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ABSTRACT
In this paper, we introduce a model-checking-based certification
technique called search-carrying code (SCC). SCC is an adaptation
of the principles of proof-carrying code, in which program certifi-
cation is reduced to checking a provided safety proof. In SCC,
program certification is an efficient re-examination of a program’s
state space. A code producer, who offers a program for use, pro-
vides a search script that encodes a search of the program’s state
space. A code consumer, who wants to certify that the program
fits her needs, uses the search script to direct how a model checker
searches the program’s state space.

Basic SCC achieves slight reductions in certification time, but
it can be optimized in two important ways. (1) When a program
comes from a trusted source, SCC certification can forgo authenti-
cating the provided search script and instead optimize for speed of
certification. (2) The search script can be partitioned into multiple
partial certification tasks of roughly equal size, which can be per-
formed in parallel. Using parallel model checking, we reduce the
certification times by a factor of up to n, for n processors. When
certifying a program from a trusted source, we reduce the certifica-
tion times by a factor of up to 5n, for n processors.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification—
Model checking; K.7.3 [The Computing Profession ]: Testing,
Certification, and Licensing

General Terms
Verification

Keywords
Software Certification, Model Checking

1. INTRODUCTION
Component-based software engineering promises rapid develop-

ment and extension of systems through the assembly of pre-existing
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and third-party components. However, before a code consumer
uses an acquired component in her software product, she must cer-
tify that the component fits her needs. If a component comes from a
non-trusted source, then the code consumer will want to check that
the component is safe and performs as advertised. Even if a com-
ponent comes from a trusted source, the code consumer may still
want to assess whether the component exhibits additional desired
properties, beyond those claimed by the code producer.

Proof-carrying code (PCC) [18] has been advanced as a means
to ease certification. The premise of PCC is that proof checking
is faster and simpler than theorem proving. In PCC, the code pro-
ducer verifies via theorem proving that his program satisfies a set
of predefined safety properties, and provides as evidence a safety
proof. The code consumer certifies the program by checking the
validity of the accompanying safety proof against the code. How-
ever, PCC certification can only (re)verify the properties that are
substantiated by the safety proof. Also, because reasoning about
general properties of programs is complex, PCC has so far focused
on program-independent security properties (e.g., memory safety,
type safety, resource bounds).

In this paper, we introduce the concept of search-carrying code
(SCC), in which we apply the goals of PCC to programs and prop-
erties that can be model checked. Specifically, we explore whether
information collected during successful verification of a program
(via explicit-state model checking) could be used to ease subse-
quent certification (via explicit-state model checking) of the same
program. Our approach focuses on paths through a program’s reach-
ability graph. A reachability graph is a graphical representation
of a program’s set of possible executions, in terms of execution
states (i.e., program counter, variable values, etc.) and transitions
(i.e., program statements) between execution states. As a code pro-
ducer’s model checker explores a program’s reachability graph, it
records its search path as a search script, which effectively acts
as a certificate of the verification. The code consumer’s model
checker takes the script as input and uses it to speed up the task
of re-examining the program.

Basic SCC achieves slight reductions in certification times. Both
traditional model checking and SCC certification check properties
in every state of a program’s state space. However, whereas tradi-
tional model checking must ascertain a program’s reachable state
space, SCC certification can simply confirm that the provided script
truthfully reflects the state space. We take advantage of this distinc-
tion and modify the data structures that the model checker uses to
keep track of visited states, thereby realizing a small, up to 5%
speed-up in certification time.

In the special case where a code consumer trusts the code pro-
ducer but wants to check additional properties, and the veracity of
the search script is not in question, SCC certification need not au-



thenticate the script and can instead be optimized for speed. In
trustful SCC, the provided search script encodes a perfect search
of a program’s state space that visits each program state exactly
once, avoiding paths that lead back to already visited states. The
resultant speed-up in certification time depends on the structure of
a program’s reachability graph: in particular, it depends on the ratio
of the number of transitions to the number of states.

More significantly, SCC certification can be parallelized more ef-
fectively than traditional model-checking tasks can. The main chal-
lenge in parallel model checking is balancing the workload among
parallel processors. However, in SCC, the search task is known
in advance and is encoded in the search script. The search script
can be partitioned into multiple tasks, each covering a cohesive re-
gion of the search space that a processor can explore independently,
thereby avoiding the inter-processor communication that is usually
necessary to balance workloads dynamically.

The contributions described in this paper are as follows:

• We propose a model-checking-based certification technique
called search-carrying code (SCC), in which a code producer
provides a search script that a code consumer uses to direct
the search of its model checker. We discuss how the tech-
nique verifies the veracity of a provided search script. We
also show how SCC certification can be optimized in cases
where the source of a component is trusted and the goal is
simply to check additional properties.

• We present a greedy algorithm to partition an SCC search
script into several scripts, which can direct several partial
certifications of a program in parallel.

• We discuss requirements for the code producer’s and con-
sumer’s model checkers. While we have embedded our SCC
algorithm into Java Pathfinder (JPF) [27], we expect that
SCC can be applied to other explicit-state model checkers.

• We evaluate the performance of SCC on a suite of Java pro-
grams. By combining SCC and parallel model checking, we
achieve an average speed-up of up to n using n processors.
When certifying a program from a trusted source and em-
ploying parallel model checking, we report an average speed-
up of up to 6n using n processors.

This paper is organized as follows. In Section 2, we describe the
basic algorithms and technologies needed to support SCC-based
certification, including the special case of trustful SCC. Section 3
describes how to parallelize SCC to take advantage of parallel model
checking and presents the results of our evaluation. Section 4 dis-
cusses outstanding issues and known limitations of SCC, and Sec-
tion 5 presents related work. We conclude with Section 6.

2. SEARCH-CARRYING CODE
Software model checking exhaustively examines a program’s

state space, checking conformance with desired properties. Dur-
ing verification of a program, the emphasis is on finding bugs and
ultimately showing that a program is error-free. For certification,
the goal is to confirm that a program behaves as advertised, and
possibly to check for additional non-advertised properties.

Ideally, it is faster to certify a program than it was to verify it in
the first place. The goal of search-carrying code (SCC) is to use
information collected during model-checking-based verification of
a program to speed up model-checking-based certification of the
program. A code producer’s model checker performs a traditional
exhaustive search and verification of a program’s state space. At the

same time, it constructs a search script that represents its search of
the state space. The search script is a sequence of transitions (i.e.,
program statements) and their resultant execution state IDs (i.e.,
not state encodings); the script corresponds to a depth-first search
of the program’s reachability graph. During certification, a code
consumer’s model checker uses the provided search script to direct
its search of the program’s state space and certifies that the pro-
gram satisfies its advertised properties, plus any additional desired
properties. In general, SCC can be used to certify safety properties
of programs, where the properties are expressed as program invari-
ants or assertions, and to confirm absence of deadlocks. We discuss
properties in more detail in Section 4.

Search-carrying code possesses many of the same benefits of
proof-carrying code. First, the burden of verifying the program
is borne by the code producer, whereas the code consumer simply
re-checks the program. Second, the search script can be generated
automatically by the code producer’s model checker, as we show
in the next section. Third, SCC certification can detect accidental
or malicious deviations between a program and associated search
script. There are three types of deviation: (1) the script includes
nonexistent transitions, (2) the script omits a transition, or (3) the
script incorrectly claims that a transition leads to an already-visited
state. The first two types of deviation are easily detected: in the
first case, the program has no program statement that matches the
script’s transition instruction; and in the second case, the script says
to end the examination of a state before all of its transitions have
been explored. In both cases, the model checker detects the dis-
crepancy and the certification fails. The third type of deviation is
more menacing because, if undetected, it results in a partial search
of the program’s state space: the mislabelled state is deemed to
have already been visited, so the model checker does not test the
state and does not explore the state space that is reachable from it.
To detect this third type of deviation, SCC certification must–in ad-
dition to visiting and testing all of the program’s states–explore all
of the transitions emanating from these states, to see if they lead to
new unvisited states. Thus, the search script encodes the program’s
entire reachability graph.

Given that SCC certification entails re-exploring a program’s en-
tire reachability graph, it might seem surprising that SCC achieves
any savings at all. As will be seen, small savings come from be-
ing able to confirm the script’s encoding of the reachability graph,
rather than determining the reachability graph, as is the case in tra-
ditional model checking. More significant savings come from par-
allelizing SCC certification. We describe parallel SCC in Section 3.

In the special case of trustful SCC certification, the code pro-
ducer and the verification results are trusted. However, the code
consumer wants to certify additional properties of the program, and
the code producer is unable or unwilling to check these. Because
the code producer is trusted, the code consumer may choose not to
check the veracity of the script. As a result, we can aggressively
optimize the certification task for speed. We describe trustful certi-
fication in Section 2.3.

2.1 Search Script Construction
An SCC search script records all transitions in a program’s reach-

ability graph and the state ID of each transition’s destination state.
Consider Figure 1, which depicts the reachability graph of an arti-
ficially simple program. Transition labels abstractly represent the
program statements being executed. The script for this program is:

Trans instr: – t1 t1 B t2 t1 B t2 t1 B B t3 t1 B B B B t2 B
State ID: S1 S2 S1 S2 S3 S1 S3 S4 S2 S4 S3 S5 S4 S5 S3 S2 S1 S4 S1

where the tis encode program statements (e.g., the byte code in-
struction, or a combination of byte code and thread ID) and Bs rep-
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Figure 1: Sample reachability graph of a program

resent backtracks. Reading the script from left to right, the search
starts in the program state labelled S1; it explores the program
statement represented by transition t1, which results in a program
state labelled S2; and so on.

SCC uses encodings of program statements in the script rather
than transition IDs, so that different model checkers interpret the
script in the same way, and search the state space in the same order.
Below is an example partial script in which transition instructions
are expressed as byte-code instructions:

Trans instr: – aload_0 aload_1 B getfield#5
State ID: S1 S2 S1 S2 S3

For the remainder of this paper, we will abstract instructions to
transition IDs for the clarity of presentation.

To minimize the size of the search script, destination states are
represented by state ID rather than by explicit state encodings. State
IDs are unique identifiers that the code producer’s model checker
creates and assigns to states during the course of the verification
search, starting with identifier S1 and incrementing by 1 each time
a new state is discovered. A transition that leads to a new state is
referred to as a productive transition; its destination state has an
ID that is larger than the largest state ID encountered so far.

2.2 Search Script Usage
During SCC certification, the model checker follows the instruc-

tions given in the provided search script, checking properties and
authenticating the search script on-the-fly. Any discrepancy causes
the certification to fail. Discrepancies are identified in three ways

1. The script instructs the model checker to explore a nonexis-
tent transition (i.e., a nonexistent program statement).

2. The script instructs the model checker to backtrack when the
state still has unexplored transitions.

3. The script asserts that two transitions have the same desti-
nation state (with the same state ID), but the model checker
determines that the two program states have different finger-
prints. To facilitate this check, the model checker maintains
during certification a mapping FP from state IDs to finger-
prints. A each new state is reached (in order of state ID),
its ID and fingerprint are entered into FP . When a state is
revisited (indicated in the script by a destination state whose
ID that is lower than the highest ID), its previous fingerprint
is retrieved from FP and compared against the new finger-
print. A mismatch is a discrepancy. Our map FP is slightly
more efficient than a hash table of visited states because it
grows more gracefully.

2.3 Trustful Certification
In cases where a program comes from a trusted source and the

code consumer trusts the results of the code producer’s verification,

t2
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t3
backtrack
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Figure 2: Perfect search of a program’s state space

SCC can still be useful, especially to check additional properties.
Perhaps the code consumer found the program in a trusted soft-
ware repository and is interested in using the program, but only if
some additional properties are met. The code producer might not
be available or willing to perform additional checks.

When the code consumer trusts the source of the program, he
might also trust the veracity of the search script. If so, the certifi-
cation need only examine the program’s states, to test properties. It
need not explore all of the transitions in the program’s reachability
graph, checking whether any reachable state has been missed. To
see the difference, consider again the reachability graph in Figure 1.
An exhaustive search of the graph explores all nine transitions, vis-
iting the same states multiple times. In contrast, a perfect search
traverses a spanning tree of a program’s state space: it explores
only productive transitions and visits each state exactly once1. Fig-
ure 2 depicts a depth-first, perfect search of the graph from Fig-
ure 1. Solid lines represent productive transitions and dashed lines
represent backtracks to parent states. The corresponding search
script is:

Trans instr: t1 t2 t2 B t3

The script does not record the transitions’ target state IDs because
trustful certification does not check the veracity of the script.

Trustful SCC effects a perfect search of a program’s state space.
The code producer provides a program and matching trustful search
script. During certification, the code consumer’s model checker
uses the search script to direct its search of the program’s state
space. Neither state fingerprints nor hash-tables of visited states
are created or maintained, resulting in additional speedup.

2.4 Evaluation of SCC
We implemented SCC certification in Java Pathfinder (JPF) [17].

JPF is an explicit-state model checker for Java byte-code programs.
We refer to the resulting model checker as JPF-scc. For conve-
nience, we implemented SCC verification and certification in the
same model checker but, in practice, these tasks might be per-
formed by separate tools. JPF, and our modified variants, em-
ploy partial-order reduction and two types of symmetry reduction:
(1) states that are identical except for unreferenced objects (i.e.,
garbage) are considered to be equivalent, and (2) states that are
identical except for the order in which classes and objects are loaded
are considered to be equivalent. We discuss the compatibility of
SCC with various state-space reduction techniques in Section 4.

We evaluated our work on a suite of nine Java programs that have
been used in previous empirical studies. Table 1 lists each program
including its source, the parameter values that we used (e.g., in-
stantiating 8 dining philosophers), the numbers of invariants and
assertions that we checked for each program, the number of states
in the reachability graph, the ratio of transitions to states, and the
1Backtracking does not constitute “visiting" a state because the
work of constructing and testing the state is already done.



Table 1: Java Programs Used for Evaluation
Src Program Parameters Properties #States #Trans Time

#Inv/#Assert #States (sec)
[17] Dining Philosopher (8) #philosophers 1/2 209014 5.2 220
[23] Bounded Buffer (5,4,4) buffersize,#prod,#cons 1/3 786987 7.1 1088
[21] Nasa KSU Pipeline (4,1) stagesize,#listeners 3/4 59512 4.1 45
[23] Nested Monitor (5,4,4) buffersize,#prod,#cons 6/4 71941 6.9 99
[23] Pipeline (7) stagesize 3/3 82011 6.1 101
[23] RWVSN (4,4) #readers,#writers 3/4 227116 5.1 245
[23] Replicated Workers (5,2) #workers,#items 4/5 710022 5.1 860
[7] Sleeping Barber (2,4,3) #barber,#customers,#chairs 4/5 1452194 4.3 1308
[6] Elevator(5,10,10) #elevators,#floors,#people 4/8 386032 8.4 1167

Table 2: Results for SCC Verification and Certification
SCC certification Trustful SCC certification

Program (size) Verification (sec) Script size(KB) Certification (sec) Speed-up Script size(KB) Certification (sec) Speed-up
Dining Philosopher (4KB) 221 104 213 1.03 25 35 6.3

Bounded Buffer (6KB) 1090 329 1036 1.04 74 130 8.4
NASA KSU Pipeline (2KB) 45 91 44 1.02 22 9 5

Nested Monitor (7KB) 100 45 97 1.01 9 14 7.1
Pipeline (5KB) 102 51 99 1.01 11 15 6.7
RWVSN (9KB) 246 102 236 1.03 29 39 6.3

Replicated Workers (15KB) 862 272 819 1.05 72 140 6.1
Sleeping Barber (8KB) 1310 492 1245 1.05 187 245 5.3

Elevator (29KB) 1169 248 1122 1.04 54 129 9

time to model check the program using JPF. We also checked each
program for deadlock violations. We ran our experiments on an
Intel Pentium 4 3.2GHz machine with 1.5GB of memory, running
Windows XP. We ran each experiment ten times and report the av-
erage of the ten runs.

We evaluate the utility of SCC on the basis of how long it takes
to perform SCC certification, compared to the time it would take
a code consumer to reverify a program. Table 2 shows the results
for SCC certification using JPF-scc. Column Verification shows
the time incurred by the code producer to model check the program
and create the search script, including the time to write the script
to disk. Column Certification reports the time incurred by the code
consumer to certify each program, including the time to read the
search script from disk. Column Speed-up shows the speed-up of
a certification search compared to a traditional JPF search, as re-
ported in Table 1. For example, the time to certify the Sleeping
Barber program and to check the script is 1245 seconds, which is
1.05 times faster than JPF verification of the same program.

The speed-ups of SCC are very small and are mainly due to keep-
ing a map of fingerprints (FP ) instead of a hash table. For our set
of programs, we report an overhead of 2% to 5% for keeping and
maintaining a hash table. SCC saves this small cost. Because of the
way that JPF maintains hash tables and resizes tables as needed, the
savings increase with the size of the program’s state space.

Table 2 also shows the runtime performance of trustful SCC cer-
tification. For example, the time to certify the Pipeline program
is 15 seconds, which is 6.7 times faster than traditional JPF veri-
fication of the same program. The speed-up of trustful SCC cer-
tification is proportional to the ratio of the number of transitions
to the number of states in the program’s reachability graph; this is
also the ratio of unproductive to productive transitions. The speed-
up is slightly better than the ratio because of the savings from not
creating and comparing fingerprints.

2.5 Search Script Size
The feasibility of SCC depends not only on runtime performance

but also on the size of the search script. Given a program whose

reachability graph has S states and T transitions, SCC will pro-
duce a search script containing at most 2T instructions (T forward
transitions and at most T backtracks) and trustful SCC will pro-
duce a search script that has at most 2S instructions. Because the
number of states and transitions are exponential in the size of the
program, one might expect that script size is an issue.

Fortunately, search scripts contain lots of replication (e.g., byte
code instructions, backtrack commands), which makes them good
candidates for compression. ZIP data compression [22] reduced the
sizes of our search scripts by factors of 550 to 650. Table 2 shows
the size in KB of the compressed search script for each program,
for both SCC and trustful SCC certification. It also shows the size
of each program’s class files along with the program name. The
sizes of compressed scripts are on the order of (T × 10−4) KB
for SCC and (S × 10−4) KB for trustful SCC. Extrapolating to
larger programs, with 100 million states and a billion transitions,
the script sizes might be on the order of 100MB for SCC and 10MB
for trustful SCC. Such script sizes are large but are manageable.

3. PARALLEL SCC
The promise of parallel model checking [25] is that we can re-

duce search times by distributing the search among multiple paral-
lel processors. In general, it is difficult to balance a model-checking
task evenly among processors because the size of the search space
is not known in advance. Attempts to partition the workload in ad-
vance (e.g., assigning states to processors based on state informa-
tion) have resulted in substantial communication overheads, due
to the need to transfer new states to their designated processors.
Even on a shared-memory architecture, this style of parallel model
checking can suffer considerable overhead because processors need
to coordinate their shared access to each others’ worklists.

In SCC, the certification workload is known in advance, in the
form of a search script. As such, it is possible to partition the work-
load into multiple search tasks of roughly equal size. In the follow-
ing sections, we first describe how to partition an SCC search script
and then explain the optimizations for trustful certification.
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Figure 3: Reachability graph with its script and Subgraphs

3.1 Partitioning the State Space
The goal of parallel SCC is to partition the search script into mul-

tiple non-overlapping search tasks, each of which covers a contigu-
ous region of the program’s reachability graph that can be searched
separately.

Let Script be the full search script of a program, as described in
Section 2.1, and let |Script| be the size of the script in terms of the
number of transitions. Prior to certification, the certifier’s model
checker constructs a partition P = {p1, ..., pk} of Script into k
search tasks. Each partition region pi ∈ P corresponds to a sub-
graph in the program’s reachability graph, and to a partial search
script Scripti that is a substring of Script. A subgraph pi consists
of all states that can be reached via productive transitions from pi’s
root and all transitions, productive and unproductive, originating
from those states. For example, consider the reachability graph in
Figure 3, in which thick edges represent productive transitions. In
this example, the subgraph rooted at state S4 consists of the states
S4, S5 and S6; the subgraph would not include S3 because it is
reached via an unproductive transition from S6. The size of each
pi is the number of transitions emanating from states in pi.

To facilitate script partitioning, SCC verification generates, along
with the search script, a list Subgraphs that records for each pro-
gram state s the number of transitions in the subgraph rooted at s.
Basically, during verification, the model checker performs a depth-
first search of the program state space. As each new state s is en-
countered, an entry indexed by state ID is added to Subgraphs.
As s’s child states are explored and the sizes of their subtrees are
computed, the size of s is updated. The Subgraphs list is provided
to the code consumer, along with the program and search script. In
SCC certification, the size of a Subgraphs list is less than 10% of
the size of the search script, and in trustful SCC certification, the
size of Subgraphs is less than 20% of the size of the search script.

Figure 3 shows an example reachability graph with its corre-
sponding Script and Subgraphs. The Subgraphs table shows
for each state s (left column) the size of the subgraph (right col-
umn) rooted at s. For example, the subgraph rooted at state S4
consists of the states S4, S5, S6 and has size four (i.e., the four
transitions originating from those states). The value in parenthe-
ses below each state identifier in the reachability graph in Figure 3
shows the same information.

Figure 4 gives an overview of our partitioning algorithm. It takes
as inputs the search script Script and the Subgraphs list that are
provided by the code producer, and the number of partitions k to
generate (based on the number of available parallel processors). In
the ith iteration, the algorithm searches Subgraphs for a subgraph
whose size is closest to 1/k−i of the number of transitions not
yet assigned to a partition region (line 6); this subgraph becomes a

1 I n p u t : Script ; /∗ s e a r c h s c r i p t e n c o d i n g r e a c h a b i l i t y graph ∗ /
2 I n p u t : Subgraphs ; /∗ r o o t and s i z e o f subgraphs i n Script ∗ /
3 I n p u t : k ; /∗ number o f p a r t i t i o n r e g i o n s t o g e n e r a t e ∗ /
4 i = 0 ;
5 whi le {i < k−1}{

6 S ea rc h Subgraphs f o r pi whose s i z e i s c l o s e s t t o |Script|
k−i ;

7 Remove s e a r c h s c r i p t f o r pi from Script ;
8 Remove a l l s t a t e s i n pi from Subgraphs ;
9 Update t h e s i z e s o f s u b g r a p h s l e f t i n Subgraphs ;

10 Compute p a t h t o i n i t i a l s t a t e o f pi ;
11 i++ ;
12 }

Figure 4: Partitioning algorithm

new partition region pi. Next, the partial search script Scripti for
partition region pi is extracted from Script (line 7). The algorithm
also removes all states in pi from Subgraphs (line 8). We describe
both processes in Section 3.1.1. The algorithm then updates the
sizes of the remaining subgraphs in Subgraphs (line 9). Note that
only the sizes of ancestor states of pi need be modified, and their
sizes are reduced by the size of pi. We describe how ancestor states
are identified in Section 3.1.2. Finally, the algorithm constructs the
path from the program’s initial state to the initial state of search
task Scripti (line 10). We discuss the rationale and process for
constructing this initialization path in Section 3.1.2.

Figure 6 shows the result after one iteration of our partitioning
algorithm as applied to Figure 3, for k = 3. The subgraph p1,
rooted at state S4, is selected for extraction and its subscript is re-
moved from Script (the dark line in Script shows from where the
subscript was extracted). The states in p1 have been removed from
Subgraphs and the sizes of S4’s ancestors (S1, S2, S3) have been
reduced by S4’s size. The initialization path for p1 is a sequence
of transitions from the program’s initial state to the subgraph’s ini-
tial state. Dashed states in each of the resulting partition regions
represent states that do not belong to the region but that are still
reached as part of that region’s search task; they are reached when
exploring transitions that emanate from states within the region.

Figure 5 shows the final partition of the graph from Figure 3 into
three regions. The scripts for p1 and p2 contain initialization paths
to their respective root states. The resultant search scripts represent
the certification tasks to be distributed among parallel processors.

The complexity of our partitioning algorithm is O(k(S + T )):
steps 6, 8 and 9 each have running times of O(S) for a reachability
graph with S states, and steps 7 and 10 each have running times of
O(T ). In our experiments, we noticed that this overhead translates
into approximately 0.5% to 3% of the total certification time.

3.1.1 Updating Data Structures
In this section, we discuss how Script and Subgraphs are up-

dated as our partitioning algorithm extracts each partition region
pi. We remove from Script the subscript that represents the search
of region pi. Let si be the ID of the root state of pi. Because
Script records a depth-first search of the reachability graph, and
because state IDs reflect the order in which the states are discovered
in this search, the subscript-to-be-removed starts after the leftmost
instance of si and ends before the subsequent backtrack from si

(to a state ID less than si). Thus, the subscript for region p1 in
Figure 6, with start state S4, is

p1: t1 B t2 t1 B t2 B B
S5 S4 S6 S5 S6 S3 S6 S4

After discarding trailing backtrack commands, we obtain a search
script Script1 that specifies the search of region p1, starting from
the initial state of p1:
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Given a partition region pi, updating Subgraphs entails remov-
ing all entries that correspond to states in the region (line 8 in our
partitioning algorithm). Again, let si be the ID of the root state
of pi. Any state in Scripti whose ID is greater than or equal
to si refers to a state in the region pi and must be removed from
Subgraphs. For example, in Script1, states S4, S5, and S6 are
removed from Subgraphs.

Each iteration of the partitioning algorithm produces a script for
a different partition region. When the algorithm terminates, what
remains of Script forms a search script for the kth region. Figure 5
shows the search scripts for each partition region.

S2

S3

S4 S5

S6

S7

S8 S9

S1

p2

p1

p3

S10

t3

t3

t1

t1

t1

t2

t1

t2

t1

t1 t1t2

t1

t1

t2

t2

S3

S5S4S3

S6

S4

S8

S3S6S5S6S4S5
t1 t1 t2t2 BB

Initialization: t1 – t1– t1

S5S9S8S4S8S3
t1 B t1t2B

Initialization: t1 – t2
t3

S1 S7S10S2S3S7S6S7S3S4S3S2
t1t1t1t1t1 t2 t3BBBB- t2

S8
B
S2

Figure 6: Subgraphs with scripts and initialization paths

3.1.2 “Constructing" Initial States
Each Scripti starts at the root state of a partition region pi. We

could attempt to construct the corresponding “initial” program state
for each search task, but JPF program states are complex and are
difficult to construct and restore: they comprise not only the vari-
able valuation but also information about threads and the progress
of the search. Instead, we prefix each search script with an initial-
ization path: a sequence of transitions from the program’s initial
state to the start state of the search task. We discuss in Section 3.4
the overhead incurred by this decision.

To construct the initialization path, the original Script is scanned
from start to end. Every time a transition is reached, it is pushed
onto a stack. Every time a backtrack command is read, the top tran-
sition is popped off the stack. When a state ID s is first encountered,
the transitions in the stack make up the initialization path from the
program’s initial state to state s. For example, the initialization

path to p1’s root state is: t1 t1 t1. Note that this algorithm does not
construct the shortest path to a given state, but it does construct the
shortest path with respect to the given script.

The states along the initialization path are all ancestor states of
s in the reachability graph. Thus, we can use the same process
to update the sizes of the subgraphs remaining in Subgraphs after
removing all states of pi from Subgraphs (line 9 of the algorithm).

3.1.3 Correctness
Our partitioning algorithm divides a search script in such a way

that the resultant subscripts cover all states and transitions of the
original script. Each iteration of the partitioning algorithm extracts
a search subscript that corresponds to a leaf subgraph pi of a pro-
gram’s reachability graph: the subgraph is rooted at state si, it in-
clude all states that are reachable from si via productive transitions,
and includes all transitions originating from those states. Thus, the
corresponding subscript is a contiguous substring of the original
search script, starting with the first occurrence of initial state si

and ending before the first backtrack from state si.
Because the extracted subscripts correspond to leaf subgraphs in

the original reachability graph, their extractions do not affect the
continuity of what remains of Script. When the algorithm termi-
nates, what remains of Script is a search subscript for a contiguous
kth subgraph: the subgraph is rooted at the program’s initial state
s1, includes states that are reachable from s1 via productive transi-
tions up to and excluding the root states of the extracted partition
regions, and all transitions originating from those states. In this
manner, the algorithm splits Script without removing any states or
transitions (except backtrack transitions).

If the provided Subgraphs is not accurate with respect to the
program’s reachability graph, the partitioning algorithm will still
produce sub-script that cover disjoint regions and, taken together,
cover the program’s entire reachability graph. For example, if one
or more entries in Subgraphs list incorrect sizes of subgraphs,
then the algorithm will simply produce partitions whose sizes have
a larger standard deviation. Alternatively, if one or more states are
missing from Subgraphs, this will be detected in line 8 when the
states of a region are removed from Subgraphs. If Subgraphs
contains extra entries, this will be discovered if the algorithm ever
chooses one of those states to be the root of a region; otherwise, it
will have no effect on the algorithm.

3.2 Parallel Certification
The program and search scripts are distributed to parallel proces-

sors, which run the certifier’s model checker. Each processor keeps
its own local copy of FP , mapping state IDs to program-state fin-
gerprints. If a processor detects any discrepancy between its search



Table 3: Results for Parallel SCC Certification
SCC certification Trustful SCC certification

# sub-scripts 10 50 100 10 50 100
Program Max task Speed up Max task Speed up Max task Speed up Max task Speed up Max task Speed up Max task Speed up

Dining Phil 13% 8 4% 22 2% 38 11% 39 4% 103 3% 133
Bounded Buffer 11% 9 4% 25 3% 30 12% 48 4% 140 2% 270
Nasa KSU Pipe 12% 8 4% 22 3% 25 11% 30 5% 64 3% 104
Nested Monitor 11% 9 5% 18 3% 28 10% 56 4% 136 3% 175

Pipeline 12% 8 6% 15 2% 39 13% 39 5% 96 3% 155
RWVSN 11% 9 4% 22 3% 27 11% 38 5% 80 2% 194

Replicated Workers 12% 8 5% 18 2% 40 12% 34 4% 100 3% 130
Sleeping Barber 11% 9 4% 23 3% 28 11% 31 4% 85 2% 164

Elevator 10% 10 4% 23 2% 45 12% 57 5% 132 4% 160
Average 11% 9 4% 21 3% 33 11% 41 4% 104 3% 165
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Figure 7: Script partition for trustful SCC

script and the program, it raises an error. In addition, once all pro-
cessors have finished their certification tasks, the processors’ FP
maps are compared to ensure that all processors map state IDs to
the same fingerprints. Any mismatch is reported as an error. This
final check on the veracity of the search scripts performs at most
nS comparisons, where n is the number of processors and S is the
total number of states.

3.3 Parallel Trustful Certification
The algorithm for partitioning a search script for trustful certi-

fication is similar to the algorithm presented in Figure 4, but is
applied to a trustful Script (which contains no unproductive tran-
sitions). The only difference between the algorithms is that the
partitioning algorithm for trustful certification removes the produc-
tive transitions that span regions (e.g., the transition from S3 to S4
in Figure 6). Figure 7 shows the partitions that we obtain for par-
allel trustful certification of the sample reachability graph given in
Figure 3. The regions represent spanning subtrees of the original
reachability graph.

3.4 Implementation and Evaluation
We implemented parallel SCC in Java Pathfinder and refer to the

resulting model checker as JPF-pscc. For convenience, JPF-pscc
supports both verification and certification modes. In the verifica-
tion mode, JPF-pscc generates a search script to be used during
certification. In certification mode, JPF-pscc can be used to parti-
tion the search script into k scripts or to model check the program
using one of k scripts to direct its search. At the end of a certifi-
cation task, JPF-pscc outputs its FP map. At present, a separate
program is needed to compare the FP s from all certification tasks.

To evaluate the performance of parallel SCC, we used JPF-pscc
to partition each program’s state space into 10, 50 and 100 certi-
fication tasks (i.e., sub- search scripts). Because the sizes of the
resulting scripts are not exactly equal, we report for each program
the time it takes to examine the largest sub-script. To this time we
have added (1) the time it takes to partition the search script and

Table 4: Avg. and Max. Lengths of Initialization Paths
# sub-scripts 10 50 100

Program Avg Max Avg Max Avg Max
path path path path path path

Dining Phil 11 16 13 16 12 18
Bounded Buffer 75 615 217 6742 139 6678

RWVSN 50 495 57 785 101 845
Sleeping Barber 12 25 17 35 25 31

Elevator 50 68 71 75 71 78
Average 31 153 53 877 53 876

(2) the time it takes to compare all FP maps sequentially. In prac-
tice, the actual time of this latter task would be less because the
search tasks would finish at different rates and FP maps could be
compared against the current master map as tasks complete.

Table 3 shows the results for parallel SCC certification and par-
allel trustful SCC certification. For each certification method and
the number of partitions (10, 50, or 100), column Max task lists the
size of the largest search script for each program; for SCC certi-
fication, size is reported as a percentage of the program’s number
of transitions, and for trustful SCC certification, size is reported as
a percentage of the program’s number of states. Columns Speed-
up report the speed-up in certification time over the time to ver-
ify the entire program using JPF, as reported in Table 1. In SCC
certification, the size of the largest sub-script determines the opti-
mum number of processors to use during certification. For exam-
ple, when partitioning the reachability graph of the dining philoso-
phers example into 10 subgraphs for SCC certification, the size of
the largest resulting subgraph is 13%. Thus the optimum number
of parallel processors to use is 8. Taking this into consideration,
the results show that speed up for parallel SCC certification is on
average a factor of n, for n processors. Trustful SCC certification
can achieve a speed up of up to a factor of 5n, for n processors.

The speed-up factors reported in Table 3 are not simply the prod-
uct of the speed-up factors reported for nonparallel SCC certifica-
tion (in Section 2) and the number of parallel processors employed.
This is partly because of the time needed to compare FP maps at
the end of certification, and partly because the search tasks vary
in size and we report the timings associated with the largest task.
Most of the certification sub-scripts are prefaced with an initializa-
tion path, which affects the size of the script. Table 4 reports the
average (column Avg path) and longest (column Max path) initial-
ization paths for the scripts generated for parallel SCC certification
for five programs. The initialization paths for the remaining pro-
grams show a similar pattern and are not shown because of space
considerations. The reported average values are for all nine pro-
grams. Most path lengths are relatively short, and JPF-pscc can
explore approximately 1000 transitions per second. The lengths of
initialization paths for trustful SCC certification are similar.



4. DISCUSSION
In this section we discuss some outstanding issues of SCC, in-

cluding some of our design decisions, restrictions on the properties
that can be checked, requirements on the model checker(s) used,
scalability, and compatibility with search-space reduction techniques.

4.1 Properties
Safety properties play an important role in formal verification

because they assert that the system stays within required bounds
and does not perform any “wrong” actions [14]. SCC can be used
to certify invariants and program assertions, and can also check for
deadlock violations. Because the search script encodes all transi-
tions of a program’s reachability graph, SCC can also be used to
check invariants over consecutive states, such as the property

(x = 5) → next(x = 8)

which states that if the value of x is 5, then in the next state its value
will be 8. Even when certification is parallelized, each SCC search
task is responsible for covering a set of contiguous states and all of
their outgoing transitions. Thus, every pair of consecutive states is
captured in a search script, making it possible to certify invariants
over consecutive states. In contrast, trustful SCC does not cover
all transitions, so it does not cover all pairs of consecutive states.
Thus, trustful SCC can soundly certify only state properties.

4.2 Scalability
A number of factors affect the scalability of search carrying code.

For one, SCC certification is limited to finite state programs. How-
ever, this limitation applies in general to explicit-state model check-
ing. Thus, if a program can be verified using explicit-state model
checking, then it can be verified and certified using SCC. If the
code producer uses abstractions to produce a finite state space for
SCC verification, then the certifier must use the same abstractions
and must check that the abstractions preserve the properties being
proven.

Another factor is that the results of our experiments (reported
in Table 3) suggest that the benefits of parallelization diminish as
we increase the number of sub-scripts we divide an SCC script
into. Our partitioning algorithm does not partition a script into sub-
scripts of exactly equal size, plus the resulting sub-scripts are pref-
aced by initialization paths of varying lengths. As such, the speed
up in certification time is bounded by the amount of time it takes
to certify the largest sub-script. In the worst cases, when a script is
partitioned into 50 or 100 sub-scripts, the largest sub-script is 2 to
3 times the size that would be expected if the sub-scripts were truly
equal sized. We do not know whether the observed diminishing of
returns is due to the small sizes of the programs in our test suite, or
is inherent to our approach. More experiments on larger programs
are needed to answer this question.

A more serious issue is the size of the search script that the code
producer provides, likely over a network, to the code consumer.
The size of a compressed script, in number of bytes, is on the order
of the number of states in the program’s state space – which could
be very large in the worst case, where the program’s state space is
at the limit of what can be model checked. In this paper, we assign
responsibility of partitioning the script to the code consumer, on
the assumption that she knows how many processors are available
and thus knows how many sub-scripts to create. However, in cases
where the script is large, it may be prudent for the code producer
to partition the search script. This would certainly be the case if
it turns out that there is a limit to how evenly the script can be
partitioned into sub-scripts, as discussed above.

4.3 Using Different Model Checkers

In our work, we have shown how SCC can be used when the
certifier and verifier use the same model checker. However, ideally,
the code consumer should be able to use a model checker of her
own choosing (adapted to use search scripts), and not be restricted
to using the same model checker as the code producer. We have
not evaluated using SCC with different model checkers, but we ex-
pect that different model checkers can be used for verification and
certification, as long as they satisfy certain requirements. To start,
both model checkers must be explicit-state model checkers, as SCC
does not support symbolic model checking. Second, the two model
checkers must agree on how to interpret transition statements in the
search script (e.g., they must both match a byte-code instruction
to the same instruction in the program being explored). Third, the
certifier model checker must create unique fingerprints for distinct
states (for checking the veracity of the script), but there are no con-
straints on how this should be done.

If state-space reduction techniques are used, then the situation is
more complicated because the techniques could change the size and
shape of the reachability graph. Discussion of how SCC interacts
with state-space reduction techniques follows.

4.4 Model-Dependent Reduction Techniques
A key question of any new model checking technique is whether

and how it works in combination with existing search-reduction
techniques. We discuss model-dependent reduction techniques in
this section and property-dependent techniques in the next section.

We expect SCC to complement model-dependent reduction tech-
niques, as long as (1) the reduction techniques are applied in ad-
vance or on-the-fly, so that the search script encodes the reduced
reachability graph, and (2) the verifier and certifier model check-
ers agree on the abstractions applied. We consider only automated
reduction techniques; techniques that rely on user-input (e.g., ab-
straction functions [5]) are not safe, because a malicious code pro-
ducer could specify an unsound abstraction.

Symmetry Reduction [9] reduces the size of the state space
by exploiting symmetries among states. The idea is that states
are grouped into equivalence classes, and the model checker can
discard a state if an “equivalent” one has been explored before.
There are a number of different techniques for identifying sym-
metries [16], but the ultimate effect is that symmetric states are
assigned the same fingerprint.

In SCC verification, symmetries result in a reduced reachability
graph being explored, and a smaller search script being generated.
If the same model checker is used during SCC certification, it iden-
tifies the same symmetries, symmetric states are assigned the same
fingerprint, and the shape of the reduced reachability graph matches
the search script. If the code producer and consumer use different
model checkers, the checkers must implement the same reductions.

Currently, it is not realistic to expect different model checkers
to use the exact same symmetry reductions. But if model checkers
were parameterized with respect to their state-space reduction tech-
niques and algorithms, then requiring both model checkers to use
the same symmetry reductions would not be a limitation. In fact,
there has already been some work along these lines [8, 11].

Partial Order Reduction (POR) [10] is an automated path-
reduction technique that finds transitions that are independent of
each other and whose interleaved executions all lead to the same
state, regardless of the order of their execution. POR executes only
one of the possible interleavings.

During SCC verification, the model checker detects indepen-
dent transitions, explores only one interleaving, and records only
one interleaving in the search script. The entire interleaving is



recorded as a single transition in the search script. If the same
model checker is used during SCC certification, then the certifier’s
model checker identifies the same sets of independent transitions,
chooses the same interleavings (as long as decisions are determin-
istic), and disables the other interleavings. As a result, the POR
interleavings chosen during certification match the search script.

Because a POR interleaving is treated as a single, compound
transition, it is never partitioned among different subscripts and
during certification, an entire interleaving is assigned to a single
processor. Thus, POR does not interfere with SCC, even after par-
allelization.

If different model checkers are used for SCC verification and
SCC certification, they must both use the same POR heuristics
to (1) determine which transitions are independent and (2) select
which interleaving to explore; and the heuristics must be determin-
istic. It might seem unrealistic for both model checkers to use the
same heuristics, but we believe a parameterized approach to state-
space reductions, as described above, could address this limitation.

4.5 Property-Specific Reduction Techniques
The goal of property-specific reduction techniques is to reduce

the search space (and search script) to those program states that
are relevant to the property being checked. Such reductions are
problematic for SCC because the code producer does not know in
advance which properties are of interest to the code consumer and
thus cannot apply the appropriate reductions. Moreover, the code
consumer cannot simply apply the reduction techniques herself be-
cause the resulting reduced program would no longer correspond
to the supplied search script. Such techniques can only be useful if
they can be applied to the search script rather than to the program.

Consider program slicing [28], which is a commonly used property-
specific reduction technique that reduces the size of the search space
by ignoring program statements that are not relevant for a given
property. Traditional program slicing cannot be used in conjunc-
tion with SCC for the reasons given above, but it might be possible
for the code consumer to slice the search script instead, given that
the script’s transition instructions (which are bytecodes) literally
encode the program statements. The certifier model checker would
need to be able to determine from a transition instruction in the
search script whether the transition is relevant to the property being
checked. It would also need to perform a definition-use analysis on
the script, which is a much larger artifact to analyze than the orig-
inal program. Lastly, not all irrelevant transitions can be removed
from the search script because the sliced script must still be a valid
path in the program’s reachability graph.

We are still investigating the problem of script slicing. Although
it seems to be possible, it is not clear whether the resulting re-
ductions will be significant. In general, the savings achieved by
program slicing cannot be predicted in advance, and it is possible
that slicing provides no significant savings at all – especially when
checking a large collection of varied properties, such as during cer-
tification.

5. RELATED WORK
In previous work [26], we suggest using information gathered

during one model checking run to speed up subsequent runs, and
we evaluated a JFP-based prototype on six Java programs. We ex-
tend that work here by evaluating it on more and larger programs,
protecting against tampering of the search script, and parallelizing
the certification searches.

Our work is inspired by proof-carying code (PCC) [18]. Signif-
icant infrastructure is needed to support PCC, including inference
rules for reasoning about code, a formal language for expressing

safety properties and proofs, and an algorithm for checking a pro-
gram and its safety proof. Most research on PCC focuses on reduc-
ing the size of proofs [4] and generalizing the kinds of properties
that can be proved [1, 19]. In contrast, SCC-based certification
can be implemented by making modest changes to existing model-
checking technologies. SCC search scripts are created automati-
cally, and can be decomposed into an arbitrary number of smaller
scripts. While a PCC certificate encodes the proof of particular
properties, an SCC script is independent of any properties. Thus,
the SCC script can be reused to speed-up checks of newly identified
properties.

Techniques most closely related to SCC are abstraction-carrying
code (ACC) [29] and model-carrying code (MCC) [24]. In both
cases, the program to be certified is accompanied by an abstract
model of the program. In ACC, this abstract model is an abstract
interpretation of the program. In MCC, the model is an extended
finite-state automaton over the alphabet of system calls, and is syn-
thesized from the program’s execution traces. In both cases, the
abstract models are property independent. Certification is a two-
step process: (1) certifying that the model is a faithful abstraction
of the program and (2) certifying that the model respects the desired
properties. In ACC and SCC, certification is done offline. In MCC,
model veracity is checked at runtime by monitoring the program,
which incurs a performance penalty of 2% to 30% [24]. ACC and
MCC support richer property languages (e.g., temporal logic) than
SCC does. In addition, ACC and MCC can accommodate infinite-
state programs. However, ACC and MCC models are conservative
abstractions, which means that they are susceptible to spurious er-
rors. Worse, an MCC model may be unsound if it is synthesized
from a deficient set of traces. In contrast, an SCC script results in a
sound and complete search of the state space. Importantly, it is not
known whether ACC or MCC can be parallelized.

Lauterburg et al. [15] propose a technique to support incremen-
tal state-space exploration that is based on storing information re-
garding the entire reachability graph. They use the information to
speed up the model checking of subsequent versions of the same
program–a task that is comparable to our SCC certification. The
maximum reported speed up is a factor of approximately two, and
their technique has not been parallelized.

Early work on parallel model checking tried to speed up the pro-
cess of finding errors by distributing the model-checking search
among multiple workstations on a network (distributed memory).
The challenge was to distribute the workload evenly among the par-
allel processors. Stern and Dill [25] parallelized Murϕ, an explicit-
state verifier, by pre-assigning states to processors based on a hash
of the fingerprint. However, this approach could result in an im-
balance in workload among the processors. Moreover, substantial
state information must be passed between processors whenever a
new state is discovered and must be transferred to its assigned pro-
cessor. Subsequent works by others investigate how to improve
local and global load balancing [3, 13] and reduce communication
overhead [20].

On a shared memory architecture, communication among pro-
cessors is negligible, but the processors must synchronize their ac-
cess to shared variables, such as when they deposit states into each
other’s worklist or access a shared hash-table of state fingerprints.
Thus, there is the extra challenge of keeping processors utilized
and not waiting too long to access shared resources. Interestingly,
some researchers report [2, 12] that, beyond an optimal number of
processors, the search time starts to increase with the number of
additional processors because the synchronization overhead dom-
inates any benefit from parallelization. Parallelized SCC does not
suffer from this overhead because the reachability graph is parti-



tioned in advance in such a way that no communication or syn-
chronization among processors is necessary. Each processor works
independently of others, and shares information with an adminis-
trator process (which collects and compares fingerprint maps) only
at the end of its search task.

6. CONCLUSION AND FUTURE WORK
We have proposed search carrying code (SCC) as a technique

to certify software that was previously verified by software model
checking. We have shown that SCC certification can determine if
the provided search script (i.e., the program’s certificate) is not a
faithful representation of the program’s state space, and that SCC
certification can be parallelized to speed up the certification task.
In the special case where the source of a program is trusted, we
show how SCC certification can be further optimized by searching
a spanning-tree representation of the program’s reachability graph
and eliminating data structures and checks on the search script.

In the future, we would like to continue to address limitations
of SCC. Our current focus is on alternative representations and en-
codings of the information in the search script in order to reduce its
size. We are also investigating in more detail how SCC can be used
in combination with various search reduction techniques. Finally,
we would like to evaluate SCC on industrial-sized programs.
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