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Abstract—Software model checking is the process of systemat-
ically exploring a program’s state space to find hard-to-discover
errors. Because of the exponential size of the state space, an
exhaustive search of the state space is often impossible given the
memory resources. In such cases, an estimate of how much of
the state space is covered can help the verifier to decide whether
to employ additional computational resources or to use more
aggressive abstraction techniques.

Our work focuses on coverage estimation for explicit-state
model checking of software programs. In this paper, we present
an estimation algorithm that is based on Monte Carlo techniques
that sample the unexplored portion of the reachability graph. We
implemented our algorithm in Java Pathfinder and evaluated our
approach on a suite of Java programs, simulating out-of-memory
errors after a known percentage of a program’s state space had
been searched. Our empirical studies show that, on average,our
algorithm’s coverage estimates differ from the actual coverage
by less than 10 percentage points, with a standard deviationof
about 5 percentage points – regardless of whether the actual
state-space coverage is low (3%) or high (95%).

I. I NTRODUCTION

Model checkingis a search-based verification technology
that examines a model’s or program’s state space and veri-
fies its conformance to desired properties. One of the main
obstacles to wide-spread use of model checking is thestate
explosion problem:the size of a model’s or program’s state
space grows exponentially with the number of variables and
concurrent processes [6]. Many programs are too large to be
checked exhaustively, even after using state-of-the-art state-
space reduction techniques like partial-order reduction [12],
predicate abstraction [13], or slicing [23].

If a model-checking search ends prematurely without
achieving full coverage or finding an error, an estimate of
the search’s state-space coverage could be very useful. For
example, the degree of coverage may offer some level of con-
fidence in the partial results: finding no errors when searching
95% of the state space is more significant than finding no
errors when searching 10% of the state space. Alternatively,
the estimated coverage could suggest how best to improve
the coverage on subsequent model-checking searches: high
coverage suggests that running the model checking problem
on a more powerful machine (with more memory) might
be sufficient to achieve full coverage, whereas low coverage
suggests that more aggressive abstractions or parallel model
checking would be required. Of course, to be useful, the
coverage estimation needs to be somewhat accurate.

In this paper, we propose an algorithm for estimating the
state-space coverage of a model-checking search that termi-
nates prematurely due to insufficient memory. Our algorithm
uses Monte Carlo techniques to sample unexplored transitions
in the reachability graph, count the number of unvisited states
reachable via these transitions, and extrapolate from thisan
estimation of the number of states still unvisited when the
search terminates.

Our contributions are as follows:
1) Coverage estimation:An algorithm for estimating the

state-space coverage of a partial model- checking search.
The algorithm design makes no assumptions about the
associated model checker, so we expect that the al-
gorithm can be embedded in any explicit-state model
checker.

2) Implementation: A prototype embedding of our algo-
rithm in the Java PathFinder model checker.

3) Evaluation: An empirical study of our algorithm on a
suite of nine Java programs. The prototype was tuned
using a subset of these programs, to improve the accu-
racy of its estimations. We then evaluated the algorithm
and prototype using the full suite of programs. The
search of each program was terminated prematurely,
after reaching varying degrees of partial state-space
coverage (ranging from 3% to 95% coverage), and the
reported coverage estimate was compared against the
actual coverage (which was known). Results show that,
on average, our algorithm’s coverage estimates differ
from the actual coverage by 3 to 10 percentage points,
with a standard deviation of about 5 percentage points.

This paper is organized as follows. Section II introduces
our estimation algorithm. In Section III, we describe its
implementation within the Java PathFinder model checker, and
discuss our evaluation methodology and suite of test programs.
The results of our evaluations are presented in Section IV. We
discuss in Section V alternative approaches and optimizations
that we have explored in the course of our research. We
end with a discussion of related work in Section VI and
conclusions in Section VII.

II. STATE-SPACE COVERAGE ESTIMATION

Some programs are too large to be exhaustively model
checked, in which case we would like the model checker
to report the percentage of the state space covered during a



partial search. In these circumstances, the model checker has
two goals: to estimate the percentage of state space covered
by a search, and to explore and examine the program’s state
space. It may be that the best search strategy for the purpose
of verification is not the best search strategy for the purpose of
coverage estimation. In general, we would expect a verification
search to be a systematic exploration of the entire state space,
whereas an estimation search should cover different parts of
the state space to provide an accurate estimation of state-space
coverage.

Thus, we take a two-pronged approach to estimation. During
the first phase (verification phase) we devote some percentage
of memory to an exhaustive search. Thus, the model checker
must be able to keep track of the amount of memory utilized
as a percentage of total memory available. If the verification-
phase memory limit is reached before model checking com-
pletes, then the model checker switches strategy and uses the
remaining memory for estimation.

During the second phase (estimation phase), the model
checker performs partial state-space searches starting from
multiple unexplored transitions in the reachability graph. Fig-
ure 1 shows how a reachability graph might be covered by our
estimation algorithm, with some states being visited during the
algorithm’s verification phase and other states being visited
during the estimation phase.

Despite their names, each phase contributes to both verifi-
cation and estimation: during the verification phase, a count
of the number of unique states visited is maintained (to
be used in calculating the estimated coverage); and during
the estimation phase, newly discovered states are verified on
discovery. Thus, even if we set aside some memory for the
purpose of estimation, that memory will be used to explore
more states. The estimation phase ends when either memory
is exhausted or the state space is fully explored.

Our estimation algorithm uses Monte Carlo techniques to
sample different parts of the unexplored state space and to
extrapolate an estimate of the number of unexplored states.
At any point in time, the search maintains (1) a hash table
of visited states (in which distinct states are representedas
unique integers calledfingerprints), and (2) a worklist of
partially explored states that have been reached and verified,
but whose transitions are still to be fully investigated. During
the verification phase, the worklist is used to co-ordinate a
systematic search of the program’s state space. During the
estimation phase, the worklist serves as a source of unexplored
transitions to be sampled. The algorithm searches a random
selection of unexplored transitions and counts how many
unvisited states are reachable from each transition.

We assume that the number of new states reachable from a
set of sampled transitions tells us something about the number
of unvisited states that would be reached from the unsampled
transitions. That is, we assume that the ratio of (a) the number
of new states discovered during the estimation phase to (b)
the number of sampled transitions is comparable to the ratio
of (c) the number of states that remain unvisited at the end
of the estimation phase to (d) the number of transitions left
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Fig. 1. Schematic example of our estimation algorithm

unexplored at the end of the estimation phase:

(a)#states found during sampling

(b)# sampled transitions
≈ (1)

(c)# unvisited states

(d)# unexplored transitions

The estimation algorithm measures the italicized values in
Equation 1 and solves for the number of unvisited states.

During our investigation, we discovered that we obtain more
accurate results if the estimation phase samples and counts
only productivetransitions, where a transition isproductiveif
it leads to an unvisited state. By disregarding the transitions
that lead to already visited states, we improve the estimated
ratio of new states per sampled transition. The modified
equation is as follows.

(a)#states found during sampling

(b2)# sampled productive transitions
≈ (2)

(c)# unvisited states

(d2)# productive, unexplored transitions

Note that whether a transition is productive changes duringthe
course of the search: a transition that is deemed productive
at the start of the estimation phase may later be deemed
unproductive if in the meantime its destination state is visited.
Thus, the count of productive transitions is more accurate if
it is made at the end of the estimation phase.

In Figure 1, for example, the verification phase ends with
three states in the worklist (s2, s3, s4) that together have
six unexplored transitions emanating from them (numbered,
for pedagogical purposes only, 1 to 6). Suppose further that,
during the estimation phase, the model checker samplestwo
transitions, 1 and 5, and discovers a total ofsix new states
before it runs out of memory. At the end of the estimation
phase, four transitions remain unexplored (dashed transitions),
of which only two transitions are productive and lead to



unique destination states. Using these values in Equation 2,
the estimated number of unvisited states is(6 ÷ 2) × 2 = 6.

It is important to mention that by considering productive
transitions only, our algorithm deviates from traditionalMonte
Carlo techniques. Normally, sampling is performed on the full
data set and it is assumed that the data set does not change
as a result of sampling. In our case, however, the data set
(unexplored productive transitions in the worklist) changes
throughout the estimation phase because the exploration ofa
sampled transition may cause other transitions in the worklist
to become unproductive. As a result, the number of productive
transitions that remain in the worklist at the end of sampling
might be an overestimate, since not all transitions would be
deemed productive if the sampling were exhaustive. Still,
counting the number of productive transitions that remain in
the worklist at the end the estimation phase results in a smaller
overestimation of productive transitions than if the transitions
were counted at the start of sampling.

Once we obtain the estimated number of unvisited states, we
compute the estimated coverage using Equation 3.UnV isited

is the estimated size (number of states) of the unexplored
state space, obtained from Equation 2, andV isited is the
number of unique states discovered during the combination
of the verification and estimation phases:

%Coverage =
V isited

V isited + UnV isited
∗ 100 (3)

Thus, to complete the example shown in Figure 1, the esti-
mated coverage would be(10)÷(10+6) = 63%, when in fact
the verification and estimation phases together cover 77% of
the state space.

In the next sections, we describe the verification and esti-
mation phases in more detail.

A. Verification Phase

The main purpose of the verification phase is to verify
the program and discover any property violations. If the
verification phase ends without covering the entire state space,
we want a large worklist to sample from during the estimation
phase. Larger worklists usually lead to more accurate estima-
tion results.

Our algorithm employs breath-first search (BFS) for this
phase. BFS is less efficient than a depth-first search (DFS)
because there is more context switching between states. BFS
tends also to be less memory efficient than DFS because its
worklist (a queue) contains all states at the current level of
the search, wherelevel is the path length from the initial state
in the reachability graph; in contrast, the worklist of a DFS
(a stack) contains only the states in the path from the initial
state to the state currently being explored. That said, a large
worklist is advantageous for sampling and estimation, so we
use BFS in the verification phase despite its inefficiencies.

Another advantage of using BFS during the verification
phase is that it ensures an exhaustive search of execution
paths up to some length determined by the verification-phase

memory limit – which is, effectively, a form of bounded model
checking [4].

B. Estimation Phase

The goal of the estimation phase is to (1) estimate the
ratio of unvisited states per unexplored transition (left-hand
side of Equation 2), and (2) count the number of productive
transitions that remain unexplored at the end of the estimation
phase (value of (d2) on the right-hand side of Equation 2). We
describe how to obtain both values below.

1) Number of Unvisited States per Unexplored, Productive
Transition: We sample a subset of the unexplored transitions
emanating from the states in the worklist, and count the num-
ber of unvisited states that are reachable from each transition.
If a sampled transition leads to an already-visited state, then
it is deemedunproductiveand we pick another transition.

Each sample is an exhaustive search of the state space
reachable from some productive transition. Either BFS or DFS
could be used. We chose to use DFS because it is faster and
more memory efficient, as explained above.

To obtain accurate estimation results, it is desirable to
sample the reachability graph as uniformly as possible. Thus,
to improve the breadth of the estimation search, the algorithm
randomly selects unexplored transitions from the worklist.

The algorithm continues to sample transitions until either
no more unexplored transitions remain in the worklist or the
memory allocated to the estimation phase is exceeded. The
former case corresponds to an exhaustive search of the state
space and no estimation is necessary. In the latter case, we
calculate the average number of unvisited states that each
sampled, productive transition discovers.

2) Number of Remaining Unexplored Productive Transi-
tions: At the end of the estimation phase, we count the
number of unexplored productive transitions that remain in
the worklist. For that, the model checker traverses the worklist,
executes every unexplored transition of every state in the list,
and checks whether the destination state is unvisited. The
model checker does not explore beyond the destination state.
The result is the total number of productive transitions that
remain unexplored.

During this final count of productive transitions, the model
checker discards destination states as they are created. Itdoes,
however, continue to store the fingerprints of the destination
states in a hash table of visited states, in order to recognize re-
peat visits to the same state. Thus, this step requires negligible
additional memory.

C. Memory Management

The verification phase and estimation phase both utilize
memory: in both phases, the model checker stores partially
processed states in a worklist and separately maintains fin-
gerprints of visited states in a hash table. How we divide
the available memory between the two phases can affect the
accuracy of the estimation results.

In general, we would expect to obtain more accurate cov-
erage estimations if the verification phase reaches deeper into



the state space before the estimation phase starts. This is
because the shape of the reachability graph may not be regular
and may contain bottlenecks or regions that are reachable via
only a few transitions. If the verification phase is thorough
enough to progress through these bottlenecks, then the un-
explored portions of the reachability graph that remain are
more strongly connected and are more equally reachable via
a random sampling.

On the other hand, when the size of available memory
is very small compared to the size of memory needed for
an exhaustive search, it is important that there be enough
memory available during the estimation phase so that the
estimation searches reach and count a sufficiently large number
of new states per sampled transition. In these cases, allocating
more memory to the estimation phase is more effective. It
is important to recall that, no matter how we split memory
between the two phases,all available memory is used to search
the state space (and check for property violations) because
even during the estimation phase the model checker is still
examining new states.

We experimented with different ratios of memory allocated
to each phase and report the results in Section IV.

III. E VALUATION METHOD

We evaluated our coverage estimation algorithm by em-
bedding it into Java Pathfinder (JPF) version 4 [15]. JPF is
a software model checker that verifies a Java program by
exhaustively exploring the program’s executable state space
and looking for program states that result in deadlocks or that
violate user-specified assertions.

As evaluation programs, we selected programs with known
state-space sizes because this allows us to evaluate how well
our estimation algorithm performs. We evaluated our work on
a suite of nine Java programs that come from five sources
and that have been used in previous empirical studies. The
programs are relatively diverse with respect to their state-
space size, the ratio of transition to states, the number of
parallel threads in each program and the diversity of the con-
current processes in each program (e.g. the dining philosopher
program has identical processes, whereas the sleeping barber
program consists of several different processes). Table I lists
each program including a citation of its source, the program
parameter values that we used (e.g., we instantiated eight
dining philosophers), and the resulting size of the program’s
reachability graph in terms of numbers of states and transi-
tions. We used the first four programs of our evaluation suite
as tuning programsto fine-tune the memory allocation of our
algorithm, and we used the remaining five programs (shown
in dark rows) for evaluation only.

To simulate out-of-memory scenarios, we vary the percent-
age of the programs’ total state space that the model checker
searches. Specifically, we prematurely terminate the model
checker once 3%, 10%, 25%, 50%, 75% and 95% of the
program’s state space has been covered. We refer to these six
memory thresholds ascoverage limits. Within this coverage

limit, our algorithm performs verification- and estimation-
phase searching and calculates a coverage estimate. We then
compare the estimated coverage with the known state-space
coverage (i.e., the coverage limit). We used coverage limits
10%, 25%, and 75% (referred to astuning limits) to fine-tune
our algorithm and determine how much memory to allocate
to the verification phase versus the estimation phase. We
used the remaining limits solely for evaluation. In practice,
when the size of a program’s state-space is unknown, we
use JPF’s facilities for keeping track of memory usage to
determine when the verification phase has used up all of its
allocated memory (a fixed percentage of the total available
memory). Thus, our approach could be easily adapted to any
explicit-state model checker that supports both DFS and BFS,
and includes facilities for tracking memory usage during the
search.

We ran our experiments on an Intel Pentium 4 3.2GHz
machine with 1.5GB of memory, running Windows XP.

IV. EXPERIMENTS AND RESULTS

In this section, we present the experiments for evaluating
our estimation algorithm and the results we obtained.

In the first set of experiments, we varied the amount of
memory allocated to each phase of the algorithm, and we com-
pared the accuracies of the resulting estimations. In particular,
we varied the amount of memory allocated to the verification
phase to range between 40% and 90% of available memory
(artificially restricted by the coverage limit, as described in
the previous section), in 10% increments. The rest of the
memory (minus a small amount to compute the estimation
at the end) is allocated to the estimation phase. We performed
this experiment for all tuning programs and tuning coverage
limits.

The results showed that for low coverage limits, where a
search terminates before a significant fraction of the state
space is explored (10% to 25%), it is best to allocate 50%
of available memory to the verification phase. For higher
coverage limits (75% and higher), it is best to allocate 70% of
available memory to the verification phase. In practice, though,
one does not know ahead of time whether the model checker is
likely to cover a small or large fraction, or all, of a program’s
state space. For all of our subsequent experiments, we used an
allocation that lies in the middle of the above two values: 60%
of available memory in the verification phase, for all coverage
limits. More extensive experimentation is needed, involving
a very large and diverse set of programs with known state-
space sizes, to determine a more precisely optimal allocation
of memory.

Our second set of experiments evaluate how well our
estimation algorithm works for all programs and all coverage
limits in our evaluation suite. We model checked each program
with respect to each coverage limit ten times and report the
results in Table II. Thedeviationbetween a coverage estimate
and a search’s actual coverage (set by the coverage limit) is
expressed in terms of percentage points: the absolute value
of the difference between the two percentages of state space.



TABLE I
JAVA PROGRAMS USED FOREVALUATION

Source Program Parameters States (S) Transitions (T)

1 [15] Dining Philosopher (8) #philosophers 209014 1093394
2 [3] Bounded Buffer (5,4,4) buffersize,#prod,#cons 786987 5606270
3 [2] Nasa KSU Pipeline (3) stagesize 59512 246697
4 [3] Nested Monitor (5,4,4) buffersize,#prod,#cons 71941 493776
5 [3] Pipeline (7) stagesize 82011 500823
6 [3] RWVSN (4,4) #readers,#writers 227116 1167826
7 [3] Replicated Workers (5,2) #workers,#items 710022 3648744
8 [8] Sleeping Barber (2,4,3) #barber,#customers,#chairs 1452194 6295518
9 [1] Elevator(5,10,10) #elevators,#floors,#people 386032 3232346

We report the smallest deviation (columnBest), the largest
deviation (columnWorst), the average deviation of ten runs
(column Avg), and the standard deviation of the deviations
(column σ). For example, consider a search of the pipeline
program with a coverage limit 25%. A perfect estimate would
report that 25% of the program’s state space had been covered
by the search. The best estimate (out of ten) reported by our
algorithm was off by 2 percentage points, the worst estimate
was off by 18 percentage points, the average deviation was
10 percentage points; and the standard deviation from the
average estimate was 7 percentage points. Considering all
nine programs and six coverage limits, with each combination
run ten times, our worst coverage estimate was off by 37
percentage points. We recorded whether the reported coverages
were overestimatations or underestimations, but we could not
detect a clear bias. It is for this reason that we report deviations
as absolute values.

The standard deviation illustrates the variability of our
results: onestandard deviationspecifies the range of values,
centred around an average, within which 60%-70% of esti-
mates fall, assuming a normal distribution. Thus, a standard
deviation of 5 percentage points indicates that most of our esti-
mates fall within 5 percentage points of the average estimate.
We believe the variability of the results is primarily due to
different reachability graph properties of our evaluationsuite.
We discuss in Section V factors that could affect the accuracy
of the results.

To evaluate the performance overhead of our estimation
algorithm, we compared its execution time to that of traditional
model checking. To eliminate variability due to the search
strategy, both our algorithm and the traditional model checking
runs use BFS to search 60% of each program’s state space
and use DFS to search the remaining 40% of the state space.
The results showed negligible difference in performance. This
is not surprising, given that the only extra work that our
algorithm performs is the counting of transitions, which is
negligible compared to the search and verification of the
state space. To assess the performance overhead of using
BFS during the verification phase, we also compared our
algorithm’s execution time to that of a DFS model checking
search. The results showed that, depending on the coverage
limit, the overhead ranges between 12% and 38%.

V. D ISCUSSION

Throughout our work, we experimented with various esti-
mation techniques and optimizations of our current algorithm.
In this section, we describe lessons learned with respect tothe
most important experiments.

A. Rate of Discovering New States

It seems intuitive that the rate of discovering new states
would decrease during the course of a search and that we
can use this information to improve our coverage estimate.
In particular, the model checker could keep a running ratio
of transitions to states, and could compare the current rateof
new-state discoveries (measured at fixed intervals) against the
overall ratio.

To test this hypothesis, we performed exhaustive searches
of our tuning programs and counted, at fixed intervals, the
fraction of transitions that are productive (i.e., that lead to new
states). Figure 2 shows the rate of discovering new states for
one of our evaluation programs. The x-axis shows the progress
of the search in terms of the percentage of all transitions
explored.

As can be seen, the rate of discovering new states drops
quickly at the start of the search and then decreases slowly
for the rest of the search, maintaining a surprisingly moderate
rate even at the end of the search. All evaluation programs
exhibit similarly shaped graphs, although the steep drop occurs
at different stages of the search for different programs. Given
the comparable rates throughout most of a search, including
up to the end of a search, we were not able to deduce any
particular properties that could be used to improve coverage
estimation.

Given that the estimation phase of our algorithm measures,
in effect, the rate of newly discovered states, it is conceivable
that our algorithm overestimates coverage if sampling occurs
early in the search when the rate of discovering new states is
much higher (e.g. when the steep drop occurs in Figure 2). For
our experiments, we expect that parts of the estimation phase
would occur during this stage of higher rate of discovering
new states, especially at the coverage limits of 3% and
10%,. However, we did not observe any overestimations that
were surprising compared to other experimental results. Itis
possible that this sharp drop actually helps to obtain more
accurate results when coverage is low (e.g., to counterbalance



TABLE II
STATE-SPACECOVERAGE ESTIMATION RESULTS

Coverage Limit 3% 10% 25%

P
ro

gr
am

Estimate Deviation (% points) Best Worst Avg σ Best Worst Avg σ Best Worst Avg σ

Dining Philosophers 4 14 7 4 3 11 8 4 4 16 9 5
Bounded Buffer 3 5 3 2 1 4 2 3 3 16 9 6

Nasa KSU Pipeline 2 2 1 2 2 7 4 3 4 12 7 3
Nested Monitor 2 4 2 2 2 10 6 4 3 13 7 5

Pipeline 4 10 8 3 1 11 5 3 2 18 10 7
RWVSN 1 2 1 1 1 7 5 3 2 6 2 3

Replicated Workers 9 25 16 7 3 9 6 4 2 10 3 4
Sleeping Barber 2 7 5 2 2 11 5 4 3 10 6 3

Elevator 1 2 1 2 2 7 4 2 2 9 2 5

Average 3 8 5 3 2 9 5 3 3 12 6 5

Coverage Limit 50% 75% 95%

P
ro

gr
am

Estimate Deviation (% points) Best Worst Avg σ Best Worst Avg σ Best Worst Avg σ

Dining Philosophers 5 15 10 4 2 23 15 10 5 19 10 5
Bounded Buffer 7 19 11 5 12 31 23 7 4 37 14 13

Nasa KSU Pipeline 1 5 3 2 3 18 6 7 5 15 6 4
Nested Monitor 2 9 5 4 5 20 13 3 6 14 10 3

Pipeline 2 9 6 3 3 14 5 5 4 8 4 2
RWVSN 7 21 18 6 2 16 10 6 4 15 10 4

Replicated Workers 10 23 8 7 7 17 8 5 6 16 12 4
Sleeping Barber 8 24 15 7 3 14 5 4 2 8 5 3

Elevator 1 9 5 4 11 27 7 9 2 5 2 2

Average 5 15 9 5 5 20 10 6 4 15 8 4
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Fig. 2. Rate of discovering new states for the dining philosopher program

underestimations that are due to unexplored bottlenecks inthe
reachability graph) or it is possible that the drop is so steep
that it occurs for only a very small portion of the estimation
phase, and thus the estimation results are largely unaffected.
In either case, more experiments with a larger set of evaluation
programs are needed to determine the significance of this
possible overestimation.

B. BFS Level Graphs for Estimation

We might expect that a breadth-first search of a program’s
state space would produce a worklist whose size varies reg-
ularly and predictably over the course of a complete model
checking run. That is, in early phases of the search, the size
of the worklist grows and during later phases of the search,
the size of the worklist shrinks.

The authors of [7], [18] assume that the size of the worklist,
measured after searching each level of the reachability graph,

has a regular distribution. In this work, aBFS levelof k

is the set of states that are reachable from the initial state
via a path of lengthk. In [18], authors plot the number of
unprocessed states that are in the worklist at each BFS level
and showed partial BFS level graphs to human subjects, who
tried to guess the shape of the full graph. Given the results
from the human experiments, the authors then deduced some
parameters that they used to estimate state-space coverage
based on the predicted shape of a search’s BFS level graph.
The authors of [7] use least-squares fitting of partial BFS level
graphs to estimate the total number of states.

Our own experiments, however, indicate that the size of a
BFS worklist does not necessarily have a regular or predictable
distribution and thus may not be a reliable basis for coverage
estimatation. Figures 3 and 4, for example, show the BFS level
graphs for the elevator and RWVSN programs, respectively.
Neither of these graphs have regular or bell-shaped curves.
In our evaluation suite, six programs had a relatively normal
distribution and three did not.

C. BFS vs. DFS During the Verification Phase

In our approach, an important design alternative is the
search strategy used during the verification phase. DFS is
popular because it is fast: the program stack can be used to
store the worklist of partially explored states, so there isless
context switching when the next state is explored; and the size
of the worklist is relatively small since it contains only states
along a single execution path. However, we use BFS because
we hypothesize that having a larger worklist at the start of the
estimation phase results in a more accurate estimation.
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Fig. 3. BFS level graph for Elevator program
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Fig. 4. BFS level graph for RWVSN program

To test this hypothesis, we experimented with using DFS
rather than BFS during the verification phase. In a study of
nine evaluation programs and six coverage limits (54 cases),
using DFS produced less accurate results in 44 cases by an
average of 14 percentage points; produced equally accurate
results in 3 cases with an average difference of 1 percentage
point; and produced more accurate results in 7 cases by an
average of 7 percentage points. The results confirm that using
BFS during the verification phase is likely to improve the
accuracy of our algorithm’s coverage estimates.

D. Round-Robin Execution of Estimation Phase Searches

One risk of the current design for the estimation phase
of our algorithm is that the remaining memory is exhausted
while searching the first sampled (unexplored) transition,and
that this can result in estimates that are wildly off-base: the
estimation may be way too high if the number of new states
that are reachable from this one transition is much higher than
the actual average number of new states per unexplored transi-
tion. We hypothesized that we could improve the accuracy of
our estimations by sampling multiple unexplored transitions at
once, in round-robin fashion.

To test this hypothesis, we modified the estimation phase
of our prototype to sample several unexplored transitions in
parallel in a round-robin fashion. The model checker keeps a
separate DFS stack (worklist) for each sampled transition,and
stores partially processed states for each DFS in that DFS’s
local worklist. There is one shared global hash table that stores
fingerprints of visited states. If a DFS finishes before memory
is exceeded, then the model checker picks a new unexplored

transition from the worklist and starts a new DFS.
To evaluate this technique, we varied the number of transi-

tions that are sampled in parallel and evaluated the accuracy of
the resulting estimation. We observed that when the estimation
algorithm samples five to ten unexplored transitions in parallel,
the accuracy of its coverage estimate improves for (tuning)
coverage limits of 10% and 25% but worsens for the coverage
limit of 75%. When the number of parallel searches is above
15, then estimation accuracy improves for the coverage limit
of 75% but worsens for the coverage limits of 10% and 25%.

It seems that when state-space coverage is low, it is better
to sample a smaller number of transitions so that the searches
of the sampled transitions finish. If too many transitions are
sampled, then the average number of new states per sampled
transition is low and the algorithm underestimates coverage.
The opposite is true when state-space coverage is high.

In general, however, we do not know in advance whether
state-space coverage will be low, high, or complete, and thus
we do not know how many transitions to sample. This method
may become more applicable if there were a way to determine
on the fly whether the coverage is likely to be low or high.
For example, we are exploring the possibility of performing
the estimation phase of our algorithm more than once, in which
case the estimated coverage from one execution could be
used to tune the estimation algorithm in the second estimation
phase.

E. Scalability

Even though our experiments were performed on relatively
small evaluation programs, we do not believe that larger pro-
grams would necessarily better demonstrate the effectiveness
of our algorithm. This is because our algorithm depends more
on different state-space properties rather than the size ofthe
state space. For example, the number of bottlenecks in the
state space (i.e. states that have very few incoming transitions,
but can reach many other states) can have a large effect on
the accuracy of estimation. We expect that the accuracy of
estimation is lower for state spaces that have many bottlenecks.
Also, if the rate of discovering new states and the fraction of
transitions that are productive vary for different parts ofthe
state space, then we expect the results to be less accurate.
Thus, while studies on larger programs can be useful, we
believe that testing our algorithm on a more diverse set of state
spaces, regardless of their size, could offer more conclusive
results.

VI. RELATED WORK

Our work is most closely related to research on coverage
estimation and is somewhat related to work on randomized
searching and partial searches. We describe each area below.

A. Coverage Estimation

In previous work [22], we suggested that it may be possible
to sample unexplored transitions as a means to estimate the
size of the state space, but we did not explore this idea
further. Other works related to state-space coverage estimation



are [7], [18]. The authors in [18] describe two techniques
for estimating state-space coverage. In the first technique,
they execute two random partial searches of the state space
and use the overlap between the two searches to estimate
coverage. In the second method, they use partial BFS level
graphs as explained in Section V. The authors evaluate the
accuracy of their coverage estimation algorithm based on
whether it can classify the actual coverage of a search into
the correct coverage range:< 3%, 4%-25%, or 26%-100%.
They evaluated their algorithm on 160 reachability graphs.In
the best case, their algorithm is correct 72% of the time, and
in the worst case it is correct 42% of the time. If we use the
same three coverage ranges to evaluate the accuracy of our
estimation algorithm, then our algorithm estimates the correct
range 93% of the time in the best case, and 78% of the time
in the worst case.

The authors in [7] try to estimate the actual size of the state
space by applying least-squares fitting to partial BFS level
graphs. As described before, the main assumption of this work
is that BFS level graphs have regular, bell-shape curves that
can be described by a quadratic formula:y = ax2 + bx for
somea andb. The authors report the results for three coverage
limits (25%, 50% and 75%) and three evaluation programs.
Their results show that their algorithm can estimate the size
of the state space with a 66% to 93% accuracy. As mentioned
before, our results show that the BFS-level graphs of programs
are not predictably regular.

Others have explored how a state-space search relates to
code coverage [10], [14] or to specification coverage [10].
Rodrguez et al. [10] describe and implement a framework for
the Bogor model checker [19] that supports branch coverage
and specification coverage. Branch coverage judges how many
of the branches in the code have been exercised, in cases where
the program’s environment can affect whether all of the pro-
gram’s execution paths are examined. Specification coverage
indicates how much of a JML specification is exercised when
model checking the program against the specification, given
a particular program environment. Gore et al. [14] describe
a branch coverage module for JPF that tries to exercise all
branches of a program and reports the percentage of branches
covered. None of these works estimate state-space coverage.

B. Random and partial state-space searches

Our estimation phase could be viewed as a random search of
the state space, in that the sampling is a collection of random,
partial searches of unexplored regions of the reachability
graph. In general, random and partial state-space searchesare
often employed when the state space is too large for exhaustive
model checking; the goal is to find errors rather than to prove
their absence.

The idea of random walks and randomized state-space
search was first suggested by West [24]. In each step of a
random walk, the algorithm randomly chooses a successor of
the current state and visits it. If the current state does nothave
any successors, the algorithm restarts from the initial state.
Since the original random walk method was introduced, many

optimizations have been suggested to improve its effectiveness
at finding errors. These optimizations include re-initializing
the search frequently to avoid getting trapped in strongly con-
nected components [17], performing local exhaustive searches
once a certain depth has been reached [21], keeping a small
cache of visited states [11], and running parallel random
walks [11], [21].

Randomly selecting from states and transitions in the work-
list is explored in [9], [16], [20]. The Lurch model checker [16]
uses random walks to perform partial searches of large state
spaces. When exploring more than one path, Lurch inserts
newly discovered states at random indices in the worklist
to randomize the search. Dwyer et al. [9] perform random
searches of the state space by randomizing the order in which
child states are explored. They parallelize this method by dis-
tributing the search to multiple non-communicating machines.
Rungta and Mercer [20] provide a randomized algorithm for
directed model checking that randomizes the order of states
in the priority queue that have the same heuristic value. This
algorithm allows the distribution of the search to multiple
machines.

Finally, bounded model checking [4], [5] is a form of partial
search that is exhaustive up to some boundk on the length of
execution traces. If no bug is found, one increasesk until either
a bug is found or some pre-defined upper-bound is reached.
The verification phase of our algorithm, which is an initial BFS
of the state space, can be viewed as a bounded search whose
bound is determined by the amount of memory allocated to
the search phase.

VII. C ONCLUSION

We have presented a strategy for estimating the state-
space coverage of a model checking search that terminates
prematurely due to insufficient memory. We have implemented
our algorithm in Java Pathfinder and have evaluated the
implementation on a suite of Java programs.

In the future, we would like to explore possibilities for
improving the efficiency and accuracy of coverage estimation.
The performance overhead reported in Section IV is a direct
consequence of our decision to use bread-first-search during
the verification phase of our algorithm. It is worth investigating
whether other search strategies or a mixture of strategies would
more efficiently achieve our goal of accumulating a reasonably
sized worklist. As an example alternative, the verification
phase could be a depth-first examination of the program’s state
space, and the estimation phase could start by performing short
breadth-first searches of states in the worklist, to increase the
size of the worklist before estimation searches begin.

To improve accuracy, we are exploring strategies that em-
ploy multiple estimation runs, such as merging the results from
independent estimations or incrementally refining an estima-
tion. We also plan to investigate other state-space properties
that could serve as preliminary indicators of coverage. Such
indicators could be used to tune the estimation algorithm on
the fly (e.g., tuning the percentage of memory allocated to
the verification phase versus the estimation phase based on



early indications as to whether the state-space coverage will
be low or high). Another interesting extension of this work
would be to investigate techniques for reporting a bound on the
uncertainty of the coverage estimation. An uncertainty bound
would act as a measure of confidence in the coverage results
and could be used to decide how to improve the coverage
on subsequent searches. If the reported uncertainty bound
is low, then the human verifier is more likely to trust the
coverage results and adjust her verification technique based
on the results. For example, a low coverage estimate with
low uncertainty might suggest that she use more aggressive
abstraction techniques.
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