IEEE Copyright Notice

Copyright (c) 2009 IEEE
Personal use of this material is permitted. Permission from IEEE must be obtained for all

other uses, in any current or future media, including reprinting/republishing this material
for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in

other works.

Published in: Proceedings of IEEE/ACM International Conference on
Automated Software Engineering (ASE'09), November 2009

‘“State-Space Coverage Estimation”

Cite as:

Ali Taleghani and Joanne M. Atlee. 2009. State-Space Coverage Estimation.
In Proceedings of the 2009 IEEE/ACM International Conference on Automated
Software Engineering (ASE '09). IEEE Computer Society, Washington, DC, USA,

459-467.

BibTex:

@inproceedings { Taleghani:2009:SCE:1747491.1747540,

author = {Taleghani, Ali and Atlee, Joanne M.},

title = {State-Space Coverage Estimation},

booktitle = {Proceedings of the 2009 IEEE/ACM International Conference on Automated
Software Engineering},

series = {ASE '09},

year = {2009},

pages = {459--467}

h

DOI: https://doi.org/10.1109/ASE.2009.24



State-Space Coverage Estimation

Ali Taleghani Joanne M. Atlee
David R. Cheriton School of Computer Science David R. Cheriton School of Computer Science
University of Waterloo University of Waterloo
Waterloo, Canada Waterloo, Canada
ataleghani@uwaterloo.ca jmatlee@uwaterloo.ca

Abstract—Software model checking is the process of systemat- In this paper, we propose an algorithm for estimating the
ically exploring a program’s state space to find hard-to-disover  state-space coverage of a model-checking search that-termi
errors. Because of the exponential size of the state spacen a st prematurely due to insufficient memory. Our algorithm

exhaustive search of the state space is often impossible gjivthe Monte Carlo techni t | lored t it
memory resources. In such cases, an estimate of how much of4S€S Monté L.arlo techniques 1o Ssampie unexplored transitio

the state space is covered can help the verifier to decide winer ~in the reachability graph, count the number of unvisitedesta

to employ additional computational resources or to use more reachable via these transitions, and extrapolate froméahis

aggressive abstraction techniques. o estimation of the number of states still unvisited when the
Our Work.focuses on coverage estimation for explicit-state search terminates.

model checking of software programs. In this paper, we presa o tributi foll .

an estimation algorithm that is based on Monte Carlo technigies ur contributions are as Toflows:

that sample the unexplored portion of the reachability graph. We 1) Coverage estimation:An algorithm for estimating the
implemented our algorithm in Java Pathfinder and evaluated ar state-space coverage of a partial model- checking search.
approach on a suite of Java programs, simulating out-of-merry The algorithm design makes no assumptions about the

errors after a known percentage of a program’s state space fth

been searched. Our empirical studies show that, on averageur associated model checker, so we expect that the al-

algorithm’s coverage estimates differ from the actual coveage gorithm can be embedded in any explicit-state model
by less than 10 percentage points, with a standard deviatioof checker.

about 5 percentage points — regardless of whether the actual  2) Implementation: A prototype embedding of our algo-
state-space coverage is low (3%) or high (95%). rithm in the Java PathFinder model checker.

3) Evaluation: An empirical study of our algorithm on a
suite of nine Java programs. The prototype was tuned
Model checkingis a search-based verification technology using a subset of these programs, to improve the accu-

that examines a model's or program’s state space and veri- racy of its estimations. We then evaluated the algorithm

fies its conformance to desired properties. One of the main  and prototype using the full suite of programs. The

obstac_les to Wide-spregd use of model checking issth&e search of each program was terminated prematurely,
explosion problemthe size of a model's or program’s state after reaching varying degrees of partial state-space
space grows exponentially with the number of variables and  coverage (ranging from 3% to 95% coverage), and the
concurrent processes [6]. Many programs are too large to be reported coverage estimate was compared against the

I. INTRODUCTION

checked exhaustively, even after using state-of-thetate-s actual coverage (which was known). Results show that,
space reduction t_echnlques I|k_e_part|al-order reductibzi, [ on average, our algorithm’'s coverage estimates differ
predicate abstraction [13], or slicing [23]. from the actual coverage by 3 to 10 percentage points,

If a model-checking search ends prematurely without with a standard deviation of about 5 percentage points.
achieving full coverage or finding an error, an estimate of Tpig paper is organized as follows. Section Il introduces
the search’s state-space coverage could be very useful. 5gf estimation algorithm. In Section 1ll, we describe its
example, the degree of coverage may offer some level of cGRplementation within the Java PathFinder model checket, a
fidence in the partial results: finding no errors when seahigiscuss our evaluation methodology and suite of test progra
95% of the state space is more significant than finding Ae results of our evaluations are presented in Section &/. W
errors when searching 10% of the state space. Alternativelyscuss in Section V alternative approaches and optinoizati
the estimated coverage could suggest how best to imprqMgt we have explored in the course of our research. We

the coverage on subsequent model-checking searches: Righ with a discussion of related work in Section VI and
coverage suggests that running the model checking problgghclusions in Section VILI.

on a more powerful machine (with more memory) might

be sufficient to achieve full coverage, whereas low coverage Il. STATE-SPACE COVERAGE ESTIMATION

suggests that more aggressive abstractions or paralleelmod Some programs are too large to be exhaustively model

checking would be required. Of course, to be useful, tlehecked, in which case we would like the model checker

coverage estimation needs to be somewhat accurate. to report the percentage of the state space covered during a



partial search. In these circumstances, the model chedeer h
two goals: to estimate the percentage of state space covered

S1
by a search, and to explore and examine the program'’s state i
space. It may be that the best search strategy for the purpose
s2 :)<}444(: S3
é\\ //3 li\

verification
phase

of verification is not the best search strategy for the puepmds
coverage estimation. In general, we would expect a verificat

search to be a systematic exploration of the entire statgesp !
whereas an estimation search should cover different péarts|
the state space to provide an accurate estimation of gtates
coverage.

Thus, we take a two-pronged approach to estimation. During
the first phaseverification phasgwe devote some percentage
of memory to an exhaustive search. Thus, the model checker
must be able to keep track of the amount of memory utilized estimation
as a percentage of total memory available. If the verificatio phase
phase memory limit is reached before model checking com-
pletes, then the model checker switches strategy and uses th Fig. 1.
remaining memory for estimation.

During the second phasesqtimation phage the model
checker performs partial state-space searches startorg frunexplored at the end of the estimation phase:
multiple unexplored transitions in the reachability graplg-
ure 1 shows how a reachability graph might be covered by our (a)
estimation algorithm, with some states being visited dutire
algorithm’s verification phase and other states being edsit
during the estimation phase.

Despite their names, each phase contributes to both verifi- (d)# unexplored transitions
cation and estimation: during the verification phase, a tounhe estimation algorithm measures the italicized values in
of the number of unique states visited is maintained (®quation 1 and solves for the number of unvisited states.
be used in calculating the estimated coverage); and duringuring our investigation, we discovered that we obtain more
the estimation phase, newly discovered states are verifiedarcurate results if the estimation phase samples and counts
discovery. Thus, even if we set aside some memory for thely productivetransitions, where a transition goductiveif
purpose of estimation, that memory will be used to exploigleads to an unvisited state. By disregarding the tramssti
more states. The estimation phase ends when either memgt lead to already visited states, we improve the estidnate
is exhausted or the state space is fully explored. ratio of new states per sampled transition. The modified

Our estimation algorithm uses Monte Carlo techniques tgjuation is as follows.
sample different parts of the unexplored state space and to
extrapolate an estimate of the number of unexplored states. (a)#states found during sampling
At any point in time, the search maintains (1) a hash table b2 Ted oroductive T T ~ (2)
of visited states (in which distinct states are represeated (b2)3 sampled produc w:e .TanSZ rons
unique integers calledingerprinty, and (2) aworklist of (c)# unvisited states
partially explored states that have been reached and krifie
but whose transitions are still to be fully investigatedring Note that whether a transition is productive changes duhiag
the verification phase, the worklist is used to co-ordinatecaurse of the search: a transition that is deemed productive
systematic search of the program’s state space. During #tethe start of the estimation phase may later be deemed
estimation phase, the worklist serves as a source of uneplounproductive if in the meantime its destination state igtets
transitions to be sampled. The algorithm searches a randdhus, the count of productive transitions is more accurfate i
selection of unexplored transitions and counts how maityis made at the end of the estimation phase.
unvisited states are reachable from each transition. In Figure 1, for example, the verification phase ends with

We assume that the number of new states reachable frorthigee states in the worklist (s2, s3, s4) that together have
set of sampled transitions tells us something about the rumbix unexplored transitions emanating from them (numbered,
of unvisited states that would be reached from the unsampled pedagogical purposes only, 1 to 6). Suppose further that
transitions. That is, we assume that the ratio of (a) the mumigluring the estimation phase, the model checker santples
of new states discovered during the estimation phase to {tgnsitions, 1 and 5, and discovers a totalsof new states
the number of sampled transitions is comparable to the rabefore it runs out of memory. At the end of the estimation
of (c) the number of states that remain unvisited at the eptiase, four transitions remain unexplored (dashed trans);
of the estimation phase to (d) the number of transitions leff which only two transitions are productive and lead to

Schematic example of our estimation algorithm

#states found during sampling

(1)

(b)# sampled transitions
(c)# unvisited states

(d2)# productive, unexplored transitions



unigue destination states. Using these values in EquationnZ&mory limit — which is, effectively, a form of bounded model
the estimated number of unvisited stategds-2) x 2 = 6.  checking [4].
It is important to mention that by considering productive .
transitions only, our algorithm deviates from traditiohdnte B- Estimation Phase
Carlo techniques. Normally, sampling is performed on the fu The goal of the estimation phase is to (1) estimate the
data set and it is assumed that the data set does not chaagje of unvisited states per unexplored transition (heftd
as a result of sampling. In our case, however, the data si&te of Equation 2), and (2) count the number of productive
(unexplored productive transitions in the worklist) chasg transitions that remain unexplored at the end of the esitbmat
throughout the estimation phase because the exploratian gfhase (value of (d2) on the right-hand side of Equation 2). We
sampled transition may cause other transitions in the vatrkldescribe how to obtain both values below.
to become unproductive. As a result, the number of prodectiv 1) Number of Unvisited States per Unexplored, Productive
transitions that remain in the worklist at the end of sanwlinTransition: We sample a subset of the unexplored transitions
might be an overestimate, since not all transitions would legnanating from the states in the worklist, and count the num-
deemed productive if the sampling were exhaustive. Stilber of unvisited states that are reachable from each tramsit
counting the number of productive transitions that remain iIf a sampled transition leads to an already-visited stdten t
the worklist at the end the estimation phase results in alesmait is deemedunproductiveand we pick another transition.
overestimation of productive transitions than if the tioss Each sample is an exhaustive search of the state space
were counted at the start of sampling. reachable from some productive transition. Either BFS o8DF
Once we obtain the estimated number of unvisited states, a@uld be used. We chose to use DFS because it is faster and
compute the estimated coverage using Equatidir8/isited more memory efficient, as explained above.
is the estimated size (number of states) of the unexploredlo obtain accurate estimation results, it is desirable to
state space, obtained from Equation 2, dnikited is the sample the reachability graph as uniformly as possible sThu
number of unique states discovered during the combinatitmimprove the breadth of the estimation search, the algorit
of the verification and estimation phases: randomly selects unexplored transitions from the worklist
The algorithm continues to sample transitions until either
o no more unexplored transitions remain in the worklist or the
Visited +100 (3) memory allocated to the estimation phase is exceeded. The
Visited + UnVisited former case corresponds to an exhaustive search of the state
Thus, to complete the example shown in Figure 1, the esspace and no estimation is necessary. In the latter case, we
mated coverage would K&0) = (10+6) = 63%, when in fact calculate the average number of unvisited states that each
the verification and estimation phases together cover 77%sampled, productive transition discovers.

%Coverage =

the state space. 2) Number of Remaining Unexplored Productive Transi-
In the next sections, we describe the verification and estiens: At the end of the estimation phase, we count the
mation phases in more detail. number of unexplored productive transitions that remain in

the worklist. For that, the model checker traverses the ligrk
executes every unexplored transition of every state inititge |
The main purpose of the verification phase is to verifgnd checks whether the destination state is unvisited. The
the program and discover any property violations. If themodel checker does not explore beyond the destination. state
verification phase ends without covering the entire stadéeesp The result is the total number of productive transitions tha
we want a large worklist to sample from during the estimatiomain unexplored.
phase. Larger worklists usually lead to more accurate astim During this final count of productive transitions, the model
tion results. checker discards destination states as they are creatimkdt
Our algorithm employs breath-first search (BFS) for thisowever, continue to store the fingerprints of the destimati
phase. BFS is less efficient than a depth-first search (DFsBates in a hash table of visited states, in order to recegeiz
because there is more context switching between states. Bi€at visits to the same state. Thus, this step requiresgilggli
tends also to be less memory efficient than DFS becauseatklitional memory.
worklist (a queue) contains all states at the current level o
the search, wherlevelis the path length from the initial stateC- Meémory Management
in the reachability graph; in contrast, the worklist of a DFS The verification phase and estimation phase both utilize
(a stack) contains only the states in the path from the Initimemory: in both phases, the model checker stores partially
state to the state currently being explored. That said, gelaprocessed states in a worklist and separately maintains fin-
worklist is advantageous for sampling and estimation, so werprints of visited states in a hash table. How we divide
use BFS in the verification phase despite its inefficiencies. the available memory between the two phases can affect the
Another advantage of using BFS during the verificatioaccuracy of the estimation results.
phase is that it ensures an exhaustive search of executioin general, we would expect to obtain more accurate cov-
paths up to some length determined by the verification-phasmge estimations if the verification phase reaches depfzer i

A. Verification Phase



the state space before the estimation phase starts. Thidinst, our algorithm performs verification- and estimation
because the shape of the reachability graph may not be regplaase searching and calculates a coverage estimate. We then
and may contain bottlenecks or regions that are reachaale ¥ompare the estimated coverage with the known state-space
only a few transitions. If the verification phase is thorougboverage (i.e., the coverage limit). We used coverage dimit
enough to progress through these bottlenecks, then the %, 25%, and 75% (referred to aming limitg to fine-tune
explored portions of the reachability graph that remain aoair algorithm and determine how much memory to allocate
more strongly connected and are more equally reachable toathe verification phase versus the estimation phase. We
a random sampling. used the remaining limits solely for evaluation. In pragtic

On the other hand, when the size of available memowhen the size of a program’s state-space is unknown, we
is very small compared to the size of memory needed foge JPF's facilities for keeping track of memory usage to
an exhaustive search, it is important that there be enoudgtermine when the verification phase has used up all of its
memory available during the estimation phase so that th#ocated memory (a fixed percentage of the total available
estimation searches reach and count a sufficiently largdoaummemory). Thus, our approach could be easily adapted to any
of new states per sampled transition. In these cases, tifigcaexplicit-state model checker that supports both DFS and, BFS
more memory to the estimation phase is more effective. dhd includes facilities for tracking memory usage during th
is important to recall that, no matter how we split memorgearch.
between the two phased| available memory is used to search We ran our experiments on an Intel Pentium 4 3.2GHz
the state space (and check for property violations) becausachine with 1.5GB of memory, running Windows XP.
even during the estimation phase the model checker is still
examining new states.

We experimented with different ratios of memory allocated In this section, we present the experiments for evaluating

IV. EXPERIMENTS AND RESULTS

to each phase and report the results in Section IV. our estimation algorithm and the results we obtained.
In the first set of experiments, we varied the amount of
1. EVALUATION METHOD memory allocated to each phase of the algorithm, and we com-

pared the accuracies of the resulting estimations. Inqudati,

We evaluated our coverage estimation algorithm by erwe varied the amount of memory allocated to the verification
bedding it into Java Pathfinder (JPF) version 4 [15]. JPF jigase to range between 40% and 90% of available memory
a software model checker that verifies a Java program {ftificially restricted by the coverage limit, as descdbie
exhaustively exploring the program’s executable stat&espahe previous section), in 10% increments. The rest of the
and looking for program states that result in deadlocks ar thmemory (minus a small amount to compute the estimation
violate user-specified assertions. at the end) is allocated to the estimation phase. We perfbrme

As evaluation programs, we selected programs with knowiis experiment for all tuning programs and tuning coverage
state-space sizes because this allows us to evaluate hdw Virglits.
our estimation algorithm performs. We evaluated our work on The results showed that for low coverage limits, where a
a suite of nine Java programs that come from five sourcesarch terminates before a significant fraction of the state
and that have been used in previous empirical studies. Tégace is explored (10% to 25%), it is best to allocate 50%
programs are relatively diverse with respect to their statef available memory to the verification phase. For higher
space size, the ratio of transition to states, the number g@verage limits (75% and higher), it is best to allocate 7G% o
parallel threads in each program and the diversity of the coavailable memory to the verification phase. In practiceutin
current processes in each program (e.g. the dining philesopone does not know ahead of time whether the model checker is
program has identical processes, whereas the sleepingrbalikely to cover a small or large fraction, or all, of a program
program consists of several different processes). Talitd | state space. For all of our subsequent experiments, we used a
each program including a citation of its source, the prograaflocation that lies in the middle of the above two value$660
parameter values that we used (e.g., we instantiated eightwailable memory in the verification phase, for all cogera
dining philosophers), and the resulting size of the progsamimits. More extensive experimentation is needed, invudvi
reachability graph in terms of numbers of states and transi-very large and diverse set of programs with known state-
tions. We used the first four programs of our evaluation suigpace sizes, to determine a more precisely optimal altmeati
astuning programgo fine-tune the memory allocation of ourof memory.
algorithm, and we used the remaining five programs (shownOur second set of experiments evaluate how well our
in dark rows) for evaluation only. estimation algorithm works for all programs and all coverag

To simulate out-of-memory scenarios, we vary the percetitits in our evaluation suite. We model checked each pnogra
age of the programs’ total state space that the model checkéth respect to each coverage limit ten times and report the
searches. Specifically, we prematurely terminate the modesults in Table Il. Theleviationbetween a coverage estimate
checker once 3%, 10%, 25%, 50%, 75% and 95% of tld a search’s actual coverage (set by the coverage limit) is
program’s state space has been covered. We refer to theseegpressed in terms of percentage points: the absolute value
memory thresholds asoverage limits Within this coverage of the difference between the two percentages of state space



TABLE |
JAVA PROGRAMS USED FOREVALUATION

[ [ Source] Program | Parameters | States (S)| Transitions (T)]
1 [15] Dining Philosopher (8) #philosophers 209014 1093394
2 3 Bounded Buffer (5,4,4) buffersize,#prod,#cons 786987 5606270
3 2 Nasa KSU Pipeline (3) stagesize 59512 246697
4 3 Nested Monitor (5,4,4) buffersize,#prod,#cons 71941 493776
5 [3] Pipeline (7) stagesize 82011 500823
6 [3] RWVSN (4,4) #readers,#writers 227116 1167826
7 3 Replicated Workers (5,2 #workers,#items 710022 3648744
8 8 Sleeping Barber (2,4,3)| #barber#customers,#chail 1452194 6295518
9 1 Elevator(5,10,10) #elevators,#floors,#people 386032 3232346

We report the smallest deviation (colunBes), the largest V. DISCUSSION

deviation (columnWors), the average deviation of ten runs Tproughout our work, we experimented with various esti-
(column Avg), and the standard deviation of the deviationgation techniques and optimizations of our current alganit

(column 7). For example, consider a search of the pipeling ihis section, we describe lessons learned with respebieto
program with a coverage limit 25%. A perfect estimate woulg, ot important experiments.

report that 25% of the program'’s state space had been covered
by the search. The best estimate (out of ten) reported by dur Rate of Discovering New States

algorithm was off by 2 percentage points, the worst estimatejt seems intuitive that the rate of discovering new states
was off by 18 percentage points, the average deviation wgsuld decrease during the course of a search and that we
10 percentage points; and the standard deviation from tgn use this information to improve our coverage estimate.
average estimate was 7 percentage points. Considering|albarticular, the model checker could keep a running ratio
nine programs and six coverage limits, with each combinati@f transitions to states, and could compare the currentafate
run ten times, our worst coverage estimate was off by Hew-state discoveries (measured at fixed intervals) agies
percentage points. We recorded whether the reported a@®ragyerall ratio.

were overestimatations or underestimations, but we cootd n To test this hypothesis, we performed exhaustive searches
detect a clear bias. It is for this reason that we report dievia of our tuning programs and Counted' at fixed interva|sl the
as absolute values. fraction of transitions that are productive (i.e., thadéa new
§tates). Figure 2 shows the rate of discovering new states fo

The standard deviation illustrates the variability of ou ¢ luati Th is sh th
results: onestandard deviatiorspecifies the range of values ON€ Of our evajuation programs. The x-axis Snows e pregres
f the search in terms of the percentage of all transitions

centred around an average, within which 60%-70% of estl! lored
mates fall, assuming a normal distribution. Thus, a stahda(?xﬁore ) b h e of di . tates d
deviation of 5 percentage points indicates that most of stire . S can be seen, (he rate of discovering new states drops
mates fall within 5 percentage points of the average estim uickly at the start of the se_arch _and then o_Ie_creases slowly
We believe the variability of the results is primarily due t or the rest of the search, maintaining a surprlsm_gly mater
different reachability graph properties of our evaluatiuiite. rate even at the end of the search. All evaluation programs

We discuss in Section V factors that could affect the ac<;ura%>(hi.bit similarly shaped graphs, aIthough the steep drtnpm:_
of the results. at different stages of the search for different programsefi

the comparable rates throughout most of a search, including

To evaluate the performance overhead of our estimatiop to the end of a search, we were not able to deduce any
algorithm, we compared its execution time to that of tradiéil particular properties that could be used to improve cowerag
model checking. To eliminate variability due to the searcbstimation.
strategy, both our algorithm and the traditional model &meg Given that the estimation phase of our algorithm measures,
runs use BFS to search 60% of each program’s state spaceffect, the rate of newly discovered states, it is coralglie
and use DFS to search the remaining 40% of the state spahat our algorithm overestimates coverage if sampling cu
The results showed negligible difference in performandes T early in the search when the rate of discovering new states is
is not surprising, given that the only extra work that oumuch higher (e.g. when the steep drop occurs in Figure 2). For
algorithm performs is the counting of transitions, which isur experiments, we expect that parts of the estimationgphas
negligible compared to the search and verification of theould occur during this stage of higher rate of discovering
state space. To assess the performance overhead of usieg states, especially at the coverage limits of 3% and
BFS during the verification phase, we also compared oli®%,. However, we did not observe any overestimations that
algorithm’s execution time to that of a DFS model checkingere surprising compared to other experimental results It
search. The results showed that, depending on the coverpgssible that this sharp drop actually helps to obtain more
limit, the overhead ranges between 12% and 38%. accurate results when coverage is low (e.g., to counterbala



TABLE Il
STATE-SPACECOVERAGE ESTIMATION RESULTS

| | Coverage Limit | 3% I 10% I 25% |

| | Estimate Deviation (% points] Best | Worst | Avg [ o [[ Best | Worst [ Avg | o [[ Best [ Worst | Avg [ o |
Dining Philosophers 4 14 7 4 3 11 8 4 4 16 9 5
£ Bounded Buffer 3 5 3 2 1 4 2 3 3 16 9 6
g Nasa KSU Pipeline 2 2 1 2 2 7 Z 3 Z 12 7 3
<) Nested Monitor 2 4 2 2 2 10 6 4 3 13 7 5
o Pipeline 4 10 8 3 1 11 5 3 2 18 10 7
RWVSN 1 2 1 1 1 7 5 3 2 6 2 3
Replicated Workers 9 25 16 7 3 9 6 4 2 10 3 4
Sleeping Barber 2 7 5 2 2 11 5 4 3 10 6 3
Elevator 1 2 1 2 2 7 4 2 2 9 2 5
| | Average | 3] 8 | 5 [38]] 2 ] 9 | 5 [38] 383 ] 12 ] 6 |5]
| | Coverage Limit | 50% I 75% I 95% |
| | Estimate Deviation (% points] Best [ Worst | Avg [ o [[ Best| Worst [ Avg | o [[ Best[ Worst | Avg | o |
Dining Philosophers 5 15 10 4 2 23 15 10 5 19 10 5
£ Bounded Buffer 7 19 11 5 12 31 23 7 4 37 14 | 13
g Nasa KSU Pipeline 1 5 3 2 3 18 6 7 5 15 6 4
<) Nested Monitor 2 9 5 4 5 20 13 3 6 14 10 3
o Pipeline 2 9 6 3 3 14 5 5 4 8 4 2
RWVSN 7 21 18 6 2 16 10 6 4 15 10 4
Replicated Workers 10 23 8 7 7 17 8 5 6 16 12 4
Sleeping Barber 8 24 15 7 3 14 5 4 2 8 5 3
Elevator 1 9 5 4 11 27 7 9 2 5 2 2
\ | Average | 5 ] 15 ] 9 [5] 5] 20 J10] 6] 4] 15 [ 8 ] 4]

has a regular distribution. In this work, BFS levelof k
is the set of states that are reachable from the initial state
via a path of lengthk. In [18], authors plot the number of
unprocessed states that are in the worklist at each BFS level
and showed partial BFS level graphs to human subjects, who
tried to guess the shape of the full graph. Given the results
from the human experiments, the authors then deduced some
parameters that they used to estimate state-space coverage
0 ' ' . ' based on the predicted shape of a search’s BFS level graph.
0 200 0 %0 80 100 The authors of [7] use least-squares fitting of partial BR@lle
% of total transitions explored .
graphs to estimate the total number of states.
Our own experiments, however, indicate that the size of a
BFS worklist does not necessarily have a regular or preldieta

underestimations that are due to unexplored bottlenecteein distribution and thus may not be a reliable basis for cowerag
reachability graph) or it is possible that the drop is so pBte‘s:stlmatatlon. Figures 3 and 4, for example, show the BFS_Ieve
that it occurs for only a very small portion of the estimatio§'@Phs for the elevator and RWVSN programs, respectively.
phase, and thus the estimation results are largely unegiect\either of these graphs have regular or bell-shaped curves.
In either case, more experiments with a larger set of evaliat!" OUr evaluation suite, six programs had a relatively ndrma
programs are needed to determine the significance of tAistribution and three did not.

possible overestimation. C. BFS vs. DFS During the Verification Phase

B. BFS Level Graphs for Estimation In our approach, an important design alternative is the
We might expect that a breadth-first search of a progranssarch strategy used during the verification phase. DFS is

state space would produce a worklist whose size varies r@gpular because it is fast: the program stack can be used to

ularly and predictably over the course of a complete modstore the worklist of partially explored states, so theréess

checking run. That is, in early phases of the search, the samntext switching when the next state is explored; and the si

of the worklist grows and during later phases of the searabf, the worklist is relatively small since it contains onlyats

the size of the worklist shrinks. along a single execution path. However, we use BFS because
The authors of [7], [18] assume that the size of the worklistye hypothesize that having a larger worklist at the starhef t

measured after searching each level of the reachabilifyhgraestimation phase results in a more accurate estimation.

Fraction productive transitions

Fig. 2. Rate of discovering new states for the dining phibe program



3 transition from the worklist and starts a new DFS.
To evaluate this technique, we varied the number of transi-
g tions that are sampled in parallel and evaluated the acgwfac
the resulting estimation. We observed that when the estimat
g algorithm samples five to ten unexplored transitions in fglra
the accuracy of its coverage estimate improves for (tuning)
. coverage limits of 10% and 25% but worsens for the coverage
limit of 75%. When the number of parallel searches is above
0 — P 15, then estimation accuracy improves for the coverage limi
0 10 20 30 4§FSSIO |60 70 80 90 100 of 75% but worsens for the coverage limits of 10% and 25%.
eves It seems that when state-space coverage is low, it is better
to sample a smaller number of transitions so that the searche
of the sampled transitions finish. If too many transitions ar
30000 | i sampled, then the average number of new states per sampled
transition is low and the algorithm underestimates coverag
The opposite is true when state-space coverage is high.

In general, however, we do not know in advance whether
15000 |- 1 state-space coverage will be low, high, or complete, and thu
10000 - i we do not know how many transitions to sample. This method
may become more applicable if there were a way to determine

on the fly whether the coverage is likely to be low or high.
® 10 2'0 3',0 ‘;o 5'0 elo 7'0 80 For example, we are exploring the possibility of performing
BFS levels the estimation phase of our algorithm more than once, infwhic
Fig. 4. BFS level graph for RWVSN program case the estimated coverage from one execution could be
used to tune the estimation algorithm in the second estimati
phase.

To test this hypothesis, we experimented with using DFS .
rather than BFS during the verification phase. In a study bf Scalability
nine evaluation programs and six coverage limits (54 cases)Even though our experiments were performed on relatively
using DFS produced less accurate results in 44 cases bysarall evaluation programs, we do not believe that larger pro
average of 14 percentage points; produced equally accurgtems would necessarily better demonstrate the effeessn
results in 3 cases with an average difference of 1 percentageur algorithm. This is because our algorithm depends more
point; and produced more accurate results in 7 cases byandifferent state-space properties rather than the sizeeof
average of 7 percentage points. The results confirm thatjusstate space. For example, the number of bottlenecks in the
BFS during the verification phase is likely to improve thstate space (i.e. states that have very few incoming transit
accuracy of our algorithm’s coverage estimates. but can reach many other states) can have a large effect on

) ) ) ) the accuracy of estimation. We expect that the accuracy of
D. Round-Robin Execution of Estimation Phase Searches qgtimation is lower for state spaces that have many bottlene

One risk of the current design for the estimation phagéso, if the rate of discovering new states and the fractibn o
of our algorithm is that the remaining memory is exhaustathnsitions that are productive vary for different partstiod
while searching the first sampled (unexplored) transitaomd state space, then we expect the results to be less accurate.
that this can result in estimates that are wildly off-base: t Thus, while studies on larger programs can be useful, we
estimation may be way too high if the number of new statémlieve that testing our algorithm on a more diverse setatést
that are reachable from this one transition is much highen thspaces, regardless of their size, could offer more conglusi
the actual average number of new states per unexplored-transsults.
tion. We hypothesized that we could improve the accuracy of
our estimations by sampling multiple unexplored transgiat
once, in round-robin fashion. Our work is most closely related to research on coverage

To test this hypothesis, we modified the estimation phasstimation and is somewhat related to work on randomized
of our prototype to sample several unexplored transitions searching and partial searches. We describe each area. below
parallel in a round-robin fashion. The model checker keeps a o
separate DFS stack (worklist) for each sampled transidiod, A- Coverage Estimation
stores partially processed states for each DFS in that DFS’dn previous work [22], we suggested that it may be possible
local worklist. There is one shared global hash table tlaiest to sample unexplored transitions as a means to estimate the
fingerprints of visited states. If a DFS finishes before mgmosize of the state space, but we did not explore this idea
is exceeded, then the model checker picks a new unexplofather. Other works related to state-space coverage attim

40000 F— 1 T T T T T

30000 [

20000

Number of States

10000

Fig. 3. BFS level graph for Elevator program

25000 B

20000 B

Number of States

5000 - 1

VI. RELATED WORK



are [7], [18]. The authors in [18] describe two techniquesptimizations have been suggested to improve its effantise
for estimating state-space coverage. In the first techniqaé finding errors. These optimizations include re-inigelg
they execute two random partial searches of the state sp#uesearch frequently to avoid getting trapped in strongly-c
and use the overlap between the two searches to estimateted components [17], performing local exhaustive $earc
coverage. In the second method, they use partial BFS leweice a certain depth has been reached [21], keeping a small
graphs as explained in Section V. The authors evaluate tteche of visited states [11], and running parallel random
accuracy of their coverage estimation algorithm based oralks [11], [21].
whether it can classify the actual coverage of a search intoRandomly selecting from states and transitions in the work-
the correct coverage range: 3%, 4%-25%, or 26%-100%. list is explored in [9], [16], [20]. The Lurch model checkds]
They evaluated their algorithm on 160 reachability grapihs. uses random walks to perform partial searches of large state
the best case, their algorithm is correct 72% of the time, asgaces. When exploring more than one path, Lurch inserts
in the worst case it is correct 42% of the time. If we use theewly discovered states at random indices in the worklist
same three coverage ranges to evaluate the accuracy of tourandomize the search. Dwyer et al. [9] perform random
estimation algorithm, then our algorithm estimates theemr searches of the state space by randomizing the order in which
range 93% of the time in the best case, and 78% of the tirokild states are explored. They parallelize this methodiby d
in the worst case. tributing the search to multiple non-communicating maekin
The authors in [7] try to estimate the actual size of the staRungta and Mercer [20] provide a randomized algorithm for
space by applying least-squares fitting to partial BFS levéirected model checking that randomizes the order of states
graphs. As described before, the main assumption of thik wan the priority queue that have the same heuristic values Thi
is that BFS level graphs have regular, bell-shape curves th#gorithm allows the distribution of the search to multiple
can be described by a quadratic formuja= ax? + bxz for machines.
somea andb. The authors report the results for three coverageFinally, bounded model checking [4], [5] is a form of partial
limits (25%, 50% and 75%) and three evaluation programsearch that is exhaustive up to some boénzh the length of
Their results show that their algorithm can estimate the siexecution traces. If no bug is found, one incredsaastil either
of the state space with a 66% to 93% accuracy. As mentionedug is found or some pre-defined upper-bound is reached.
before, our results show that the BFS-level graphs of pragraThe verification phase of our algorithm, which is an initi&d$
are not predictably regular. of the state space, can be viewed as a bounded search whose
Others have explored how a state-space search relatebdand is determined by the amount of memory allocated to
code coverage [10], [14] or to specification coverage [1Ohe search phase.
Rodrguez et al. [10] describe and implement a framework for
the Bogor model checker [19] that supports branch coverage
and specification coverage. Branch coverage judges how manyVe have presented a strategy for estimating the state-
of the branches in the code have been exercised, in cases wikpace coverage of a model checking search that terminates
the program’s environment can affect whether all of the prerematurely due to insufficient memory. We have implemented
gram’s execution paths are examined. Specification coeeragir algorithm in Java Pathfinder and have evaluated the
indicates how much of a JML specification is exercised whemplementation on a suite of Java programs.
model checking the program against the specification, givenin the future, we would like to explore possibilities for
a particular program environment. Gore et al. [14] descrilbproving the efficiency and accuracy of coverage estimatio
a branch coverage module for JPF that tries to exercise &lie performance overhead reported in Section IV is a direct
branches of a program and reports the percentage of branatmssequence of our decision to use bread-first-searchglurin
covered. None of these works estimate state-space coveratie verification phase of our algorithm. It is worth inveatigg
. whether other search strategies or a mixture of strategdesdw
B. Random and partial state-space searches more efficiently achieve our goal of accumulating a reashjnab
Our estimation phase could be viewed as a random searclsiaed worklist. As an example alternative, the verification
the state space, in that the sampling is a collection of namdophase could be a depth-first examination of the progrants sta
partial searches of unexplored regions of the reachabilgpace, and the estimation phase could start by performong sh
graph. In general, random and partial state-space seaachesreadth-first searches of states in the worklist, to inerehe
often employed when the state space is too large for exvaussize of the worklist before estimation searches begin.
model checking; the goal is to find errors rather than to proveTo improve accuracy, we are exploring strategies that em-
their absence. ploy multiple estimation runs, such as merging the resutts f
The idea of random walks and randomized state-spaocelependent estimations or incrementally refining an estim
search was first suggested by West [24]. In each step ofien. We also plan to investigate other state-space priggert
random walk, the algorithm randomly chooses a successortlodt could serve as preliminary indicators of coverage.hSuc
the current state and visits it. If the current state doe$awé indicators could be used to tune the estimation algorithm on
any successors, the algorithm restarts from the initiglestathe fly (e.g., tuning the percentage of memory allocated to
Since the original random walk method was introduced, mattye verification phase versus the estimation phase based on

VII. CONCLUSION



early indications as to whether the state-space coveralfje 2] A. Taleghani. Using software model checking for softe'@omponent

be low or high). Another interesting extension of this work certification. InICSE_COMPANION '07: Companion to thg propeedings
ould be to investigate techniaues for reporting a bounchen t of the 29th International Conference on Software Engimegrpages
wou investig iqu porting u 99-100, 2007.

uncertainty of the coverage estimation. An uncertaintyritbu [23] M. Weiser. Program slicing. IProceedings of the 5th International
would act as a measure of confidence in the coverage results Conference on Software Engineeringages 439-449, 1981.

d d b d to decide h to i th Eé] C. West. Protocol validation by random state explorati In Proc. of
and cou € used 1o deciae how 10 1mprove the covera the 7rd Workshop on Protocol Specification, Testing andfication

on subsequent searches. If the reported uncertainty bound 1986.
is low, then the human verifier is more likely to trust the
coverage results and adjust her verification techniquedbase

on the results. For example, a low coverage estimate with

low uncertainty might suggest that she use more aggressive
abstraction techniques.

REFERENCES

[1] http://home.att.net/ ddavies/newsmulator.html.

[2] http://verify.stanford.edu/uli/icse/workshop.Htm

[3] http://www.cis.ksu.edu/santos/case-studies/caaxample case study.

[4] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. ZhBounded
model checking.Advances in Computer$8:118—149, 2003.

[5] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic mel
checking without BDDs. IrProc. of the Conf. on Tools and Algorithms
for the Construction and Analysis of Systempages 193-207, 1999.

[6] E. M. Clarke, O. Grumberg, and D. A. Peledilodel Checking MIT
Press, 1999.

[7] N. J. Dingle and W. J. Knottenbelt. State-space sizeregion by least-
squares fitting. IiProceedings of the 24th UK Performance Engineering
Workshop page 347357, 2008.

[8] M. B. Dwyer et al. Evaluating the effectiveness of slgifor model
reduction of concurrent object-oriented programsPioc. of the Conf.
on Tools and Algorithms for the Construction and AnalysiSgétems
pages 73-89, 2006.

[9] M. B. Dwyer et al. Parallel randomized state-space deahe Proc. of
the 29th Int. Conf. on Software Engages 3-12, 2007.

[10] Edwin Rodriguez et al. A flexible framework for the @esstion of
coverage metrics in explicit state software model checkingProc. of
the 2004 Int. Workshop on Construction and Analysis of Saéeure,
and Interoperable Smart Device2004.

[11] Enrio Tronci et al. A probabilistic approach to automaterification of
concurrent systems. IRAroc. of the Asia-Pacific on Software Eng. Conf.
page 317, 2001.

[12] P. Godefroid.Partial-Order Methods for the Verification of Concurrent
Systems: An Approach to the State-Explosion Proplsiume 1032.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1996.

[13] S. Graf and H. Saidi. Construction of Abstract Stateybis with PVS.
In Proc. of the Int. Conf. on Comp. Aided Verf. (CAppges 72-83,
1997.

[14] A. Groce and W. Visser. Heuristics for model checkingalarograms.
Int’l Jour. on Soft. Tools for Tech. TransfeB(4):260-276, 2004.

[15] NASA. Java  PathFinder, Version 4. In
http://javapathfinder.sourceforge.ne2007.

[16] D. Owen and T. Menzies. Lurch: a lightweight alternatito model
checking. Ininternational Conference on Software Engineering and
Knowledge Engineeringpages 158-165, 2003.

[17] R. Pelanek, T. Hanzl, ICerna, and L. Brim. Enhancing random walk
state space exploration. Imt. Workshop on Formal Methods for
Industrial Critical Systemspages 98-105, 2005.

[18] R. Pelanek and FSimecek. Estimating state space parameter®rn
ceedings of the 7th international Workshop on Parallel aridtilbuted
Methods in Verification2008.

[19] Robby, M. Dwyer, and J. Hatcliff. Bogor: an extensibladahighly-
modular software model checking framework. Rroc. European
Software Eng. Conf2003.

[20] N. Rungta and E. G. Mercer. Generating counter-exasnpfeough
randomized guided search. BPIN Workshop on Model Checking of
Software pages 39-57, 2007.

[21] H. Sivaraj and G. Gopalakrishnan. Random walk basedrigtéu
algorithms for distributed memory model checking.Bectronic Notes
Theor. Comput. Sc2003.



