the partial list, we originally missed 19, but only 3 are undetectable in
our model. In each of these, the features output contradictory call-model re-
sponses. For example, if a subscriber of IN Charge Call (INCC) calls a CFBL
subscriber who is already on the phone, CFBL forwards the call and the caller
hears an audible ring tone; but the INCC specification says the caller should
hear a busy tone. In our model, the features do not output these tones; they
each manipulate the call model, which outputs the tones. Since the call-model
is in exactly one state at a time, it cannot simultaneously output both tones.

6 Related Work

Interaction-detection methods that have been proposed in the literature gener-
ally fall into one of three categories: state-based, logic-based, or hybrid models.

6.1 State-Based Models

State transition machines are the classic model used to specify telephony ser-
vices and features. Feature specifications are typically composed into a reach-
ability graph, and the graph is analyzed for feature-independent interactions,
such as deadlock, livelock, non-determinism, and reachability.

Kelly et al. [9] and Combes and Pickin [7] use the Specification and Descrip-
tion Language (SDL), based on communicating finite state machines. POTS
and features are specified as processes, and compositions are configurations of
processes. In the second approach, they express feature requirements as event
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traces in Message Sequence Charts (MSC) and detect interactions by test-
ing that configurations satisfy the same MSC properties as their constituent
features. Interactions are exposed by simulation and manual inspection.

Bruns et al. [4] specify services as a set of variables and a set of rules that mod-
ify variable values in response to input events. Feature specifications enhance
service behaviour by declaring new events and rules. If several features and
services are ready to react to the same event, their rules are applied one at a
time, according to a priority scheme. Interactions are detecting by generating
the specifications’ reachability graph and performing special-purpose tests on
nodes in the graph. For example, one test reveals order interactions, where
the priority of activated rules affects the features’ response to an input event.
A second test reveals when reacting rules have conflicting outputs.

6.2 Logic-Based Models

Logic-based models typically consist of two parts: a set of state variables and a
state transition relation. State variables describe the states of the service and
features, and the transition relation describes allowable changes to variable
values. Composition of feature specifications is by conjunction. The classes
of detectable interactions are deadlock, livelock, assertion violations and non-
determinism.

Blom et al. [2] use temporal logic and the Z notation to specify services and
features. The state variables are relations between users. The transition rela-
tion defines initial conditions, input events (predicates that describe commu-
nication between the system and its environment), and the system’s response
(changes to the state variables). Interactions are detected when several transi-
tion relations react to the same event but with conflicting effects. the system.

Ohta et al. [15] developed a notation called State Transition Rules (STR),
where user states are predicates on phone numbers and transitions specify
changes to predicate values in response to events. The composition of feature
specifications is the union of the features’” STR rules, where a priority scheme
governs the application of rules. The current state is the union of the user
states. Interactions are detected by comparing the states and transitions of
individual features with those of the composite system and identifying un-
reachable states and transitions.

The state variables in the logic-based models represent the same information
as our state-transition machine states and our assertions combined. The logic-
based transition relations are as complex as our state transitions with their side
effects. Thus, the expressiveness of the notations used in the two approaches
is the same. One advantage of our hybrid model is the separation of the state-
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transition relation from information that models more permanent effects on
the call. For this reason, most practitioners prefer to use extended finite state
machines to specify communication protocols.

6.3 Hybrid Models

Lin and Lin [11] propose a hybrid model that combines state transition ma-
chines and logic. Procedural level specifications, written in Promela, describe
how a feature should operate, and behavioral-level specifications, written in
temporal logic, describe what properties a feature must exhibit. Features are
specified as independent entities and are used as building blocks to build dif-
ferent call configurations. Half-call, call, and call-group configurations can be
analyzed. The Spin model checker is used to verify that the behavioural-level
specifications hold for combinations of features. While this approach will de-
tect reachability, control modifications, and assertion violation interactions,
it cannot detect unexpected interactions due to data modification or to side
effects of modified control flow.

Logrippo et al. [13] use the LOTOS specification language to model feature
interactions. This method is based on the idea of feature intentions (simi-
lar to our assertions) which describe the asserted assumptions and properties
that the features expect to hold. An intention verifier is used to synchronize
with the actions in the system and to check whether a violation has occurred.
Each system of features and each intention verifier is viewed as a process in
process algebra and they can be joined together in parallel composition. An
interaction is detected when a feature intention is violated in the system. This
method uses reachability analysis, but the analysis is of paths in the reacha-
bility graph rather than states. Because exhaustive analysis of reachable paths
is infeasible, search strategies must be suggested to reduce the search space.
Interactions are detected by manual inspection of the traces produced from
the tools. The interactions this method can detect would correspond to our
control modification, data modification, assertions violation and reachability
interactions.

Khoumsi [10] specifies POTS and features as extended finite state machines
augmented with boolean variables. Propositional formulae over the variables
act as guards on the transitions and can also be used to express invariant
properties of a feature. The variables are updated by the transitions. Speci-
fications are composed into a reachability graph, and the graph is searched
for undesirable properties: deadlock, unreachable states, non-determinism, or
violations of invariants. Our tools reveal a wider class of interaction types
because, in addition to the above, our tools track the effects of manipulated
data and state transitions.
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7 Conclusion

Previously, our group used pure state-based models and analysis techniques
to automatically detect feature-independent interactions [3, 12]. Logic nota-
tions are more expressive and can be used to specify and detect violations
of feature-specific behaviour. However, it is difficult to formulate properties
that are likely to reveal interactions [14]; one needs to know the possible
assertion violations in order to encode and detect them. Hybrid models com-
bine the advantages of both approaches. With the new model, we can detect
feature-independent interactions without prior manual analysis of potential
interactions, and we can model and check feature-specific assertions.

While we are disappointed in how our model and tools fared in the Feature
Interaction Contest, many of our problems were due to ambiguous and over-
simplified specifications rather than to weaknesses in our approach. Chisel
diagrams nicely depict event sequences, but we question whether traces of
observable events are sufficiently expressive and flexible to capture complex
telephony behaviour [16].

A weakness of our approach is that some feature specifications are difficult to
write because they are tightly coupled with other specifications. For example,
sibling features must remain synchronized with one another. Also, many spec-
ifications must include transitions that react to seemingly unrelated events
(e.g., the user hangs up) in order to be complete. The analysis tools detect
coordination interactions, but this only help us ensure that specifications and
planned interactions are correct before analyzing combinations of features.

Another problem is the number of messages the tools output. We could bet-
ter classify the “warnings” that clearly identify interactions (e.g., modified
transitions and assertion violations) from those that should be examined by a
human analyst. We could also use a sifting tool, such as the Unix program diff,
to highlight new and missing messages due to the addition of a new feature.
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